1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
|
/* PSPP - a program for statistical analysis.
Copyright (C) 2007, 2010, 2012 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This is a test program for the routines defined in heap.c.
This test program aims to be as comprehensive as possible.
With -DNDEBUG, "gcov -b" should report 100% coverage of lines
and branches in heap.c routines, except for the is_heap
function, which is not called at all with -DNDEBUG. (Without
-DNDEBUG, branches caused by failed assertions will also not
be taken.) "valgrind --leak-check=yes --show-reachable=yes"
should give a clean report, both with and without -DNDEBUG. */
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <libpspp/heap.h>
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <libpspp/compiler.h>
#include "xalloc.h"
/* Exit with a failure code.
(Place a breakpoint on this function while debugging.) */
static void
check_die (void)
{
exit (EXIT_FAILURE);
}
/* If OK is not true, prints a message about failure on the
current source file and the given LINE and terminates. */
static void
check_func (bool ok, int line)
{
if (!ok)
{
fprintf (stderr, "%s:%d: check failed\n", __FILE__, line);
check_die ();
}
}
/* Verifies that EXPR evaluates to true.
If not, prints a message citing the calling line number and
terminates. */
#define check(EXPR) check_func ((EXPR), __LINE__)
/* Node type and support routines. */
/* Test data element. */
struct element
{
struct heap_node node; /* Embedded heap element. */
int x; /* Primary value. */
};
static int aux_data;
/* Returns the `struct element' that NODE is embedded within. */
static struct element *
heap_node_to_element (const struct heap_node *node)
{
return heap_data (node, struct element, node);
}
/* Compares the `x' values in A and B and returns a strcmp-type
return value. Verifies that AUX points to aux_data. */
static int
compare_elements (const struct heap_node *a_, const struct heap_node *b_,
const void *aux)
{
const struct element *a = heap_node_to_element (a_);
const struct element *b = heap_node_to_element (b_);
check (aux == &aux_data);
return a->x < b->x ? -1 : a->x > b->x;
}
/* Returns the smallest of the N integers in ARRAY. */
static int
min_int (int *array, size_t n)
{
int min;
size_t i;
min = INT_MAX;
for (i = 0; i < n; i++)
if (array[i] < min)
min = array[i];
return min;
}
/* Swaps *A and *B. */
static void
swap (int *a, int *b)
{
int t = *a;
*a = *b;
*b = t;
}
/* Reverses the order of the N integers starting at VALUES. */
static void
reverse (int *values, size_t n)
{
size_t i = 0;
size_t j = n;
while (j > i)
swap (&values[i++], &values[--j]);
}
/* Arranges the N elements in VALUES into the lexicographically
next greater permutation. Returns true if successful.
If VALUES is already the lexicographically greatest
permutation of its elements (i.e. ordered from greatest to
smallest), arranges them into the lexicographically least
permutation (i.e. ordered from smallest to largest) and
returns false. */
static bool
next_permutation (int *values, size_t n)
{
if (n > 0)
{
size_t i = n - 1;
while (i != 0)
{
i--;
if (values[i] < values[i + 1])
{
size_t j;
for (j = n - 1; values[i] >= values[j]; j--)
continue;
swap (values + i, values + j);
reverse (values + (i + 1), n - (i + 1));
return true;
}
}
reverse (values, n);
}
return false;
}
/* Returns N!. */
static unsigned int
factorial (unsigned int n)
{
unsigned int value = 1;
while (n > 1)
value *= n--;
return value;
}
/* Returns the number of permutations of the N values in
VALUES. If VALUES contains duplicates, they must be
adjacent. */
static unsigned int
expected_perms (int *values, size_t n)
{
size_t i, j;
unsigned int n_perms;
n_perms = factorial (n);
for (i = 0; i < n; i = j)
{
for (j = i + 1; j < n; j++)
if (values[i] != values[j])
break;
n_perms /= factorial (j - i);
}
return n_perms;
}
/* Tests whether PARTS is a K-part integer composition of N.
