1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
|
dnl PSPP - a program for statistical analysis.
dnl Copyright (C) 2017, 2020 Free Software Foundation, Inc.
dnl
dnl This program is free software: you can redistribute it and/or modify
dnl it under the terms of the GNU General Public License as published by
dnl the Free Software Foundation, either version 3 of the License, or
dnl (at your option) any later version.
dnl
dnl This program is distributed in the hope that it will be useful,
dnl but WITHOUT ANY WARRANTY; without even the implied warranty of
dnl MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
dnl GNU General Public License for more details.
dnl
dnl You should have received a copy of the GNU General Public License
dnl along with this program. If not, see <http://www.gnu.org/licenses/>.
dnl
AT_BANNER([ONEWAY procedure])
AT_SETUP([ONEWAY basic operation])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
BEGIN DATA
7 3
4 3
3 1
2 1
1 1
4 2
2 2
3 2
5 3
1 1
4 1
5 2
2 2
3 3
6 3
END DATA
VARIABLE LABELS brand 'Manufacturer'.
VARIABLE LABELS quality 'Breaking Strain'.
VALUE LABELS /brand 1 'Aspeger' 2 'Bloggs' 3 'Charlies'.
ONEWAY
quality BY brand
/STATISTICS descriptives homogeneity
/CONTRAST = -2 1 1
/CONTRAST = 0 -1 1
.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt oneway.sps])
AT_CHECK([cat pspp.csv], [0], [dnl
Table: Descriptives
,Manufacturer,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
Breaking Strain,Aspeger,5,2.20,1.30,.58,.58,3.82,1.00,4.00
,Bloggs,5,3.20,1.30,.58,1.58,4.82,2.00,5.00
,Charlies,5,5.00,1.58,.71,3.04,6.96,3.00,7.00
,Total,15,3.47,1.77,.46,2.49,4.45,1.00,7.00
Table: Test of Homogeneity of Variances
,Levene Statistic,df1,df2,Sig.
Breaking Strain,.09,2,12,.913
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
Breaking Strain,Between Groups,20.13,2,10.07,5.12,.025
,Within Groups,23.60,12,1.97,,
,Total,43.73,14,,,
Table: Contrast Coefficients
Contrast,Manufacturer,,
,Aspeger,Bloggs,Charlies
1,-2,1,1
2,0,-1,1
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
Breaking Strain,Assume equal variances,1,3.80,1.54,2.47,12.00,.029
,,2,1.80,.89,2.03,12.00,.065
,Does not assume equal variances,1,3.80,1.48,2.56,8.74,.031
,,2,1.80,.92,1.96,7.72,.086
])
AT_CLEANUP
AT_SETUP([ONEWAY with splits])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-splits.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * S *.
BEGIN DATA
3 1 1
2 1 1
1 1 1
1 1 1
4 1 1
5 2 1
2 2 1
4 2 2
2 2 2
3 2 2
7 3 2
4 3 2
5 3 2
3 3 2
6 3 2
END DATA
VARIABLE LABELS brand 'Manufacturer'.
VARIABLE LABELS quality 'Breaking Strain'.
VALUE LABELS /brand 1 'Aspeger' 2 'Bloggs' 3 'Charlies'.
SPLIT FILE by s.
ONEWAY
quality BY brand
/STATISTICS descriptives homogeneity
/CONTRAST = -2 2
/CONTRAST = -1 1
.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt oneway-splits.sps])
AT_CHECK([cat pspp.csv], [0], [dnl
Table: Split Values
Variable,Value
S,1.00
Table: Descriptives
,Manufacturer,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
Breaking Strain,Aspeger,5,2.20,1.30,.58,.58,3.82,1.00,4.00
,Bloggs,2,3.50,2.12,1.50,-15.56,22.56,2.00,5.00
,Total,7,2.57,1.51,.57,1.17,3.97,1.00,5.00
Table: Test of Homogeneity of Variances
,Levene Statistic,df1,df2,Sig.
