1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
|
#include "config.h"
#include <cstddef>
#include "NormalProjector.h"
#include "PSurfaceFactory.h"
#include "DirectionFunction.h"
#include "StaticVector.h"
#include "StaticMatrix.h"
#include "NodeBundle.h"
#include "PathVertex.h"
#ifdef PSURFACE_STANDALONE
#include "TargetSurface.h"
#else
#include "hxsurface/Surface.h"
#endif
#include <stdexcept>
#include <exception>
#include <vector>
#include <set>
using namespace psurface;
/** \brief An Exception that is thrown whenever during the insertion of a target edge
* the inverse projection is not unique or does not exist at all.
*/
class WrongEdgeException: public std::exception
{
public:
WrongEdgeException(std::string str) :
str_(str)
{}
virtual const char* what() const throw()
{
return str_.c_str();
}
virtual ~WrongEdgeException() throw()
{}
private:
const std::string str_;
};
/** \brief An Exception that is thrown whenever during the insertion of a target edge
* the inverse projection is leaving the image of the projection.
*/
class EdgeLeavingImageException: public std::exception
{
public:
EdgeLeavingImageException(std::string str) :
str_(str)
{}
virtual const char* what() const throw()
{
return str_.c_str();
}
virtual ~EdgeLeavingImageException() throw()
{}
private:
const std::string str_;
};
template <class ctype>
void NormalProjector<ctype>::project(const Surface* targetSurface,
const DirectionFunction<3,ctype>* domainDirection,
const DirectionFunction<3,ctype>* targetDirection)
{
const double eps = 1e-4;
PSurfaceFactory<2,ctype> factory(psurface_);
const Surface* surf = psurface_->surface;
// //////////////////////////
// compute normals
// //////////////////////////
int nPoints = psurface_->getNumVertices();
std::vector<StaticVector<ctype,3> > domainNormals(nPoints);
computeDiscreteDomainDirections(domainDirection, domainNormals);
// /////////////////////////////////////////////////////////////
// Compute the vertex normals of the target side
// /////////////////////////////////////////////////////////////
std::vector<StaticVector<ctype,3> > targetNormals(targetSurface->points.size());
computeDiscreteTargetDirections(targetSurface, targetDirection, targetNormals);
// /////////////////////////////////////////////////////////////////////////////////////
// Insert the vertices of the contact boundary as nodes on the intermediate manifold
// /////////////////////////////////////////////////////////////////////////////////////
// TODO: Use an octree here. The MultiDimOctree should get a method that returns
// all verticess close to the cone spanned by the search directions at the domain
// surface triangles. Only those vertices should then be checked.
// We need this quickly, because it is mentioned in the psurface papers, which
// has already been submitted.
// This array stores the preimages of each vertex in the target surface
std::vector<NodeBundle> projectedTo(surf->points.size());
// This bitfield marks whether base grid vertices already have a
// corresponding image
std::vector<bool> vertexHasBeenHandled(psurface_->getNumVertices(), false);
int target = 0;
// Loop over the vertices of the target surface
for (size_t i=0; i<targetSurface->points.size(); i++) {
StaticVector<ctype,2> bestDPos;
int bestTri = -1;
ctype bestDist = std::numeric_limits<ctype>::max();
// magic to use a McVec3f as the argument
StaticVector<ctype,3> targetVertex;
for (int k=0; k<3; k++)
targetVertex[k] = surf->points[i][k];
//std::cout<<i<<". target vertex "<<targetVertex<<std::endl;
for (size_t j=0; j<psurface_->getNumTriangles(); j++) {
const StaticVector<ctype,3>& p0 = psurface_->vertices(psurface_->triangles(j).vertices[0]);
const StaticVector<ctype,3>& p1 = psurface_->vertices(psurface_->triangles(j).vertices[1]);
const StaticVector<ctype,3>& p2 = psurface_->vertices(psurface_->triangles(j).vertices[2]);
const StaticVector<ctype,3>& n0 = domainNormals[psurface_->triangles(j).vertices[0]];
const StaticVector<ctype,3>& n1 = domainNormals[psurface_->triangles(j).vertices[1]];
const StaticVector<ctype,3>& n2 = domainNormals[psurface_->triangles(j).vertices[2]];
StaticVector<ctype,3> x; // the unknown...
if (computeInverseNormalProjection(p0, p1, p2, n0, n1, n2, targetVertex, x)) {
// We want that the line from the domain surface to its projection
// approaches the target surface from the front side, i.e., it should
// not pass through the body represented by the target surface.
