File: bt-test.c

package info (click to toggle)
pspp 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,676 kB
  • sloc: ansic: 267,210; xml: 18,446; sh: 5,534; python: 2,881; makefile: 125; perl: 64
file content (787 lines) | stat: -rw-r--r-- 19,796 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
/* PSPP - a program for statistical analysis.
   Copyright (C) 2007, 2010 Free Software Foundation, Inc.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>. */

/* This is a test program for the bt_* routines defined in bt.c.
   This test program aims to be as comprehensive as possible.
   "gcov -b" should report 100% coverage of lines and branches in
   bt.c.  "valgrind --leak-check=yes --show-reachable=yes" should
   give a clean report. */

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <libpspp/bt.h>

#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <libpspp/compiler.h>

/* Exit with a failure code.
   (Place a breakpoint on this function while debugging.) */
static void
check_die (void)
{
  exit (EXIT_FAILURE);
}

/* If OK is not true, prints a message about failure on the
   current source file and the given LINE and terminates. */
static void
check_func (bool ok, int line)
{
  if (!ok)
    {
      fprintf (stderr, "%s:%d: check failed\n", __FILE__, line);
      check_die ();
    }
}

/* Verifies that EXPR evaluates to true.
   If not, prints a message citing the calling line number and
   terminates. */
#define check(EXPR) check_func ((EXPR), __LINE__)

/* Prints a message about memory exhaustion and exits with a
   failure code. */
static void
xalloc_die (void)
{
  printf ("virtual memory exhausted\n");
  exit (EXIT_FAILURE);
}

/* Allocates and returns N bytes of memory. */
static void *
xmalloc (size_t n)
{
  if (n != 0)
    {
      void *p = malloc (n);
      if (p == NULL)
        xalloc_die ();

      return p;
    }
  else
    return NULL;
}

static void *
xmemdup (const void *p, size_t n)
{
  void *q = xmalloc (n);
  memcpy (q, p, n);
  return q;
}

/* Allocates and returns N * M bytes of memory. */
static void *
xnmalloc (size_t n, size_t m)
{
  if ((size_t) -1 / m <= n)
    xalloc_die ();
  return xmalloc (n * m);
}

/* Node type and support routines. */

/* Test data element. */
struct element
  {
    struct bt_node node;        /* Embedded binary tree element. */
    int data;                   /* Primary value. */
  };

static int aux_data;

/* Returns the `struct element' that NODE is embedded within. */
static struct element *
bt_node_to_element (const struct bt_node *node)
{
  return BT_DATA (node, struct element, node);
}

/* Compares the `x' values in A and B and returns a strcmp-type
   return value.  Verifies that AUX points to aux_data. */
static int
compare_elements (const struct bt_node *a_, const struct bt_node *b_,
                  const void *aux)
{
  const struct element *a = bt_node_to_element (a_);
  const struct element *b = bt_node_to_element (b_);

  check (aux == &aux_data);
  return a->data < b->data ? -1 : a->data > b->data;
}

/* Compares A and B and returns a strcmp-type return value. */
static int
compare_ints_noaux (const void *a_, const void *b_)
{
  const int *a = a_;
  const int *b = b_;

  return *a < *b ? -1 : *a > *b;
}

/* Swaps *A and *B. */
static void
swap (int *a, int *b)
{
  int t = *a;
  *a = *b;
  *b = t;
}

/* Reverses the order of the N integers starting at VALUES. */
static void
reverse (int *values, size_t n)
{
  size_t i = 0;
  size_t j = n;

  while (j > i)
    swap (&values[i++], &values[--j]);
}

/* Arranges the N elements in VALUES into the lexicographically
   next greater permutation.  Returns true if successful.
   If VALUES is already the lexicographically greatest
   permutation of its elements (i.e. ordered from greatest to
   smallest), arranges them into the lexicographically least
   permutation (i.e. ordered from smallest to largest) and
   returns false. */
static bool
next_permutation (int *values, size_t n)
{
  if (n > 0)
    {
      size_t i = n - 1;
      while (i != 0)
        {
          i--;
          if (values[i] < values[i + 1])
            {
              size_t j;
              for (j = n - 1; values[i] >= values[j]; j--)
                continue;
              swap (values + i, values + j);
              reverse (values + (i + 1), n - (i + 1));
              return true;
            }
        }

      reverse (values, n);
    }

  return false;
}

/* Returns N!. */
static unsigned int
factorial (unsigned int n)
{
  unsigned int value = 1;
  while (n > 1)
    value *= n--;
  return value;
}