Breaking Strain,1.09,1,5,.345
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
Breaking Strain,Between Groups,2.41,1,2.41,1.07,.349
,Within Groups,11.30,5,2.26,,
,Total,13.71,6,,,
Table: Contrast Coefficients
Contrast,Manufacturer,
,Aspeger,Bloggs
1,-2,2
2,-1,1
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
Breaking Strain,Assume equal variances,1,2.60,2.52,1.03,5.00,.349
,,2,1.30,1.26,1.03,5.00,.349
,Does not assume equal variances,1,2.60,3.22,.81,1.32,.539
,,2,1.30,1.61,.81,1.32,.539
Table: Split Values
Variable,Value
S,2.00
Table: Descriptives
,Manufacturer,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
Breaking Strain,Bloggs,3,3.00,1.00,.58,.52,5.48,2.00,4.00
,Charlies,5,5.00,1.58,.71,3.04,6.96,3.00,7.00
,Total,8,4.25,1.67,.59,2.85,5.65,2.00,7.00
Table: Test of Homogeneity of Variances
,Levene Statistic,df1,df2,Sig.
Breaking Strain,.92,1,6,.374
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
Breaking Strain,Between Groups,7.50,1,7.50,3.75,.101
,Within Groups,12.00,6,2.00,,
,Total,19.50,7,,,
Table: Contrast Coefficients
Contrast,Manufacturer,
,Bloggs,Charlies
1,-2,2
2,-1,1
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
Breaking Strain,Assume equal variances,1,4.00,2.07,1.94,6.00,.101
,,2,2.00,1.03,1.94,6.00,.101
,Does not assume equal variances,1,4.00,1.83,2.19,5.88,.072
,,2,2.00,.91,2.19,5.88,.072
])
AT_CLEANUP
AT_SETUP([ONEWAY with missing values])
AT_KEYWORDS([categorical categoricals])
dnl Check that missing are treated properly
AT_DATA([oneway-missing1.sps],
[DATA LIST NOTABLE LIST /v1 * v2 * dep * vn *.
BEGIN DATA
. . 1 4
3 3 1 2
2 2 1 2
1 1 1 2
1 1 1 2
4 4 1 2
5 5 2 2
2 2 2 2
4 4 2 2
2 2 2 2
3 3 2 2
7 7 3 2
4 4 3 2
5 5 3 2
3 3 3 2
6 6 3 2
END DATA
ONEWAY
v1 v2 BY dep
/STATISTICS descriptives homogeneity
/MISSING ANALYSIS
.
])
AT_DATA([oneway-missing2.sps],
[DATA LIST NOTABLE LIST /v1 * v2 * dep * vn * .
BEGIN DATA
4 . 1 2
3 3 1 2
2 2 1 2
1 1 1 2
1 1 1 2
4 4 1 2
5 5 2 2
2 2 2 2
4 4 2 2
2 2 2 2
3 3 2 2
7 7 3 2
4 4 3 2
5 5 3 2
3 3 3 2
6 6 3 2
END DATA
ONEWAY
v1 v2 BY dep
/STATISTICS descriptives homogeneity
/MISSING LISTWISE
.
])
AT_CHECK([pspp -O format=csv oneway-missing1.sps > first.out], [0])
AT_CHECK([pspp -O format=csv oneway-missing2.sps > second.out], [0])
AT_CHECK([diff first.out second.out], [0], [])
dnl Now a test with missing values in the independent variable
AT_DATA([oneway-missing3.sps],
[DATA LIST NOTABLE LIST /v1 * v2 * dep * vn * .
BEGIN DATA
4 2 . 2
3 3 1 2
2 2 1 2
1 1 1 2
1 1 1 2
4 4 1 2
5 5 2 2
2 2 2 2
4 4 2 2
2 2 2 2
3 3 2 2
7 7 3 2
4 4 3 2
5 5 3 4
3 3 3 2
6 6 3 2
END DATA
ONEWAY
v1 v2 BY dep
/STATISTICS descriptives homogeneity
/MISSING ANALYSIS
.
])
AT_CHECK([pspp -O format=csv oneway-missing3.sps > third.out], [0])
AT_CHECK([diff first.out third.out], [0], [])
AT_CLEANUP
AT_SETUP([ONEWAY descriptives subcommand])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-descriptives.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
BEGIN DATA
13 11
12 11
11 11
11 11
14 11
15 25
12 25
14 25
12 25
13 25
17 301
14 301
15 301
13 301
16 301
END DATA
ONEWAY
quality BY brand
/STATISTICS descriptives
.
