1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#include "config.h"
#include <limits>
#include "CircularPatch.h"
#include "StaticMatrix.h"
#include "PSurface.h"
using namespace psurface;
template <class ctype>
bool CircularPatch<ctype>::inducesTopologyChange() const
{
int i;
for (i=0; i<size()-1; i++){
if (par->findEdge(par->triangles(triangles[i]).vertices[0],
par->triangles(triangles[i]).vertices[2]) != -1){
//printf("POSSIBLE TOPOLOGY CHANGE FOUND!\n");
return true;
}
}
return false;
}
template <class ctype>
bool CircularPatch<ctype>::hasSmallDihedralAngles(ctype threshold, const PSurface<2,ctype>* par,
const Vertex<ctype>* centerVertex) const
{
printf("hasSmallDihedralAngles has been commented out!\n");
#if 0
int i, j, k;
for (i=0; i<triangles.size(); i++) {
const DomainTriangle* cT = triangles[i];
for (j=0; j<3; j++) {
// The triangles are not edge-connected..., i.e. cT->edges is empty
const DomainEdge* cE = par->findEdge(cT->points[j], cT->points[(j+1)%3]);
if (cE){
//////////////////////////////////////////////////////
// this edge is a boundary between the CircularPatch and #par#
for (k=0; k<cE->triangles.size(); k++) {
if (cE->triangles[k] == cT || cE->triangles[k]->isConnectedTo(centerVertex))
continue;
if (cT->dihedralAngle(cE->triangles[k]) < threshold)
return true;
}
} else {
///////////////////////////////////////////////////////
// this is an edge between two triangles of the CircularPatch
for (k=i+1; k<triangles.size(); k++) {
if (triangles[k]->isConnectedTo(cT->points[j]) &&
triangles[k]->isConnectedTo(cT->points[(j+1)%3])) {
if (cT->dihedralAngle(triangles[k]) < threshold)
return true;
}
}
}
}
}
#endif
return false;
}
//////////////////////////////////////////////////////////////////
// this routine returns the bounding box of the patch
// it is not well programmed. Each vertex is checked three times
template <class ctype>
void CircularPatch<ctype>::getBoundingBox(Box<ctype,3> &bbox) const
{
assert(size());
bbox.set(par->vertices(par->triangles(triangles[0]).vertices[0]),
par->vertices(par->triangles(triangles[0]).vertices[1]));
bbox.extendBy( par->vertices(par->triangles(triangles[0]).vertices[2]));
for (int i=1; i<size(); i++)
for (int k=0; k<3; k++)
bbox.extendBy(par->vertices(par->triangles(triangles[i]).vertices[k]));
}
//////////////////////////////////////////////////////////////////
// gives the distance of a point to the patch
template <class ctype>
ctype CircularPatch<ctype>::distanceTo(const StaticVector<ctype,3> &p) const
{
int i, j;
ctype bestDist = std::numeric_limits<ctype>::max();
// check point against triangles
for (j=0; j<size(); j++){
const DomainTriangle<ctype>& cT = par->triangles(triangles[j]);
StaticVector<ctype,3> triPoints[3];
triPoints[0] = par->vertices(cT.vertices[0]);
triPoints[1] = par->vertices(cT.vertices[1]);
triPoints[2] = par->vertices(cT.vertices[2]);
// local base
StaticVector<ctype,3> a = triPoints[1] - triPoints[0];
StaticVector<ctype,3> b = triPoints[2] - triPoints[0];
StaticVector<ctype,3> c = a.cross(b);
c.normalize();
StaticVector<ctype,3> x = p - triPoints[0];
// write x in the new base (Cramer's rule)
StaticMatrix<ctype,3> numerator(a, b, c);
StaticMatrix<ctype,3> alphaMat(x, b, c);
StaticMatrix<ctype,3> betaMat(a, x, c);
StaticMatrix<ctype,3> gammaMat(a, b, x);
ctype alpha = alphaMat.det()/numerator.det();
ctype beta = betaMat.det()/numerator.det();
ctype gamma = gammaMat.det()/numerator.det();
// check whether orthogonal projection onto the ab plane is in triangle
bool isIn = alpha>=0 && beta>=0 && (1-alpha-beta)>=0;
if (isIn && fabs(gamma)<bestDist){
// printf("a(%1.2f %1.2f %1.2f) b(%1.2f %1.2f %1.2f) c(%1.2f %1.2f %1.2f) x(%1.2f %1.2f %1.2f)\n",
// a.x, a.y, a.z, b.x, b.y, b.z, c.x, c.y, c.z, x.x, x.y, x.z);
// printf("tri: %d, alpha = %f, beta = %f, gamma = %f\n", j, alpha, beta, gamma);
bestDist = fabs(gamma);
}
}
// check point against edges
for (i=0; i<size(); i++){
for (j=0; j<3; j++){
const DomainTriangle<ctype>& cT = par->triangles(triangles[i]);
StaticVector<ctype,3> from = par->vertices(cT.vertices[j]);
StaticVector<ctype,3> to = par->vertices(cT.vertices[(j+1)%3]);
StaticVector<ctype,3> edge = to - from;
ctype projectLength = edge.dot(p - from)/edge.length();
StaticVector<ctype,3> projection = edge/edge.length() * projectLength;
ctype orthoDist = ((p-from) - projection).length();
if (projectLength>=0 && projectLength<=edge.length() && orthoDist<bestDist)
bestDist = orthoDist;
}
}
// check point against vertices
for (i=0; i<size(); i++){
for (j=0; j<3; j++){
ctype dist = (p - par->vertices(par->triangles(triangles[i]).vertices[j])).length();
if (dist < bestDist){
bestDist = dist;
}
}
}
return bestDist;
}
template <class ctype>
bool CircularPatch<ctype>::intersectsParametrization(const std::vector<int> &closeEdges) const
{
for (size_t i=0; i<closeEdges.size(); i++){
int from = par->edges(closeEdges[i]).from;
int to = par->edges(closeEdges[i]).to;
for (int j=0; j<size(); j++){
// check whether triangle and edge have one common point
if (par->triangles(triangles[j]).isConnectedTo(from) ||
par->triangles(triangles[j]).isConnectedTo(to) )
continue;
//if (triangles[j]->intersects(closeEdges[i], 0.00001)){
if (par->intersectionTriangleEdge(triangles[j], &par->edges(closeEdges[i]), 0.00001)){
return true;
}
}
}
return false;
}
template <class ctype>
bool CircularPatch<ctype>::hasSelfintersections() const
{
Edge tmpEdge;
for (size_t i=0; i<innerEdges.size(); i++){
tmpEdge.from = innerEdges[i][0];
tmpEdge.to = innerEdges[i][1];
for (int j=0; j<size(); j++){
// check whether triangle and edge have one common point
if (par->triangles(triangles[j]).isConnectedTo(tmpEdge.from)
|| par->triangles(triangles[j]).isConnectedTo(tmpEdge.to) )
continue;
//if (triangles[j]->intersects(&tmpEdge, 0.00001)){
if (par->intersectionTriangleEdge(triangles[j], &tmpEdge, 0.00001)){
return true;
}
}
}
return false;
}
// ////////////////////////////////////////////////////////
// Explicit template instantiations.
// If you need more, you can add them here.
// ////////////////////////////////////////////////////////
namespace psurface {
template class PSURFACE_EXPORT CircularPatch<float>;
template class PSURFACE_EXPORT CircularPatch<double>;
}
|