// We do a simplified test by comparing the connecting segment
// with the normal at the target surface and the normal at the
// domain surface
StaticVector<ctype,3> base = p0*x[0] + p1*x[1] + (1-x[0]-x[1])*p2;
StaticVector<ctype,3> baseNormal = n0*x[0] + n1*x[1] + (1-x[0]-x[1])*n2;
StaticVector<ctype,3> segment(surf->points[i][0] - base[0],
surf->points[i][1] - base[1],
surf->points[i][2] - base[2]);
ctype distance = segment.length() * segment.length();
// if both conditions are not fulfilled we might want to allow some overlaps
if(segment.dot(targetNormals[i]) > eps
&& segment.dot(baseNormal) < -eps) {
if (distance > 1e-1) // TODO this value should be set problem dependent
continue;
} else if( segment.dot(targetNormals[i]) > eps
|| segment.dot(baseNormal) < -eps)
continue;
// There may be several inverse orthogonal projections.
// We want the shortest one.
if (distance < bestDist) {
bestDist = distance;
bestDPos[0] = x[0];
bestDPos[1] = x[1];
bestTri = j;
}
}
}
if (bestTri != -1) {
int domainVertex;
factory.insertTargetVertexMapping(i, bestTri, bestDPos, projectedTo[i], domainVertex);
if (domainVertex >= 0)
vertexHasBeenHandled[domainVertex] = true;
target++;
}
}
std::cout<<target<<" target nodes added\n";
// ///////////////////////////////////////////////////////////////////
// Place ghost nodes at the vertices of the domain surface
// ///////////////////////////////////////////////////////////////////
// TODO: Use an octree here. The MultiDimOctree should get a method that returns
// all triangles close to a given ray. Only those triangles should then be checked.
// We need this quickly, because it is mentioned in the psurface papers, which
// has already been submitted.
int ghost = 0;
for (int i=0; i<psurface_->getNumVertices(); i++) {
//std::cout<<i<<". dom vertex "<<psurface_->vertices(i)<<std::endl;
// Has the vertex been hit by the projection of a target vertex already?
if (vertexHasBeenHandled[i])
continue;
StaticVector<ctype,2> bestDPos;
int bestTri = -1;
ctype bestDist = std::numeric_limits<ctype>::max();
const StaticVector<ctype,3>& basePoint = psurface_->vertices(i);
StaticVector<ctype,3> normal;
normal[0] = domainNormals[i][0];
normal[1] = domainNormals[i][1];
normal[2] = domainNormals[i][2];
for (int j=0; j<targetSurface->triangles.size(); j++) {
StaticVector<ctype,2> domainPos;
ctype dist;
// copy the coordinates, because they are stored in a McVec3f when compiled as part of Amira
StaticVector<ctype,3> p0, p1, p2;
for (int k=0; k<3; k++) {
p0[k] = surf->points[targetSurface->triangles[j].points[0]][k];
p1[k] = surf->points[targetSurface->triangles[j].points[1]][k];
p2[k] = surf->points[targetSurface->triangles[j].points[2]][k];
}
if (rayIntersectsTriangle(basePoint, normal, p0, p1, p2, domainPos, dist, eps)) {
if (dist<bestDist) {
bestTri = j;
bestDPos = domainPos;
bestDist = dist;
}
}
}
// Set ghost node mapping to the closest triangle intersected by the normal ray
if (bestTri != -1) {
ghost++;
factory.insertGhostNode(i, bestTri, bestDPos);
}
}
std::cout<<ghost<<" ghost nodes added\n";
// ////////////////////////////////////////////////////////////
// Insert the edges.