])
AT_CHECK([pspp -O format=csv oneway-descriptives.sps], [0],
[Table: Descriptives
,BRAND,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
QUALITY,11.00,5,12.20,1.30,.58,10.58,13.82,11.00,14.00
,25.00,5,13.20,1.30,.58,11.58,14.82,12.00,15.00
,301.00,5,15.00,1.58,.71,13.04,16.96,13.00,17.00
,Total,15,13.47,1.77,.46,12.49,14.45,11.00,17.00
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
QUALITY,Between Groups,20.13,2,10.07,5.12,.025
,Within Groups,23.60,12,1.97,,
,Total,43.73,14,,,
])
AT_CLEANUP
AT_SETUP([ONEWAY homogeneity subcommand])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-homogeneity.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * .
BEGIN DATA
13 11
12 11
11 11
11 11
14 11
15 25
12 25
14 25
12 25
13 25
17 301
14 301
15 301
13 301
16 301
END DATA
ONEWAY
quality BY brand
/STATISTICS homogeneity
.
])
AT_CHECK([pspp -O format=csv oneway-homogeneity.sps], [0],
[Table: Test of Homogeneity of Variances
,Levene Statistic,df1,df2,Sig.
QUALITY,.09,2,12,.913
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
QUALITY,Between Groups,20.13,2,10.07,5.12,.025
,Within Groups,23.60,12,1.97,,
,Total,43.73,14,,,
])
AT_CLEANUP
AT_SETUP([ONEWAY multiple variables])
AT_KEYWORDS([categorical categoricals])
dnl check that everything works ok when several different dependent variables are specified.
dnl This of course does not mean that we're doing a multivariate analysis. It's just like
dnl running several tests at once.
AT_DATA([multivar.sps],
[DATA LIST notable LIST /x * y * z * g *.
begin data.
1 1 0 10
1 1 9 10
9 1 2 10
1 1 3 20
1 1 8 20
1 1 1 20
1 1 2 20
0 1 3 20
1 1 4 30
0 1 5 30
1 1 6 30
0 1 7 30
1 2 8 30
2 2 9 30
1 2 1 30
1 2 0 30
1 2 2 40
8 2 3 40
1 2 4 40
1 2 9 40
9 2 8 40
7 3 7 40
2 3 6 40
3 3 5 40
end data.
ONEWAY x y z by g
/STATISTICS = DESCRIPTIVES HOMOGENEITY
/CONTRAST 3 2 0 -5
/CONTRAST 2 -9 7 0
.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt multivar.sps])
dnl Some machines return 3.88 instead of 3.87 below (see bug #31611).
AT_CHECK([sed -e 's/^,Within Groups,3.88/,Within Groups,3.87/' pspp.csv], [0],
[Table: Descriptives
,g,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
x,10.00,3,3.67,4.62,2.67,-7.81,15.14,1.00,9.00
,20.00,5,.80,.45,.20,.24,1.36,.00,1.00
,30.00,8,.88,.64,.23,.34,1.41,.00,2.00
,40.00,8,4.00,3.42,1.21,1.14,6.86,1.00,9.00
,Total,24,2.25,2.83,.58,1.05,3.45,.00,9.00
y,10.00,3,1.00,.00,.00,1.00,1.00,1.00,1.00
,20.00,5,1.00,.00,.00,1.00,1.00,1.00,1.00
,30.00,8,1.50,.53,.19,1.05,1.95,1.00,2.00
,40.00,8,2.38,.52,.18,1.94,2.81,2.00,3.00
,Total,24,1.63,.71,.15,1.32,1.93,1.00,3.00
z,10.00,3,3.67,4.73,2.73,-8.07,15.41,.00,9.00
,20.00,5,3.40,2.70,1.21,.05,6.75,1.00,8.00
,30.00,8,5.00,3.21,1.13,2.32,7.68,.00,9.00
,40.00,8,5.50,2.45,.87,3.45,7.55,2.00,9.00
,Total,24,4.67,2.99,.61,3.40,5.93,.00,9.00
Table: Test of Homogeneity of Variances
,Levene Statistic,df1,df2,Sig.