/* Randomly shuffles the N elements in ARRAY, each of which is
   SIZE bytes in size. */
static void
random_shuffle (void *array_, size_t n, size_t size)
{
  char *array = array_;
  char *tmp = xmalloc (size);
  size_t i;

  for (i = 0; i < n; i++)
    {
      size_t j = rand () % (n - i) + i;
      if (i != j)
        {
          memcpy (tmp, array + j * size, size);
          memcpy (array + j * size, array + i * size, size);
          memcpy (array + i * size, tmp, size);
        }
    }

  free (tmp);
}

/* Calculates floor(log(n)/log(sqrt(2))). */
static int
calculate_h_alpha (size_t n)
{
  size_t thresholds[] =
    {
      0, 2, 2, 3, 4, 6, 8, 12, 16, 23, 32, 46, 64, 91, 128, 182, 256, 363,
      512, 725, 1024, 1449, 2048, 2897, 4096, 5793, 8192, 11586, 16384,
      23171, 32768, 46341, 65536, 92682, 131072, 185364, 262144, 370728,
      524288, 741456, 1048576, 1482911, 2097152, 2965821, 4194304, 5931642,
      8388608, 11863284, 16777216, 23726567, 33554432, 47453133, 67108864,
      94906266, 134217728, 189812532, 268435456, 379625063, 536870912,
      759250125, 1073741824, 1518500250, 2147483648, 3037000500,
    };
  size_t n_thresholds = sizeof thresholds / sizeof *thresholds;
  size_t i;

  for (i = 0; i < n_thresholds; i++)
    if (thresholds[i] > n)
      break;
  return i - 1;
}

/* Returns the height of the tree rooted at NODE. */
static int
get_height (struct bt_node *node)
{
  if (node == NULL)
    return 0;
  else
    {
      int left = get_height (node->down[0]);
      int right = get_height (node->down[1]);
      return 1 + (left > right ? left : right);
    }
}

/* Checks that BT is loosely alpha-height balanced, that is, that
   its height is no more than h_alpha(count) + 1, where
   h_alpha(n) = floor(log(n)/log(1/alpha)). */
static void
check_balance (struct bt *bt)
{
  /* In the notation of the Galperin and Rivest paper (and of
     CLR), the height of a tree is the number of edges in the
     longest path from the root to a leaf, so we have to subtract
     1 from our measured height. */
  int height = get_height (bt->root) - 1;
  int max_height = calculate_h_alpha (bt_count (bt)) + 1;
  check (height <= max_height);
}

/* Checks that BT contains the N ints in DATA, that its
   structure is correct, and that certain operations on BT
   produce the expected results. */
static void
check_bt (struct bt *bt, const int data[], size_t n)
{
  struct element e;
  size_t i;
  int *order;

  order = xmemdup (data, n * sizeof *data);
  qsort (order, n, sizeof *order, compare_ints_noaux);

  for (i = 0; i < n; i++)
    {
      struct bt_node *p;

      e.data = data[i];
      if (rand () % 2)
        p = bt_find (bt, &e.node);
      else
        p = bt_insert (bt, &e.node);
      check (p != NULL);
      check (p != &e.node);
      check (bt_node_to_element (p)->data == data[i]);
    }

  e.data = -1;
  check (bt_find (bt, &e.node) == NULL);

  check_balance (bt);

  if (n == 0)
    {
      check (bt_first (bt) == NULL);
      check (bt_last (bt) == NULL);
      check (bt_next (bt, NULL) == NULL);
      check (bt_prev (bt, NULL) == NULL);
    }
  else
    {
      struct bt_node *p;