// We loop over all sides of all triangles. For each side we
// remember whether we have seen it before.
// ////////////////////////////////////////////////////////////
std::set<std::pair<int,int> > visitedEdges;
for (int i=0; i<targetSurface->triangles.size(); i++) {
//std::cout<<"Target tri "<<i<<" has corners "<<targetSurface->triangles[i].points[0]<<","<<targetSurface->triangles[i].points[1]<<","<<targetSurface->triangles[i].points[2]<<std::endl;
for (int j=0; j<3; j++) {
int from = targetSurface->triangles[i].points[j];
int to = targetSurface->triangles[i].points[(j+1)%3];
// The two numbers max and min uniquely identify 'from' and 'to'.
// However, we have always min<max, and hence we do not have to
// worry about orientation anymore
int max = std::max(from,to);
int min = from + to - max;
// Mark this edge as visited. The return value is true, if this
// edge has not been visited before.
bool wasInserted = visitedEdges.insert(std::make_pair(min,max)).second;
// If both nodes are not in the preimage we cannot insert the edge
if (projectedTo[from].size() == 0 && projectedTo[to].size() == 0)
continue;
if (wasInserted) {
// if only one node is projected then start from that one so we can add
// the boundary node target vertex index into the last intersection node
if (projectedTo[from].size()==0) {
int dummy = from;
from = to;
to = dummy;
}
// store the path so we don't have to compute it twice
std::vector<PathVertex<ctype> > edgePath(1);
try {
if (edgeCanBeInserted(domainNormals, from, to, projectedTo, edgePath))
insertEdge(factory, from, to, edgePath);
//else
//std::cout<< "Skipping edge (" << from << ", " << to << ") ..." << std::endl;
// catch the Leaving edge exception and add the edge as far as possible
} catch (EdgeLeavingImageException e) {
//std::cout<<"Exception caught! "<<e.what()<<std::endl;
insertEdge(factory, from, to, edgePath);
}
}
}
}
setupEdgePointArrays();
}
template <class ctype>
void NormalProjector<ctype>::computeDiscreteDomainDirections(const DirectionFunction<3,ctype>* direction,
std::vector<StaticVector<ctype,3> >& normals)
{
int nPoints = psurface_->getNumVertices();
int nTriangles = psurface_->getNumTriangles();
normals.assign(nPoints, StaticVector<ctype,3>(0.0));
if (direction) {
for (int i=0; i<nPoints; i++) {
if (dynamic_cast<const AnalyticDirectionFunction<3,ctype>*>(direction)) {
normals[i] = (*dynamic_cast<const AnalyticDirectionFunction<3,ctype>*>(direction))(psurface_->vertices(i));
} else if (dynamic_cast<const DiscreteDirectionFunction<3,ctype>*>(direction))
normals[i] = (*dynamic_cast<const DiscreteDirectionFunction<3,ctype>*>(direction))(i);
else {
std::cerr << "Domain direction function not properly set!" << std::endl;
abort();
}
}
} else {
for (int i=0; i<nTriangles; i++) {
int p0 = psurface_->triangles(i).vertices[0];
int p1 = psurface_->triangles(i).vertices[1];
int p2 = psurface_->triangles(i).vertices[2];
StaticVector<ctype,3> a = psurface_->vertices(p1) - psurface_->vertices(p0);
StaticVector<ctype,3> b = psurface_->vertices(p2) - psurface_->vertices(p0);
StaticVector<ctype,3> triNormal = a.cross(b);
triNormal.normalize();
normals[p0] += triNormal;
normals[p1] += triNormal;
normals[p2] += triNormal;
}
for (int i=0; i<nPoints; i++)
normals[i].normalize();
}
}
template <class ctype>
void NormalProjector<ctype>::computeDiscreteTargetDirections(const Surface* targetSurface,