x,18.76,3,20,.000
y,71.41,3,20,.000
z,.89,3,20,.463
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
x,Between Groups,56.16,3,18.72,2.92,.059
,Within Groups,128.34,20,6.42,,
,Total,184.50,23,,,
y,Between Groups,7.75,3,2.58,13.33,.000
,Within Groups,3.87,20,.19,,
,Total,11.63,23,,,
z,Between Groups,17.47,3,5.82,.62,.610
,Within Groups,187.87,20,9.39,,
,Total,205.33,23,,,
Table: Contrast Coefficients
Contrast,g,,,
,10.00,20.00,30.00,40.00
1,3,2,0,-5
2,2,-9,7,0
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
x,Assume equal variances,1,-7.40,6.67,-1.11,20.00,.280
,,2,6.26,12.32,.51,20.00,.617
,Does not assume equal variances,1,-7.40,10.04,-.74,4.53,.497
,,2,6.26,5.85,1.07,2.87,.366
y,Assume equal variances,1,-6.88,1.16,-5.94,20.00,.000
,,2,3.50,2.14,1.63,20.00,.118
,Does not assume equal variances,1,-6.88,.91,-7.51,7.00,.000
,,2,3.50,1.32,2.65,7.00,.033
z,Assume equal variances,1,-9.70,8.07,-1.20,20.00,.243
,,2,11.73,14.91,.79,20.00,.440
,Does not assume equal variances,1,-9.70,9.57,-1.01,3.64,.373
,,2,11.73,14.53,.81,9.88,.438
])
AT_CLEANUP
dnl Tests that everything treats weights properly
AT_SETUP([ONEWAY vs. weights])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-unweighted.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * W *.
BEGIN DATA
3 1 1
2 1 1
1 1 1
1 1 1
4 1 1
5 2 1
2 2 1
4 2 1
4 2 1
4 2 1
2 2 1
2 2 1
3 2 1
7 3 1
4 3 1
5 3 1
5 3 1
3 3 1
6 3 1
END DATA.
WEIGHT BY W.
ONEWAY
quality BY brand
/STATISTICS descriptives homogeneity
.
])
AT_CHECK([pspp -o pspp-unweighted.csv oneway-unweighted.sps], [0], [ignore], [ignore])
AT_DATA([oneway-weighted.sps],
[DATA LIST NOTABLE LIST /QUALITY * BRAND * W *.
BEGIN DATA
3 1 1
2 1 1
1 1 2
4 1 1
5 2 1
2 2 1
4 2 3
2 2 2
3 2 1
7 3 1
4 3 1
5 3 2
3 3 1
6 3 1
END DATA.
WEIGHT BY W.
ONEWAY
quality BY brand
/STATISTICS descriptives homogeneity
.
])
AT_CHECK([pspp -o pspp-weighted.csv oneway-weighted.sps], [0], [ignore], [ignore])
AT_CHECK([diff pspp-weighted.csv pspp-unweighted.csv], [0])
AT_CLEANUP
AT_SETUP([ONEWAY posthoc LSD and BONFERRONI])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-pig.sps],[dnl
SET FORMAT F12.3.
data list notable list /pigmentation * family *.
begin data.
36 1
39 1
43 1
38 1
37 1
46 2
47 2
47 2
47 2
43 2
40 3
50 3
44 3
48 3
50 3
45 4
53 4
56 4
52 4
56 4
end data.
oneway pigmentation by family
/statistics = descriptives
/posthoc = lsd bonferroni alpha (0.05)
.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt oneway-pig.sps])
AT_CHECK([cat pspp.csv], [0], [dnl
Table: Descriptives
,family,N,Mean,Std. Deviation,Std. Error,95% Confidence Interval for Mean,,Minimum,Maximum
,,,,,,Lower Bound,Upper Bound,,
pigmentation,1.000,5,38.600,2.702,1.208,35.245,41.955,36.000,43.000
,2.000,5,46.000,1.732,.775,43.849,48.151,43.000,47.000
,3.000,5,46.400,4.336,1.939,41.016,51.784,40.000,50.000
,4.000,5,52.400,4.506,2.015,46.806,57.994,45.000,56.000
,Total,20,45.850,5.967,1.334,43.057,48.643,36.000,56.000
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