      for (p = bt_first (bt), i = 0; i < n; p = bt_next (bt, p), i++)
        check (bt_node_to_element (p)->data == order[i]);
      check (p == NULL);

      for (p = bt_last (bt), i = 0; i < n; p = bt_prev (bt, p), i++)
        check (bt_node_to_element (p)->data == order[n - i - 1]);
      check (p == NULL);
    }

  free (order);
}

/* Inserts the N values from 0 to N - 1 (inclusive) into an
   BT in the order specified by INSERTIONS, then deletes them in
   the order specified by DELETIONS, checking the BT's contents
   for correctness after each operation. */
static void
test_insert_delete (const int insertions[],
                    const int deletions[],
                    size_t n)
{
  struct element *elements;
  struct bt bt;
  size_t i;

  elements = xnmalloc (n, sizeof *elements);
  for (i = 0; i < n; i++)
    elements[i].data = i;

  bt_init (&bt, compare_elements, &aux_data);
  check_bt (&bt, NULL, 0);
  for (i = 0; i < n; i++)
    {
      check (bt_insert (&bt, &elements[insertions[i]].node) == NULL);
      check_bt (&bt, insertions, i + 1);
    }
  for (i = 0; i < n; i++)
    {
      bt_delete (&bt, &elements[deletions[i]].node);
      check_bt (&bt, deletions + i + 1, n - i - 1);
    }

  free (elements);
}

/* Inserts values into an BT in each possible order, then
   removes them in each possible order, up to a specified maximum
   size. */
static void
test_insert_any_remove_any (void)
{
  const int max_elems = 5;
  int n;

  for (n = 0; n <= max_elems; n++)
    {
      int *insertions, *deletions;
      unsigned int ins_n_perms;
      int i;

      insertions = xnmalloc (n, sizeof *insertions);
      deletions = xnmalloc (n, sizeof *deletions);
      for (i = 0; i < n; i++)
        insertions[i] = i;

      for (ins_n_perms = 0;
           ins_n_perms == 0 || next_permutation (insertions, n);
           ins_n_perms++)
        {
          unsigned int del_n_perms;
          int i;

          for (i = 0; i < n; i++)
            deletions[i] = i;

          for (del_n_perms = 0;
               del_n_perms == 0 || next_permutation (deletions, n);
               del_n_perms++)
            test_insert_delete (insertions, deletions, n);

          check (del_n_perms == factorial (n));
        }
      check (ins_n_perms == factorial (n));

      free (insertions);
      free (deletions);
    }
}

/* Inserts values into an BT in each possible order, then
   removes them in the same order, up to a specified maximum
   size. */
static void
test_insert_any_remove_same (void)
{
  const int max_elems = 7;
  int n;

  for (n = 0; n <= max_elems; n++)
    {
      int *values;
      unsigned int n_permutations;
      int i;

      values = xnmalloc (n, sizeof *values);
      for (i = 0; i < n; i++)
        values[i] = i;

      for (n_permutations = 0;
           n_permutations == 0 || next_permutation (values, n);
           n_permutations++)
        test_insert_delete (values, values, n);
      check (n_permutations == factorial (n));

      free (values);
    }
}

/* Inserts values into an BT in each possible order, then
   removes them in reverse order, up to a specified maximum
   size. */
static void
test_insert_any_remove_reverse (void)
{
  const int max_elems = 7;
  int n;

  for (n = 0; n <= max_elems; n++)
    {
      int *insertions, *deletions;
      unsigned int n_permutations;
      int i;

      insertions = xnmalloc (n, sizeof *insertions);
      deletions = xnmalloc (n, sizeof *deletions);
      for (i = 0; i < n; i++)
        insertions[i] = i;

      for (n_permutations = 0;
           n_permutations == 0 || next_permutation (insertions, n);
           n_permutations++)
        {
          memcpy (deletions, insertions, sizeof *insertions * n);
          reverse (deletions, n);