const DirectionFunction<3,ctype>* direction,
std::vector<StaticVector<ctype,3> >& normals)
{
int nPoints = targetSurface->points.size();
int nTriangles = targetSurface->triangles.size();
normals.assign(nPoints, StaticVector<ctype,3>(0.0));
if (direction) {
for (int i=0; i<nPoints; i++) {
if (dynamic_cast<const AnalyticDirectionFunction<3,ctype>*>(direction)) {
StaticVector<ctype,3> p;
for (int j=0; j<3; j++)
p[j] = targetSurface->points[i][j];
normals[i] = (*dynamic_cast<const AnalyticDirectionFunction<3,ctype>*>(direction))(p);
} else if (dynamic_cast<const DiscreteDirectionFunction<3,ctype>*>(direction))
normals[i] = (*dynamic_cast<const DiscreteDirectionFunction<3,ctype>*>(direction))(i);
else {
std::cerr << "Target direction function not properly set!" << std::endl;
abort();
}
}
} else {
for (int i=0; i<nTriangles; i++) {
int p0 = targetSurface->triangles[i].points[0];
int p1 = targetSurface->triangles[i].points[1];
int p2 = targetSurface->triangles[i].points[2];
StaticVector<ctype,3> a, b;
for (int j=0; j<3; j++) {
a[j] = targetSurface->points[p1][j] - targetSurface->points[p0][j];
b[j] = targetSurface->points[p2][j] - targetSurface->points[p0][j];
}
StaticVector<ctype,3> triNormal = a.cross(b);
triNormal.normalize();
normals[p0] += triNormal;
normals[p1] += triNormal;
normals[p2] += triNormal;
}
for (size_t i=0; i<targetSurface->points.size(); i++)
normals[i].normalize();
}
}
template <class ctype>
void NormalProjector<ctype>::insertEdge(PSurfaceFactory<2,ctype>& factory,
int from, int to,
std::vector<PathVertex<ctype> >& edgePath)
{
// if the last node on the edge path is not a target vertex then add a boundary node
if (edgePath.back().lambda_<1) {
PathVertex<ctype>& node = edgePath.back();
//by now this should only happen for intersection nodes
assert(node.type_ == Node<ctype>::INTERSECTION_NODE);
// add a fake intersection node
const Surface* surf = psurface_->surface;
// the image point of that edge path point
StaticVector<ctype,3> image;
// trick: within Amira this is assignment from a McVec3f
for (int j=0; j<3; j++)
image[j] = surf->points[from][j] + node.lambda_*(surf->points[to][j]-surf->points[from][j]);
// get the triangle
int tri = node.tri_;
// edge the node lives on
int edge = node.edge_;
// the domain position of the new intersection node on the two triangles
ctype mu = node.locEdge_;
StaticVector<ctype,2> dom((edge==0)*(1-mu) + (edge==2)*mu, (edge==0)*mu + (edge==1)*(1-mu));
// now that we created the node, we can add the bundle to the edge path
node.bundle_ = factory.addBoundaryNode(tri, dom, edge, image, to);
}
// start inserting the edge path by starting at the "to" node
while(edgePath.size() > 1)
{
// Connect two nodes that are on the same triangle
if (onSameTriangle(edgePath.back().bundle_, edgePath[0].bundle_)) {
//assert(edgePath.size()==2);
// Get the common triangle
std::vector<int> commonTris = getCommonTris(edgePath.back().bundle_, edgePath[0].bundle_);
for (int i=0; i<commonTris.size(); i++)
psurface_->triangles(commonTris[i]).addEdge(edgePath.back().bundle_.triToIdx(commonTris[i]),
edgePath[0].bundle_.triToIdx(commonTris[i]));
break;
}
// insert next edge path segment and remove the last node
insertEdgeSegment(factory, from, to, edgePath);
edgePath.pop_back();
}
}
template <class ctype>
void NormalProjector<ctype>::insertEdgeSegment(PSurfaceFactory<2,ctype>& factory, int from, int to,
std::vector<PathVertex<ctype> >& edgePath)
