1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#include "config.h"
#include <vector>
#ifdef PSURFACE_STANDALONE
#include "TargetSurface.h"
#else
#include "hxsurface/Surface.h"
#endif
#include "PSurface.h"
#include "IntersectionPrimitiveCollector.h"
using namespace psurface;
template <class ctype>
void IntersectionPrimitiveCollector<ctype>::collect(PSurface<2,ctype>* psurface,
std::vector<IntersectionPrimitive<2,ctype> >& mergedGrid)
{
if (psurface->getNumTriangles()==0)
return;
// ///////////////////////////////////////////////////
// Set up point location structure
// Can we use the routine in PSurface<2,ctype> ???
// ///////////////////////////////////////////////////
for (size_t i=0; i<psurface->getNumTriangles(); i++) {
DomainTriangle<ctype>& cT = psurface->triangles(i);
cT.insertExtraEdges();
for (size_t k=0; k<cT.nodes.size(); k++)
cT.makeCyclicGeometrically(cT.nodes[k]);
// the standard insertExtraEdges can miss edges if ghost nodes are present.
// We insert them now
for (int k=0; k<3; k++){
// reason for the cast: size() returns an unsigned type, which underflows if edgePoints[k] is empty
for (int l=0; l<((int)cT.edgePoints[k].size())-1; l++) {
typename PlaneParam<ctype>::DirectedEdgeIterator cE = cT.getDirectedEdgeIterator(cT.edgePoints[k][l], cT.edgePoints[k][l+1]);
if (cE.isValid() && cE.getDPrev().from() != cE.getONext().to()) {
int from = cE.getONext().to();
int to = cE.to();
cT.addEdge(from, to, true);
// recompute the cyclic edge orderings at the vertices that have
// the new edge
cT.makeCyclicGeometrically(cT.nodes[from]);
cT.makeCyclicGeometrically(cT.nodes[to]);
}
}
}
#if 0 // we shouldn't need this anymore: all nodes that we touched have been remade cyclic immediately
// and since we have added more edges, we have to redo the cyclic ordering
for (size_t k=0; k<cT.nodes.size(); k++)
cT.makeCyclicGeometrically(cT.nodes[k]);
#endif
//
for (int k=0; k<3; k++){
for (size_t l=0; l<cT.edgePoints[k].size(); l++) {
if (!cT.nodes[cT.edgePoints[k][l]].isOnCorner()) {
cT.nodes[cT.edgePoints[k][l]].setDomainEdge(k);
cT.nodes[cT.edgePoints[k][l]].setDomainEdgePosition(l);
}
}
}
}
psurface->surface->computeTrianglesPerPoint();
//
for (size_t i=0; i<psurface->getNumTriangles(); i++) {
const DomainTriangle<ctype>& cT = psurface->triangles(i);
if (cT.nodes.size()<3)
continue;
////////////////////////////////
typename PlaneParam<ctype>::TriangleIterator cPT;
for (cPT = cT.firstTriangle(); cPT.isValid(); ++cPT) {
int targetTri = -1;
try {
targetTri = psurface->getImageSurfaceTriangle(i, cPT.vertices());
} catch (typename PSurface<2,ctype>::ParamError){
printf("exception caught!\n");
targetTri = -1;
}
if (targetTri==-1)
continue;
assert(targetTri>=0 && targetTri<psurface->surface->triangles.size());
// //////////////////////////////////////////////
// Assemble the triangles
// //////////////////////////////////////////////
mergedGrid.push_back(IntersectionPrimitive<2,ctype>());
mergedGrid.back().tris[0] = i;
mergedGrid.back().tris[1] = targetTri;
for (int j=0; j<3; j++) {
// Local coordinates in the domain triangle
mergedGrid.back().localCoords[0][j] = cT.nodes[cPT.vertices(j)].domainPos();
// Local coordinates in the target triangle
mergedGrid.back().localCoords[1][j] = psurface->getLocalTargetCoords(GlobalNodeIdx(i, cPT.vertices(j)), targetTri);