          test_insert_delete (insertions, deletions, n);
        }
      check (n_permutations == factorial (n));

      free (insertions);
      free (deletions);
    }
}

/* Inserts and removes values in an BT in random orders. */
static void
test_random_sequence (void)
{
  const int max_elems = 128;
  const int max_trials = 8;
  int n;

  for (n = 0; n <= max_elems; n += 2)
    {
      int *insertions, *deletions;
      int trial;
      int i;

      insertions = xnmalloc (n, sizeof *insertions);
      deletions = xnmalloc (n, sizeof *deletions);
      for (i = 0; i < n; i++)
        insertions[i] = i;
      for (i = 0; i < n; i++)
        deletions[i] = i;

      for (trial = 0; trial < max_trials; trial++)
        {
          random_shuffle (insertions, n, sizeof *insertions);
          random_shuffle (deletions, n, sizeof *deletions);

          test_insert_delete (insertions, deletions, n);
        }

      free (insertions);
      free (deletions);
    }
}

/* Inserts elements into an BT in ascending order. */
static void
test_insert_ordered (void)
{
  const int max_elems = 1024;
  struct element *elements;
  int *values;
  struct bt bt;
  int i;

  bt_init (&bt, compare_elements, &aux_data);
  elements = xnmalloc (max_elems, sizeof *elements);
  values = xnmalloc (max_elems, sizeof *values);
  for (i = 0; i < max_elems; i++)
    {
      values[i] = elements[i].data = i;
      check (bt_insert (&bt, &elements[i].node) == NULL);
      check_bt (&bt, values, i + 1);
    }
  free (elements);
  free (values);
}

/* Tests bt_find_ge and bt_find_le. */
static void
test_find_ge_le (void)
{
  const int max_elems = 10;
  struct element *elements;
  int *values;
  unsigned int inc_pat;

  elements = xnmalloc (max_elems, sizeof *elements);
  values = xnmalloc (max_elems, sizeof *values);
  for (inc_pat = 0; inc_pat < (1u << max_elems); inc_pat++)
    {
      struct bt bt;
      int n_elems = 0;
      int i;

      /* Insert the values in the pattern into BT. */
      bt_init (&bt, compare_elements, &aux_data);
      for (i = 0; i < max_elems; i++)
        if (inc_pat & (1u << i))
          {
            values[n_elems] = elements[n_elems].data = i;
            check (bt_insert (&bt, &elements[n_elems].node) == NULL);
            n_elems++;
          }
      check_bt (&bt, values, n_elems);

      /* Try find_ge and find_le for each possible element value. */
      for (i = -1; i <= max_elems; i++)
        {
          struct element tmp;
          struct bt_node *ge, *le;
          int j;

          ge = le = NULL;
          for (j = 0; j < n_elems; j++)
            {
              if (ge == NULL && values[j] >= i)
                ge = &elements[j].node;
              if (values[j] <= i)
                le = &elements[j].node;
            }

          tmp.data = i;
          check (bt_find_ge (&bt, &tmp.node) == ge);
          check (bt_find_le (&bt, &tmp.node) == le);
        }
    }
  free (elements);
  free (values);
}

/* Inserts elements into an BT, then moves the nodes around in
   memory. */
static void
test_moved (void)
{
  const int max_elems = 128;
  struct element *e[2];
  int cur;
  int *values;
  struct bt bt;
  int i, j;

  bt_init (&bt, compare_elements, &aux_data);
  e[0] = xnmalloc (max_elems, sizeof *e[0]);
  e[1] = xnmalloc (max_elems, sizeof *e[1]);
  values = xnmalloc (max_elems, sizeof *values);
  cur = 0;
  for (i = 0; i < max_elems; i++)
    {
      values[i] = e[cur][i].data = i;
      check (bt_insert (&bt, &e[cur][i].node) == NULL);
      check_bt (&bt, values, i + 1);

      for (j = 0; j <= i; j++)
        {
          e[!cur][j] = e[cur][j];
          bt_moved (&bt, &e[!cur][j].node);
          check_bt (&bt, values, i + 1);
        }
      cur = !cur;
    }
  free (e[0]);
  free (e[1]);
  free (values);
}