{
//assert(edgeNodes.size()>2);
// the next node on that edge path
PathVertex<ctype>& node = edgePath[edgePath.size()-2];
PathVertex<ctype>& lastNode = edgePath.back();
const Surface* surf = psurface_->surface;
// the image point of that edge path point
StaticVector<ctype,3> image;
// trick: within Amira this is assignment from a McVec3f
for (int j=0; j<3; j++)
image[j] = surf->points[from][j] + node.lambda_*(surf->points[to][j]-surf->points[from][j]);
// get the triangle
int tri = node.tri_;
// edge goes through an intersection node
if (node.corner_==-1) {
// edge the node lives on
int edge = node.edge_;
// neighboring triangle
int neighboringTri = lastNode.tri_;
// add intersection nodes on both sides
// the neighboring edge is the entering edge of the next edge path node
int e = lastNode.enteringEdge_;
// the domain position of the new intersection node on the two triangles
ctype mu = node.locEdge_;
StaticVector<ctype,2> dom1((edge==0)*(1-mu) + (edge==2)*mu, (edge==0)*mu + (edge==1)*(1-mu));
StaticVector<ctype,2> dom2((e==0)*mu + (e==2)*(1-mu), (e==0)*(1-mu) + (e==1)*mu);
// now that we created the node, we can add the bundle to the edge path
node.bundle_ = factory.addIntersectionNodePair(tri, neighboringTri,
dom1, dom2, edge, e, image);
// insert new parameter edge
psurface_->triangles(neighboringTri).addEdge(lastNode.bundle_.triToIdx(neighboringTri), node.bundle_[1].idx);
// else edge goes through a ghost node
} else {
int corner = node.corner_;
DomainTriangle<ctype>& cT = psurface_->triangles(tri);
node.bundle_ = psurface_->getNodeBundleAtVertex(cT.vertices[corner]);
// for touching nodes it may be the case that the ghost and touching node are on the same edge
// case that the edge path is aligned with a domain edge
if( ((lastNode.type_ == Node<ctype>::TOUCHING_NODE)
&& ( node.bundle_.triToIdx(lastNode.tri_) ==
((psurface_->triangles(lastNode.tri_).nodes[lastNode.bundle_.triToIdx(lastNode.tri_)].getDomainEdge()+2)%3)) )
|| (lastNode.type_ == Node<ctype>::CORNER_NODE)
|| (lastNode.type_ == Node<ctype>::GHOST_NODE) ) {
std::vector<int> commonTris = getCommonTris(node.bundle_, lastNode.bundle_);
for (size_t i=0; i<commonTris.size(); i++)
psurface_->triangles(commonTris[i]).addEdge(lastNode.bundle_.triToIdx(commonTris[i]),
node.bundle_.triToIdx(commonTris[i]));
} else
psurface_->triangles(lastNode.tri_).addEdge(lastNode.bundle_.triToIdx(lastNode.tri_),
node.bundle_.triToIdx(lastNode.tri_));
}
}
template <class ctype>
bool NormalProjector<ctype>::edgeCanBeInserted(const std::vector<StaticVector<ctype,3> >& normals,
int from, int to,
const std::vector<NodeBundle>& projectedTo,
std::vector<PathVertex<ctype> >& edgePath)
{
int enteringEdge=-1;
NodeBundle curr = projectedTo[from];
// initialize first node on the edge path
edgePath.resize(1);
edgePath[0].bundle_ = curr;
edgePath[0].type_ = psurface_->nodes(curr[0]).type;
edgePath[0].tri_ = curr[0].tri;
edgePath[0].lambda_ = 0.0;
// If the two nodes are on the same triangle it is surely possible to enter the edge
if (onSameTriangle(curr, projectedTo[to])) {
edgePath.push_back(PathVertex<ctype>(projectedTo[to]));
edgePath.back().type_ = psurface_->nodes(projectedTo[to][0]).type;
edgePath.back().lambda_ = 1.0;
// set triangle the both are contained in,
// if there is more than one we'll handle it later
for (int i=0; i<curr.size(); i++)
for (int j=0; j<edgePath.back().bundle_.size(); j++)