pigmentation,Between Groups,478.950,3,159.650,12.927,.000
,Within Groups,197.600,16,12.350,,
,Total,676.550,19,,,
Table: Multiple Comparisons (pigmentation)
,(I) Family,(J) Family,Mean Difference (I - J),Std. Error,Sig.,95% Confidence Interval,
,,,,,,Lower Bound,Upper Bound
LSD,1.000,2.000,-7.400,2.223,.004,-12.112,-2.688
,,3.000,-7.800,2.223,.003,-12.512,-3.088
,,4.000,-13.800,2.223,.000,-18.512,-9.088
,2.000,1.000,7.400,2.223,.004,2.688,12.112
,,3.000,-.400,2.223,.859,-5.112,4.312
,,4.000,-6.400,2.223,.011,-11.112,-1.688
,3.000,1.000,7.800,2.223,.003,3.088,12.512
,,2.000,.400,2.223,.859,-4.312,5.112
,,4.000,-6.000,2.223,.016,-10.712,-1.288
,4.000,1.000,13.800,2.223,.000,9.088,18.512
,,2.000,6.400,2.223,.011,1.688,11.112
,,3.000,6.000,2.223,.016,1.288,10.712
Bonferroni,1.000,2.000,-7.400,2.223,.025,-14.086,-.714
,,3.000,-7.800,2.223,.017,-14.486,-1.114
,,4.000,-13.800,2.223,.000,-20.486,-7.114
,2.000,1.000,7.400,2.223,.025,.714,14.086
,,3.000,-.400,2.223,1.000,-7.086,6.286
,,4.000,-6.400,2.223,.065,-13.086,.286
,3.000,1.000,7.800,2.223,.017,1.114,14.486
,,2.000,.400,2.223,1.000,-6.286,7.086
,,4.000,-6.000,2.223,.095,-12.686,.686
,4.000,1.000,13.800,2.223,.000,7.114,20.486
,,2.000,6.400,2.223,.065,-.286,13.086
,,3.000,6.000,2.223,.095,-.686,12.686
])
AT_CLEANUP
AT_SETUP([ONEWAY posthoc Tukey HSD and Games-Howell])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-tukey.sps],[dnl
set format = f11.3.
data list notable list /libido * dose *.
begin data.
3 0
2 0
1 0
1 0
4 0
5 1
2 1
4 1
2 1
3 1
7 2
4 2
5 2
3 2
6 2
end data.
variable label dose 'Dose of Viagra'.
add value labels dose 0 'Placebo' 1 '1 Dose' 2 '2 Doses'.
oneway libido by dose
/posthoc tukey gh.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt oneway-tukey.sps])
AT_CHECK([cat pspp.csv], [0], [dnl
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
libido,Between Groups,20.133,2,10.067,5.119,.025
,Within Groups,23.600,12,1.967,,
,Total,43.733,14,,,
Table: Multiple Comparisons (libido)
,(I) Family,(J) Family,Mean Difference (I - J),Std. Error,Sig.,95% Confidence Interval,
,,,,,,Lower Bound,Upper Bound
Tukey HSD,Placebo,1 Dose,-1.000,.887,.516,-3.366,1.366
,,2 Doses,-2.800,.887,.021,-5.166,-.434
,1 Dose,Placebo,1.000,.887,.516,-1.366,3.366
,,2 Doses,-1.800,.887,.147,-4.166,.566
,2 Doses,Placebo,2.800,.887,.021,.434,5.166
,,1 Dose,1.800,.887,.147,-.566,4.166
Games-Howell,Placebo,1 Dose,-1.000,.887,.479,-3.356,1.356
,,2 Doses,-2.800,.887,.039,-5.439,-.161
,1 Dose,Placebo,1.000,.887,.479,-1.356,3.356
,,2 Doses,-1.800,.887,.185,-4.439,.839
,2 Doses,Placebo,2.800,.887,.039,.161,5.439
,,1 Dose,1.800,.887,.185,-.839,4.439
])
AT_CLEANUP
AT_SETUP([ONEWAY posthoc Sidak])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-sidak.sps],[dnl
SET FORMAT F20.4.
DATA LIST notable LIST /program score.
BEGIN DATA.
1 9
1 12
1 14
1 11
1 13
2 10
2 6
2 9
2 9
2 10
3 12
3 14
3 11
3 13
3 11
4 9
4 8
4 11
4 7
4 8
END DATA.
ONEWAY
score BY program
/MISSING ANALYSIS
/POSTHOC = SIDAK.