/* Inserts values into an BT, then changes their values. */
static void
test_changed (void)
{
  const int max_elems = 6;
  int n;

  for (n = 0; n <= max_elems; n++)
    {
      int *values, *changed_values;
      struct element *elements;
      unsigned int n_permutations;
      int i;

      values = xnmalloc (n, sizeof *values);
      changed_values = xnmalloc (n, sizeof *changed_values);
      elements = xnmalloc (n, sizeof *elements);
      for (i = 0; i < n; i++)
        values[i] = i;

      for (n_permutations = 0;
           n_permutations == 0 || next_permutation (values, n);
           n_permutations++)
        {
          for (i = 0; i < n; i++)
            {
              int j, k;
              for (j = 0; j <= n; j++)
                {
                  struct bt bt;
                  struct bt_node *changed_retval;

                  bt_init (&bt, compare_elements, &aux_data);

                  /* Add to BT in order. */
                  for (k = 0; k < n; k++)
                    {
                      int n = values[k];
                      elements[n].data = n;
                      check (bt_insert (&bt, &elements[n].node) == NULL);
                    }
                  check_bt (&bt, values, n);

                  /* Change value i to j. */
                  elements[i].data = j;
                  for (k = 0; k < n; k++)
                    changed_values[k] = k;
                  changed_retval = bt_changed (&bt, &elements[i].node);
                  if (i != j && j < n)
                    {
                      /* Will cause duplicate. */
                      check (changed_retval == &elements[j].node);
                      changed_values[i] = changed_values[n - 1];
                      check_bt (&bt, changed_values, n - 1);
                    }
                  else
                    {
                      /* Succeeds. */
                      check (changed_retval == NULL);
                      changed_values[i] = j;
                      check_bt (&bt, changed_values, n);
                    }
                }
            }
        }
      check (n_permutations == factorial (n));

      free (values);
      free (changed_values);
      free (elements);
    }
}

/* Main program. */

struct test
  {
    const char *name;
    const char *description;
    void (*function) (void);
  };

static const struct test tests[] =
  {
    {
      "insert-any-remove-any",
      "insert any order, delete any order",
      test_insert_any_remove_any
    },
    {
      "insert-any-remove-same",
      "insert any order, delete same order",
      test_insert_any_remove_same
    },
    {
      "insert-any-remove-reverse",
      "insert any order, delete reverse order",
      test_insert_any_remove_reverse
    },
    {
      "random-sequence",
      "insert and delete in random sequence",
      test_random_sequence
    },
    {
      "insert-ordered",
      "insert in ascending order",
      test_insert_ordered
    },
    {
      "find-ge-le",
      "find_ge and find_le",
      test_find_ge_le
    },
      {
      "moved",
      "move elements around in memory",
      test_moved
    },
    {
      "changed",
      "change key data in nodes",
      test_changed
    }
  };

enum { N_TESTS = sizeof tests / sizeof *tests };

int
main (int argc, char *argv[])
{
  int i;

  if (argc != 2)
    {
      fprintf (stderr, "exactly one argument required; use --help for help\n");
      return EXIT_FAILURE;
    }
  else if (!strcmp (argv[1], "--help"))
    {
      printf ("%s: test balanced tree\n"
              "usage: %s TEST-NAME\n"
              "where TEST-NAME is one of the following:\n",
              argv[0], argv[0]);
      for (i = 0; i < N_TESTS; i++)
        printf ("  %s\n    %s\n", tests[i].name, tests[i].description);
      return 0;
    }
  else
    {
      for (i = 0; i < N_TESTS; i++)
        if (!strcmp (argv[1], tests[i].name))
          {
            tests[i].function ();
            return 0;
          }

      fprintf (stderr, "unknown test %s; use --help for help\n", argv[1]);
      return EXIT_FAILURE;
    }
}