if (curr[i].tri==edgePath.back().bundle_[j].tri) {
edgePath.back().tri_ = curr[i].tri;
return true;
}
}
typename Node<ctype>::NodeType currType = psurface_->nodes(curr[0]).type;
int currTri = curr[0].tri;
// parameter value for the edge to be inserted
ctype lambda = 0;
// sometimes more than one domain edge hits the target edge
// in this case we might need to restart the search from an earlier
// intersection node and start looking at the other edge first
int offset = 0;
// avoid running into infinity-loops
PathVertex<ctype> wrongEdgeNode;
while (true) {
// If the two nodes are on the same triangle it is surely possible to enter the edge
if (onSameTriangle(currTri, projectedTo[to])) {
edgePath.push_back(PathVertex<ctype>(projectedTo[to]));
edgePath.back().tri_ = currTri;
edgePath.back().type_ = psurface_->nodes(projectedTo[to][0]).type;
edgePath.back().enteringEdge_ = enteringEdge;
edgePath.back().lambda_ = 1.0;
return true;
}
if ((currType==Node<ctype>::GHOST_NODE || currType==Node<ctype>::CORNER_NODE)
&& onSameTriangle(curr, projectedTo[to])) {
edgePath.push_back(PathVertex<ctype>(projectedTo[to]));
edgePath.back().type_ = psurface_->nodes(projectedTo[to][0]).type;
edgePath.back().enteringEdge_ = enteringEdge;
edgePath.back().lambda_ = 1.0;
// set triangle the both are contained in,
// if there is more than one we'll handle it later
for (int i=0; i<curr.size(); i++)
for (int j=0; j<edgePath.back().bundle_.size(); j++)
if (curr[i].tri==edgePath.back().bundle_[j].tri) {
edgePath.back().tri_ = curr[i].tri;
return true;
}
}
switch (currType) {
case Node<ctype>::TOUCHING_NODE:
if (!testInsertEdgeFromTouchingNode(normals, from, to, lambda, curr, currType,
currTri, enteringEdge, edgePath, offset))
return false;
break;
case Node<ctype>::GHOST_NODE:
case Node<ctype>::CORNER_NODE:
try {
if (!testInsertEdgeFromCornerNode(normals, from, to, lambda,
curr, currType, currTri, enteringEdge,edgePath, offset))
return false;
} catch (WrongEdgeException e) {
std::cout<<"Exception caught! "<<e.what()<<std::endl;
// if we were already ran into that node, then the projection of the path does not exist
if (edgePath.back()==wrongEdgeNode)
return false;
// this edge led to a wrong triangle so check if another edge is also feasible
offset = (edgePath.back().edge_+1)%3;
currTri = edgePath.back().tri_;
currType = edgePath.back().type_;
lambda = edgePath[edgePath.size()-2].lambda_;
enteringEdge = edgePath.back().enteringEdge_;
wrongEdgeNode = edgePath.back();
edgePath.pop_back();
}
break;
case Node<ctype>::INTERSECTION_NODE:
try {
if (!testInsertEdgeFromIntersectionNode(normals, from, to, lambda,
curr, currType, currTri, enteringEdge, edgePath, offset))
return false;
} catch (WrongEdgeException e) {
std::cout<<"Exception caught! "<<e.what()<<std::endl;
// if we were already ran into that node, then the projection of the path does not exist
if (edgePath.back()==wrongEdgeNode)
return false;
// this edge led to a wrong triangle so check if another edge is also feasible
offset = (edgePath.back().edge_+1)%3;
currTri = edgePath.back().tri_;
currType = edgePath.back().type_;
lambda = edgePath[edgePath.size()-2].lambda_;
enteringEdge = edgePath.back().enteringEdge_;
wrongEdgeNode = edgePath.back();
edgePath.pop_back();
}
break;
case Node<ctype>::INTERIOR_NODE:
if (!testInsertEdgeFromInteriorNode(normals, from, to, lambda,
curr, currType, currTri, enteringEdge, edgePath, offset))