Returns true if so, false otherwise. */
static bool UNUSED
is_k_composition (int n, int k, const int parts[])
{
int sum;
int i;
sum = 0;
for (i = 0; i < k; i++)
{
if (parts[i] < 1 || parts[i] > n)
return false;
sum += parts[i];
}
return sum == n;
}
/* Advances the K-part integer composition of N stored in PARTS
to the next lexicographically greater one.
Returns true if successful, false if the composition was
already the greatest K-part composition of N (in which case
PARTS is unaltered). */
static bool
next_k_composition (int n UNUSED, int k, int parts[])
{
int x, i;
assert (is_k_composition (n, k, parts));
if (k == 1)
return false;
for (i = k - 1; i > 0; i--)
if (parts[i] > 1)
break;
if (i == 0)
return false;
x = parts[i] - 1;
parts[i] = 1;
parts[i - 1]++;
parts[k - 1] = x;
assert (is_k_composition (n, k, parts));
return true;
}
/* Advances *K and PARTS to the next integer composition of N.
Compositions are ordered from shortest to longest and in
lexicographical order within a given length.
Before the first call, initialize *K to 0.
After each successful call, *K contains the length of the
current composition and the *K elements in PARTS contain its
parts.
Returns true if successful, false if the set of compositions
has been exhausted. */
static bool
next_composition (int n, int *k, int parts[])
{
if (*k >= 1 && next_k_composition (n, *k, parts))
return true;
else if (*k < n)
{
int i;
for (i = 0; i < *k; i++)
parts[i] = 1;
parts[i] = n - *k;
(*k)++;
return true;
}
else
return false;
}
/* Inserts sequences without duplicates into a heap, and then
ensures that they appear as the minimum element in the correct
order as we delete them. Exhaustively tests every input
permutation up to 'max_elems' elements. */
static void
test_insert_no_dups_delete_min (void)
{
const int max_elems = 8;
int n;
for (n = 0; n <= max_elems; n++)
{
struct heap *h;
struct element *elements;
int *values;
unsigned int n_permutations;
int i;
values = xnmalloc (n, sizeof *values);
elements = xnmalloc (n, sizeof *elements);
for (i = 0; i < n; i++)
values[i] = i;
h = heap_create (compare_elements, &aux_data);
n_permutations = 0;
while (n_permutations == 0 || next_permutation (values, n))
{
int i;
for (i = 0; i < n; i++)
elements[i].x = values[i];
check (heap_is_empty (h));
for (i = 0; i < n; i++)
{
heap_insert (h, &elements[i].node);
check (heap_node_to_element (heap_minimum (h))->x
== min_int (values, i + 1));
check (heap_count (h) == i + 1);
}
for (i = 0; i < n; i++)
{
check (heap_node_to_element (heap_minimum (h))->x == i);
heap_delete (h, heap_minimum (h));
}
check (heap_is_empty (h));
n_permutations++;
}
check (n_permutations == factorial (n));
heap_destroy (h);
free (values);
free (elements);
}
}
/* Inserts sequences with duplicates into a heap, and then
ensures that they appear as the minimum element in the correct
order as we delete them. Exhaustively tests every input
permutation up to 'max_elems' elements.