])
AT_CHECK([pspp -O format=csv oneway-sidak.sps], [0],
[Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
score,Between Groups,54.9500,3,18.3167,7.0449,.003
,Within Groups,41.6000,16,2.6000,,
,Total,96.5500,19,,,
Table: Multiple Comparisons (score)
,(I) Family,(J) Family,Mean Difference (I - J),Std. Error,Sig.,95% Confidence Interval,
,,,,,,Lower Bound,Upper Bound
Šidák,1.0000,2.0000,3.0000,1.0198,.056,-.0575,6.0575
,,3.0000,-.4000,1.0198,.999,-3.4575,2.6575
,,4.0000,3.2000,1.0198,.038,.1425,6.2575
,2.0000,1.0000,-3.0000,1.0198,.056,-6.0575,.0575
,,3.0000,-3.4000,1.0198,.025,-6.4575,-.3425
,,4.0000,.2000,1.0198,1.000,-2.8575,3.2575
,3.0000,1.0000,.4000,1.0198,.999,-2.6575,3.4575
,,2.0000,3.4000,1.0198,.025,.3425,6.4575
,,4.0000,3.6000,1.0198,.017,.5425,6.6575
,4.0000,1.0000,-3.2000,1.0198,.038,-6.2575,-.1425
,,2.0000,-.2000,1.0198,1.000,-3.2575,2.8575
,,3.0000,-3.6000,1.0198,.017,-6.6575,-.5425
])
AT_CLEANUP
AT_SETUP([ONEWAY posthoc Scheffe])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-scheffe.sps],[dnl
set format = f11.3.
data list notable list /usage * group *.
begin data.
21.00 1
19.00 1
18.00 1
25.00 1
14.00 1
13.00 1
24.00 1
19.00 1
20.00 1
21.00 1
15.00 2
10.00 2
13.00 2
16.00 2
14.00 2
24.00 2
16.00 2
14.00 2
18.00 2
16.00 2
10.00 3
7.00 3
13.00 3
20.00 3
.00 3
8.00 3
6.00 3
1.00 3
12.00 3
14.00 3
18.00 4
15.00 4
3.00 4
27.00 4
6.00 4
14.00 4
13.00 4
11.00 4
9.00 4
18.00 4
end data.
variable label usage 'Days of Use'.
add value labels group 0 'none' 1 'one' 2 'two' 3 'three' 4 'four'.
oneway usage by group
/posthoc scheffe.
])
AT_CHECK([pspp -O format=csv oneway-scheffe.sps], [0],
[Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
Days of Use,Between Groups,555.275,3,185.092,6.663,.001
,Within Groups,1000.100,36,27.781,,
,Total,1555.375,39,,,
Table: Multiple Comparisons (Days of Use)
,(I) Family,(J) Family,Mean Difference (I - J),Std. Error,Sig.,95% Confidence Interval,
,,,,,,Lower Bound,Upper Bound
Scheffé,one,two,3.800,2.357,.467,-3.112,10.712
,,three,10.300,2.357,.001,3.388,17.212
,,four,6.000,2.357,.110,-.912,12.912
,two,one,-3.800,2.357,.467,-10.712,3.112
,,three,6.500,2.357,.072,-.412,13.412
,,four,2.200,2.357,.832,-4.712,9.112
,three,one,-10.300,2.357,.001,-17.212,-3.388
,,two,-6.500,2.357,.072,-13.412,.412
,,four,-4.300,2.357,.358,-11.212,2.612
,four,one,-6.000,2.357,.110,-12.912,.912
,,two,-2.200,2.357,.832,-9.112,4.712
,,three,4.300,2.357,.358,-2.612,11.212
])
AT_CLEANUP
AT_SETUP([ONEWAY bad contrast count])
AT_KEYWORDS([categorical categoricals])
AT_DATA([oneway-bad-contrast.sps],[dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.
BEGIN DATA.
1884 88.6 39.97 0
1801 90.9 39.03 0
1801 91.7 38.98 0
1607 56.3 36.26 1
1608 46.3 46.26 1
1607 55.9 37.84 1
1604 56.6 36.81 1
1606 56.1 34.56 1
END DATA.
ONEWAY /VARIABLES= height weight temperature BY sex
/CONTRAST = -1 1
/CONTRAST = -3 3
/CONTRAST = 2 -2 1
/CONTRAST = -9 9
.
])
AT_CHECK([pspp -o pspp.csv -o pspp.txt oneway-bad-contrast.sps], [0], [dnl
oneway-bad-contrast.sps:18: warning: ONEWAY: In contrast list 3, the number of coefficients (3) does not equal the number of groups (2). This contrast list will be ignored.
])
AT_CHECK([cat pspp.csv], [0], [dnl
"oneway-bad-contrast.sps:18: warning: ONEWAY: In contrast list 3, the number of coefficients (3) does not equal the number of groups (2). This contrast list will be ignored."
Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
height,Between Groups,92629.63,1,92629.63,120.77,.000
,Within Groups,4601.87,6,766.98,,
,Total,97231.50,7,,,
weight,Between Groups,2451.65,1,2451.65,174.59,.000
,Within Groups,84.25,6,14.04,,
,Total,2535.90,7,,,
temperature,Between Groups,1.80,1,1.80,.13,.733
,Within Groups,84.55,6,14.09,,
,Total,86.36,7,,,
Table: Contrast Coefficients
Contrast,sex,
,.00,1.00
1,-1,1
2,-3,3
3,-9,9
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
height,Assume equal variances,1,-222.27,20.23,-10.99,6.00,.000
,,2,-666.80,60.68,-10.99,6.00,.000
,,3,-2000.40,182.03,-10.99,6.00,.000
,Does not assume equal variances,1,-222.27,27.67,-8.03,2.00,.015
,,2,-666.80,83.02,-8.03,2.00,.015
,,3,-2000.40,249.07,-8.03,2.00,.015
weight,Assume equal variances,1,-36.16,2.74,-13.21,6.00,.000
,,2,-108.48,8.21,-13.21,6.00,.000
,,3,-325.44,24.63,-13.21,6.00,.000
,Does not assume equal variances,1,-36.16,2.19,-16.48,5.42,.000
,,2,-108.48,6.58,-16.48,5.42,.000
,,3,-325.44,19.75,-16.48,5.42,.000
temperature,Assume equal variances,1,-.98,2.74,-.36,6.00,.733
,,2,-2.94,8.22,-.36,6.00,.733
,,3,-8.83,24.67,-.36,6.00,.733
,Does not assume equal variances,1,-.98,2.07,-.47,4.19,.660
,,2,-2.94,6.22,-.47,4.19,.660
,,3,-8.83,18.66,-.47,4.19,.660
])
AT_CLEANUP
AT_SETUP([ONEWAY crash on single category independent variable])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash.sps],[
input program.
loop #i = 1 to 10.
compute test = #i.
end case.
end loop.
end file.
end input program.
compute x = 1.
oneway test by x.
])
AT_CHECK([pspp -O format=csv crash.sps], [0], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY crash on missing dependent variable])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash2.sps],[dnl
data list notable list /dv1 * dv2 * y * .
begin data.
2 . 2
1 . 2
1 . 1
2 . 4
3 . 4
4 . 4
5 . 4
end data.
ONEWAY
/VARIABLES= dv1 dv2 BY y
/STATISTICS = DESCRIPTIVES
/POSTHOC = BONFERRONI LSD SCHEFFE SIDAK TUKEY
/MISSING = ANALYSIS
.
])
AT_CHECK([pspp -O format=csv crash2.sps], [0], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY Games-Howell test with few cases])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash3.sps],[dnl
data list notable list /dv * y * .
begin data.
2 2
1 2
1 1
2 4
3 4
end data.
ONEWAY
/VARIABLES= dv BY y
/POSTHOC = GH
.
])
AT_CHECK([pspp -O format=csv crash3.sps], [0], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY Crash on empty data])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash4.sps],[dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.
BEGIN DATA.
1801 . . 0
1606 . . 1
END DATA.
ONEWAY /VARIABLES= height weight temperature BY sex
/CONTRAST = -1 1
/CONTRAST = -3 3
/CONTRAST = 2 -2 1
/CONTRAST = -9 9
.
])
AT_CHECK([pspp -O format=csv crash4.sps], [0], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY Crash on invalid dependent variable])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash5.sps],[dnl
data list notable list /a * b *.
begin data.
3 0
2 0
6 2
end data.
oneway a"by b.
])
AT_CHECK([pspp -O format=csv crash5.sps], [1], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY Crash on unterminated string])
AT_KEYWORDS([categorical categoricals])
AT_DATA([crash6.sps], [dnl
DATA LIST NOTABLE LIST /height * weight * temperature * sex *.
BEGIN DATA.
1801 . . 0
1606 . 0 . 1
END DATA.
ONEWAY /VARIABLES= height weight temperature BY sex
/CONTRAST =" 2 -2 1
.
])
AT_CHECK([pspp -O format=csv crash6.sps], [1], [ignore])
AT_CLEANUP
AT_SETUP([ONEWAY contrast bug])
AT_KEYWORDS([categorical categoricals])
dnl this example comes from: https://case.truman.edu/files/2015/06/SPSS-One-Way-ANOVA.pdf
AT_DATA([contrasts.sps],
[
SET FORMAT=F10.3.
DATA LIST notable LIST /relieftime drugs *.
begin data.