// world coordinates in the domain triangle
mergedGrid.back().points[j] =
PlaneParam<ctype>::template linearInterpol<StaticVector<ctype,3> >(cT.nodes[cPT.vertices(j)].domainPos(),
psurface->vertices(cT.vertices[0]),
psurface->vertices(cT.vertices[1]),
psurface->vertices(cT.vertices[2]));
}
}
}
}
template <class ctype>
void IntersectionPrimitiveCollector<ctype>::collect(const PSurface<1,ctype>* psurface,
std::vector<IntersectionPrimitive<1,ctype> >& mergedGrid)
{
for (size_t i=0; i<psurface->domainSegments.size(); i++) {
const typename PSurface<1,ctype>::DomainSegment& cS = psurface->domainSegments[i];
const std::vector<typename PSurface<1,ctype>::Node>& nodes = psurface->domainSegments[i].nodes;
////////////////////////////////
for (int j=0; j<int(nodes.size())-1; j++) {
/** \todo Should be in here for true edge handling */
// Don't do anything if the current pair of points is not connected by an edge
if (nodes[j].rightRangeSegment == -1)
continue;
// //////////////////////////////////////////////
// Assemble new overlap
// //////////////////////////////////////////////
IntersectionPrimitive<1,ctype> newOverlap;
newOverlap.tris[0] = i;
newOverlap.tris[1] = nodes[j].rightRangeSegment;
newOverlap.localCoords[0][0][0] = nodes[j].domainLocalPosition;
newOverlap.localCoords[0][1][0] = nodes[j+1].domainLocalPosition;
// if the target of a node is a vertex on the target surface, its
// rangeLocalPosition is always 0. But its equivalent coordinate
// in the two overlaps that contain it has to be once 1 and once zero.
// That explains the following conditional clause
newOverlap.localCoords[1][0][0] = (nodes[j].isNodeOnTargetVertex) ? 1 : nodes[j].rangeLocalPosition;
newOverlap.localCoords[1][1][0] = nodes[j+1].rangeLocalPosition;
// Compute the world position of the overlap on the domain side */
newOverlap.points[0][0] = psurface->domainVertices[cS.points[0]][0] * (1-nodes[j].domainLocalPosition)
+ psurface->domainVertices[cS.points[1]][0] * nodes[j].domainLocalPosition;
newOverlap.points[0][1] = psurface->domainVertices[cS.points[0]][1] * (1-nodes[j].domainLocalPosition)
+ psurface->domainVertices[cS.points[1]][1] * nodes[j].domainLocalPosition;
newOverlap.points[1][0] = psurface->domainVertices[cS.points[0]][0] * (1-cS.nodes[j+1].domainLocalPosition)
+ psurface->domainVertices[cS.points[1]][0] * cS.nodes[j+1].domainLocalPosition;
newOverlap.points[1][1] = psurface->domainVertices[cS.points[0]][1] * (1-cS.nodes[j+1].domainLocalPosition)
+ psurface->domainVertices[cS.points[1]][1] * cS.nodes[j+1].domainLocalPosition;
mergedGrid.push_back(newOverlap);
}
}
#if 0
for (int i=0; i<mergedGrid.size(); i++)
printf("overlap %d, nonmortar (%g --> %g), mortar (%g --> %g)\n", i,
mergedGrid[i].localCoords[0][0][0], mergedGrid[i].localCoords[0][1][0],
mergedGrid[i].localCoords[1][0][0], mergedGrid[i].localCoords[1][1][0]);
#endif
// exit(0);
}
// ////////////////////////////////////////////////////////
// Explicit template instantiations.
// If you need more, you can add them here.
// ////////////////////////////////////////////////////////
namespace psurface {
template class PSURFACE_EXPORT IntersectionPrimitiveCollector<float>;
template class PSURFACE_EXPORT IntersectionPrimitiveCollector<double>;
}
|