See Usenet article <87mz4utika.fsf@blp.benpfaff.org> for
details of the algorithm used here. */
static void
test_insert_with_dups_delete_min (void)
{
const int max_elems = 7;
for (int n_elems = 1; n_elems <= max_elems; n_elems++)
{
unsigned int n_compositions;
int *dups;
int n_uniques;
int *values;
int *sorted_values;
struct element *elements;
int n = 0;
dups = xnmalloc (n_elems, sizeof *dups);
values = xnmalloc (n_elems, sizeof *values);
sorted_values = xnmalloc (n_elems, sizeof *sorted_values);
elements = xnmalloc (n_elems, sizeof *elements);
n_uniques = 0;
n_compositions = 0;
while (next_composition (n_elems, &n_uniques, dups))
{
struct heap *h;
int i, j, k;
unsigned int n_permutations;
k = 0;
for (i = 0; i < n_uniques; i++)
for (j = 0; j < dups[i]; j++)
{
values[k] = i;
sorted_values[k] = i;
k++;
}
check (k == n_elems);
h = heap_create (compare_elements, &aux_data);
n_permutations = 0;
while (n_permutations == 0 || next_permutation (values, n_elems))
{
int min = INT_MAX;
for (i = 0; i < n_elems; i++)
elements[i].x = values[i];
n++;
check (heap_is_empty (h));
for (i = 0; i < n_elems; i++)
{
heap_insert (h, &elements[i].node);
if (values[i] < min)
min = values[i];
check (heap_node_to_element (heap_minimum (h))->x == min);
check (heap_count (h) == i + 1);
}
for (i = 0; i < n_elems; i++)
{
struct element *min = heap_node_to_element (heap_minimum (h));
check (min->x == sorted_values[i]);
heap_delete (h, heap_minimum (h));
}
check (heap_is_empty (h));
n_permutations++;
}
check (n_permutations == expected_perms (values, n_elems));
heap_destroy (h);
n_compositions++;
}
check (n_compositions == 1 << (n_elems - 1));
free (dups);
free (values);
free (sorted_values);
free (elements);
}
}
/* Inserts a sequence without duplicates into a heap, then
deletes them in a different order. */
static void
test_insert_no_dups_delete_random (void)
{
const int max_elems = 5;
int n;
for (n = 0; n <= max_elems; n++)
{
struct heap *h;
struct element *elements;
int *insert, *delete;
unsigned int insert_n_perms;
int i;
insert = xnmalloc (n, sizeof *insert);
delete = xnmalloc (n, sizeof *delete);
elements = xnmalloc (n, sizeof *elements);
for (i = 0; i < n; i++)
{
insert[i] = i;
delete[i] = i;
elements[i].x = i;
}
h = heap_create (compare_elements, &aux_data);
insert_n_perms = 0;
while (insert_n_perms == 0 || next_permutation (insert, n))
{
unsigned int delete_n_perms = 0;
while (delete_n_perms == 0 || next_permutation (delete, n))
{
int min;
int i;
check (heap_is_empty (h));
min = INT_MAX;
for (i = 0; i < n; i++)
{
heap_insert (h, &elements[insert[i]].node);
if (insert[i] < min)
min = insert[i];
check (heap_node_to_element (heap_minimum (h))->x == min);
check (heap_count (h) == i + 1);
}
for (i = 0; i < n; i++)
{
int new_min = min_int (delete + i + 1, n - i - 1);
heap_delete (h, &elements[delete[i]].node);
check (heap_count (h) == n - i - 1);
if (!heap_is_empty (h))
check (heap_node_to_element (heap_minimum (h))->x == new_min);
}
check (heap_is_empty (h));
delete_n_perms++;
}
check (delete_n_perms == factorial (n));
insert_n_perms++;
}
check (insert_n_perms == factorial (n));
heap_destroy (h);
free (insert);
free (delete);
free (elements);
}
}
/* Inserts a set of values into a heap, then changes them to a
different random set of values, then removes them in sorted
order. */
static void
test_inc_dec (void)
{
const int max_elems = 8;
int n;
for (n = 0; n <= max_elems; n++)
{
struct heap *h;
struct element *elements;
int *insert, *delete;
unsigned int insert_n_perms;
int i;
insert = xnmalloc (n, sizeof *insert);
delete = xnmalloc (n, sizeof *delete);
elements = xnmalloc (n, sizeof *elements);
for (i = 0; i < n; i++)
insert[i] = i;