12 0
15 0
18 0
16 0
20 0
20 1
21 1
22 1
19 1
20 1
17 2
16 2
19 2
15 2
19 2
14 3
13 3
12 3
14 3
11 3
end data.
ONEWAY relieftime by drugs
/CONTRAST 3 -1 -1 -1
/CONTRAST 0 2 -1 -1
/CONTRAST 0 0 1 -1
.
])
AT_CHECK([pspp -O format=csv contrasts.sps], [0], [Table: ANOVA
,,Sum of Squares,df,Mean Square,F,Sig.
relieftime,Between Groups,146.950,3,48.983,12.723,.000
,Within Groups,61.600,16,3.850,,
,Total,208.550,19,,,
Table: Contrast Coefficients
Contrast,drugs,,,
,.000,1.000,2.000,3.000
1,3,-1,-1,-1
2,0,2,-1,-1
3,0,0,1,-1
Table: Contrast Tests
,,Contrast,Value of Contrast,Std. Error,t,df,Sig. (2-tailed)
relieftime,Assume equal variances,1,-1.800,3.040,-.592,16.000,.562
,,2,10.800,2.149,5.025,16.000,.000
,,3,4.400,1.241,3.546,16.000,.003
,Does not assume equal variances,1,-1.800,4.219,-.427,4.611,.689
,,2,10.800,1.421,7.599,10.158,.000
,,3,4.400,.990,4.445,7.315,.003
])
AT_CLEANUP
AT_SETUP([ONEWAY syntax errors])
AT_DATA([oneway.sps], [dnl
DATA LIST LIST NOTABLE/x y z.
ONEWAY/ **.
ONEWAY **.
ONEWAY x **.
ONEWAY x BY **.
ONEWAY x BY y/STATISTICS=**.
ONEWAY x BY y/POSTHOC=ALPHA **.
ONEWAY x BY y/POSTHOC=ALPHA(**).
ONEWAY x BY y/POSTHOC=ALPHA(123 **).
ONEWAY x BY y/POSTHOC=**.
ONEWAY x BY y/CONTRAST=**.
ONEWAY x BY y/MISSING=**.
ONEWAY x BY y/ **.
])
AT_CHECK([pspp -O format=csv oneway.sps], [1], [dnl
"oneway.sps:2.9-2.10: error: ONEWAY: Syntax error expecting VARIABLES.
2 | ONEWAY/ **.
| ^~"
"oneway.sps:3.8-3.9: error: ONEWAY: Syntax error expecting variable name.
3 | ONEWAY **.
| ^~"
"oneway.sps:4.10-4.11: error: ONEWAY: Syntax error expecting `BY'.
4 | ONEWAY x **.
| ^~"
"oneway.sps:5.13-5.14: error: ONEWAY: Syntax error expecting variable name.
5 | ONEWAY x BY **.
| ^~"
"oneway.sps:6.26-6.27: error: ONEWAY: Syntax error expecting DESCRIPTIVES or HOMOGENEITY.
6 | ONEWAY x BY y/STATISTICS=**.
| ^~"
"oneway.sps:7.29-7.30: error: ONEWAY: Syntax error expecting `('.
7 | ONEWAY x BY y/POSTHOC=ALPHA **.
| ^~"
"oneway.sps:8.29-8.30: error: ONEWAY: Syntax error expecting number.
8 | ONEWAY x BY y/POSTHOC=ALPHA(**).
| ^~"
"oneway.sps:9.33-9.34: error: ONEWAY: Syntax error expecting `)'.
9 | ONEWAY x BY y/POSTHOC=ALPHA(123 **).
| ^~"
"oneway.sps:10.23-10.24: error: ONEWAY: Unknown post hoc analysis method.
10 | ONEWAY x BY y/POSTHOC=**.
| ^~"
"oneway.sps:11.24-11.25: error: ONEWAY: Syntax error expecting number.
11 | ONEWAY x BY y/CONTRAST=**.
| ^~"
"oneway.sps:12.23-12.24: error: ONEWAY: Syntax error expecting INCLUDE, EXCLUDE, LISTWISE, or ANALYSIS.
12 | ONEWAY x BY y/MISSING=**.
| ^~"
"oneway.sps:13.16-13.17: error: ONEWAY: Syntax error expecting STATISTICS, POSTHOC, CONTRAST, or MISSING.
13 | ONEWAY x BY y/ **.
| ^~"
])
AT_CLEANUP
|