1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/* PSPP - a program for statistical analysis.
Copyright (C) 2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file is taken from the R project source code, and modified.
The original copyright notice is reproduced below: */
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000--2005 The R Development Core Team
* based in part on AS70 (C) 1974 Royal Statistical Society
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double qtukey(p, rr, cc, df, lower_tail, log_p);
*
* DESCRIPTION
*
* Computes the quantiles of the maximum of rr studentized
* ranges, each based on cc means and with df degrees of freedom
* for the standard error, is less than q.
*
* The algorithm is based on that of the reference.
*
* REFERENCE
*
* Copenhaver, Margaret Diponzio & Holland, Burt S.
* Multiple comparisons of simple effects in
* the two-way analysis of variance with fixed effects.
* Journal of Statistical Computation and Simulation,
* Vol.30, pp.1-15, 1988.
*/
#include <config.h>
#include "tukey.h"
#include <assert.h>
#include <math.h>
#define TRUE (1)
#define FALSE (0)
#define ML_POSINF (1.0 / 0.0)
#define ML_NEGINF (-1.0 / 0.0)
#define R_D_Lval(p) (lower_tail ? (p) : (0.5 - (p) + 0.5)) /* p */
#define R_DT_qIv(p) (log_p ? (lower_tail ? exp(p) : - expm1(p)) \
: R_D_Lval(p))
static double fmax2(double x, double y)
{
if (isnan(x) || isnan(y))
return x + y;
return (x < y) ? y : x;
}
#define R_Q_P01_boundaries(p, _LEFT_, _RIGHT_) \
if (log_p) { \
assert (p <= 0); \
if(p == 0) /* upper bound*/ \
return lower_tail ? _RIGHT_ : _LEFT_; \
if(p == ML_NEGINF) \
return lower_tail ? _LEFT_ : _RIGHT_; \
} \
else { /* !log_p */ \
assert (p >= 0 && p <= 1); \
if(p == 0) \
return lower_tail ? _LEFT_ : _RIGHT_; \
if(p == 1) \
return lower_tail ? _RIGHT_ : _LEFT_; \
}
/* qinv() :
* this function finds percentage point of the studentized range
* which is used as initial estimate for the secant method.
* function is adapted from portion of algorithm as 70
* from applied statistics (1974) ,vol. 23, no. 1
* by odeh, r. e. and evans, j. o.
*
* p = percentage point
* c = no. of columns or treatments
* v = degrees of freedom
* qinv = returned initial estimate
*
* vmax is cutoff above which degrees of freedom
* is treated as infinity.
*/
static double qinv(double p, double c, double v)
{
static const double p0 = 0.322232421088;
static const double q0 = 0.993484626060e-01;
static const double p1 = -1.0;
static const double q1 = 0.588581570495;
static const double p2 = -0.342242088547;
static const double q2 = 0.531103462366;
static const double p3 = -0.204231210125;
static const double q3 = 0.103537752850;
static const double p4 = -0.453642210148e-04;
static const double q4 = 0.38560700634e-02;
static const double c1 = 0.8832;
static const double c2 = 0.2368;
static const double c3 = 1.214;
static const double c4 = 1.208;
static const double c5 = 1.4142;
static const double vmax = 120.0;
double ps, q, t, yi;
ps = 0.5 - 0.5 * p;
yi = sqrt (log (1.0 / (ps * ps)));
t = yi + ((((yi * p4 + p3) * yi + p2) * yi + p1) * yi + p0)
/ ((((yi * q4 + q3) * yi + q2) * yi + q1) * yi + q0);
if (v < vmax) t += (t * t * t + t) / v / 4.0;
q = c1 - c2 * t;
if (v < vmax) q += -c3 / v + c4 * t / v;
return t * (q * log (c - 1.0) + c5);
}
/*
* Copenhaver, Margaret Diponzio & Holland, Burt S.
* Multiple comparisons of simple effects in
* the two-way analysis of variance with fixed effects.
* Journal of Statistical Computation and Simulation,
* Vol.30, pp.1-15, 1988.
*
* Uses the secant method to find critical values.
*
* p = confidence level (1 - alpha)
* rr = no. of rows or groups
* cc = no. of columns or treatments
* df = degrees of freedom of error term
*
* ir(1) = error flag = 1 if wprob probability > 1
* ir(2) = error flag = 1 if ptukey probability > 1
* ir(3) = error flag = 1 if convergence not reached in 50 iterations
* = 2 if df < 2
*
* qtukey = returned critical value
*
* If the difference between successive iterates is less than eps,
* the search is terminated
*/
double qtukey(double p, double rr, double cc, double df,
int lower_tail, int log_p)
{
static const double eps = 0.0001;
const int maxiter = 50;
double ans = 0.0, valx0, valx1, x0, x1, xabs;
int iter;
if (isnan(p) || isnan(rr) || isnan(cc) || isnan(df)) {
/* ML_ERROR(ME_DOMAIN, "qtukey"); */
return p + rr + cc + df;
}
/* df must be > 1 ; there must be at least two values */
/* ^^
JMD: The comment says 1 but the code says 2.
Which is correct?
*/
assert (df >= 2);
assert (rr >= 1);
assert (cc >= 2);
R_Q_P01_boundaries (p, 0, ML_POSINF);
p = R_DT_qIv(p); /* lower_tail,non-log "p" */
/* Initial value */
x0 = qinv(p, cc, df);
/* Find prob(value < x0) */
valx0 = ptukey(x0, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;
/* Find the second iterate and prob(value < x1). */
/* If the first iterate has probability value */
/* exceeding p then second iterate is 1 less than */
/* first iterate; otherwise it is 1 greater. */
if (valx0 > 0.0)
x1 = fmax2(0.0, x0 - 1.0);
else
x1 = x0 + 1.0;
valx1 = ptukey(x1, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;
/* Find new iterate */
for(iter=1 ; iter < maxiter ; iter++) {
ans = x1 - ((valx1 * (x1 - x0)) / (valx1 - valx0));
valx0 = valx1;
/* New iterate must be >= 0 */
x0 = x1;
if (ans < 0.0) {
ans = 0.0;
valx1 = -p;
}
/* Find prob(value < new iterate) */
valx1 = ptukey(ans, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p;
x1 = ans;
/* If the difference between two successive */
/* iterates is less than eps, stop */
xabs = fabs(x1 - x0);
if (xabs < eps)
return ans;
}
/* The process did not converge in 'maxiter' iterations */
assert (0);
return ans;
}
|