h = heap_create (compare_elements, &aux_data);
insert_n_perms = 0;
while (insert_n_perms == 0 || next_permutation (insert, n))
{
for (i = 0; i < n; i++)
elements[i].x = insert[i];
check (heap_is_empty (h));
for (i = 0; i < n; i++)
{
int new_min = min_int (insert, i + 1);
heap_insert (h, &elements[i].node);
check (heap_node_to_element (heap_minimum (h))->x == new_min);
check (heap_count (h) == i + 1);
}
for (i = 0; i < n; i++)
delete[i] = insert[i];
for (i = 0; i < n; i++)
{
elements[i].x = delete[i] = rand () % (n + 2) - 1;
heap_changed (h, &elements[i].node);
check (heap_node_to_element (heap_minimum (h))->x
== min_int (delete, n));
}
for (i = 0; i < n; i++)
{
int new_min = min_int (delete + i + 1, n - i - 1);
heap_delete (h, &elements[i].node);
check (heap_count (h) == n - i - 1);
if (!heap_is_empty (h))
check (heap_node_to_element (heap_minimum (h))->x == new_min);
}
check (heap_is_empty (h));
insert_n_perms++;
}
check (insert_n_perms == factorial (n));
heap_destroy (h);
free (insert);
free (delete);
free (elements);
}
}
/* Performs a random sequence of insertions and deletions in a
heap. */
static void
test_random_insert_delete (void)
{
const int max_elems = 64;
const int num_actions = 250000;
struct heap *h;
int *values;
struct element *elements;
int n;
int insert_chance;
int i;
values = xnmalloc (max_elems, sizeof *values);
elements = xnmalloc (max_elems, sizeof *elements);
n = 0;
insert_chance = 5;
h = heap_create (compare_elements, &aux_data);
for (i = 0; i < num_actions; i++)
{
enum { INSERT, DELETE } action;
if (n == 0)
{
action = INSERT;
if (insert_chance < 9)
insert_chance++;
}
else if (n == max_elems)
{
action = DELETE;
if (insert_chance > 0)
insert_chance--;
}
else
action = rand () % 10 < insert_chance ? INSERT : DELETE;
if (action == INSERT)
{
int new_value;
new_value = rand () % max_elems;
values[n] = new_value;
elements[n].x = new_value;
heap_insert (h, &elements[n].node);
n++;
}
else if (action == DELETE)
{
int del_idx;
del_idx = rand () % n;
heap_delete (h, &elements[del_idx].node);
n--;
if (del_idx != n)
{
values[del_idx] = values[n];
elements[del_idx] = elements[n];
heap_moved (h, &elements[del_idx].node);
}
}
else
abort ();
check (heap_count (h) == n);
check (heap_is_empty (h) == (n == 0));
if (n > 0)
check (heap_node_to_element (heap_minimum (h))->x
== min_int (values, n));
}
heap_destroy (h);
free (elements);
free (values);
}
/* Main program. */
struct test
{
const char *name;
const char *description;
void (*function) (void);
};
static const struct test tests[] =
{
{
"insert-no-dups-delete-min",
"insert (no dups), delete minimum values",
test_insert_no_dups_delete_min
},
{
"insert-with-dups-delete-min",
"insert with dups, delete minimum values",
test_insert_with_dups_delete_min
},
{
"insert-no-dups-delete-random",
"insert (no dups), delete in random order",
test_insert_no_dups_delete_random
},
{
"inc-dec",
"increase and decrease values",
test_inc_dec
},
{
"random-insert-delete",
"random insertions and deletions",
test_random_insert_delete
}
};
enum { N_TESTS = sizeof tests / sizeof *tests };
int
main (int argc, char *argv[])
{
int i;
if (argc != 2)
{
fprintf (stderr, "exactly one argument required; use --help for help\n");
return EXIT_FAILURE;
}
else if (!strcmp (argv[1], "--help"))
{
printf ("%s: test heap library\n"
"usage: %s TEST-NAME\n"
"where TEST-NAME is one of the following:\n",
argv[0], argv[0]);
for (i = 0; i < N_TESTS; i++)
printf (" %s\n %s\n", tests[i].name, tests[i].description);
return 0;
}
else
{
for (i = 0; i < N_TESTS; i++)
if (!strcmp (argv[1], tests[i].name))
{
tests[i].function ();
return 0;
}
fprintf (stderr, "unknown test %s; use --help for help\n", argv[1]);
return EXIT_FAILURE;
}
}
|