return false;
break;
default:
std::cout << "ERROR: unknown node type found!" << std::endl;
abort();
}
}
//std::cout << "should not occur" << std::endl;
return true;
}
template <class ctype>
bool NormalProjector<ctype>::testInsertEdgeFromInteriorNode(const std::vector<StaticVector<ctype,3> >& normals,
int from, int to, ctype &lambda,
NodeBundle& curr,
typename Node<ctype>::NodeType& currType, int& currTri,
int& enteringEdge, std::vector<PathVertex<ctype> >& edgePath,
int offset)
{
// loop over the three edges of the current triangle (except for the entering edge) and
// check whether the paramPolyEdge leaves the triangle via this edge
ctype eps = 1e-5;
int i=offset;
for (int j=0; j<3; j++,i=(i+1)%3) {
if (i==enteringEdge)
continue;
StaticVector<ctype,3> x;
int p = psurface_->triangles(currTri).vertices[i];
int q = psurface_->triangles(currTri).vertices[(i+1)%3];
const Surface* surf = psurface_->surface;
StaticVector<ctype,3> targetFrom, targetTo;
for (int k=0; k<3; k++) {
targetFrom[k] = surf->points[from][k];
targetTo[k] = surf->points[to][k];
}
if (edgeIntersectsNormalFan(targetFrom, targetTo,
psurface_->vertices(p), psurface_->vertices(q),
normals[p], normals[q], x)) {
const ctype& newLambda = x[1];
const ctype& mu = x[0];
if (newLambda < lambda) {
// Error: the normal projection is not continuous!
return false;
}
int corner = -1;
if (mu<eps)
corner = i;
else if (mu>1-eps)
corner = (i+1)%3;
if (corner==-1) {
// get neighboring triangle
int neighboringTri = psurface_->getNeighboringTriangle(currTri, i);
// if no neighboring triangle then we add a boundary node
if (neighboringTri==-1) {
currType = Node<ctype>::INTERSECTION_NODE;
lambda = newLambda;
// add node on the path to the array
edgePath.push_back(PathVertex<ctype>(currTri,i,mu,currType,NodeBundle(),newLambda,enteringEdge));
throw(EdgeLeavingImageException("In [testInsertEdgeFromInteriorNode] Edge leaving the image!\n"));
return false;
}
// add intersection nodes on both sides
// the domain position of the new intersection node on the next triangle
// better: using getEdge()
int e = psurface_->triangles(neighboringTri).getCorner(q);
currType = Node<ctype>::INTERSECTION_NODE;
// add node on the path to the array
edgePath.push_back(PathVertex<ctype>(currTri,i,mu,currType,NodeBundle(),newLambda,enteringEdge));
currTri = neighboringTri;
lambda = newLambda;
enteringEdge = e;
return true;
} else {
// parameter polyedge is leaving base grid triangle through a ghost node
// get all ghost nodes for the base grid vertex
int vertex = psurface_->triangles(currTri).vertices[corner];
std::vector<int> neighbors = psurface_->getTrianglesPerVertex(vertex);
curr.resize(0);
for (int k=0; k<neighbors.size(); k++) {
int cornerOnNeighbor = psurface_->triangles(neighbors[k]).getCorner(vertex);
/** \todo Linear search: pretty slow */
for (int l=0; l<psurface_->triangles(neighbors[k]).nodes.size(); l++) {
if (psurface_->triangles(neighbors[k]).nodes[l].isGHOST_NODE()
&& psurface_->triangles(neighbors[k]).nodes[l].getCorner() == cornerOnNeighbor){
curr.push_back(GlobalNodeIdx(neighbors[k], l));
break;
}
}
}
currType = Node<ctype>::GHOST_NODE;
assert(currType==type(curr));
lambda = newLambda;
edgePath.push_back(PathVertex<ctype>(currTri,i,mu,currType,curr, newLambda, enteringEdge, corner));
return true;
}
}
}
return false;
}
template <class ctype>
bool NormalProjector<ctype>::testInsertEdgeFromIntersectionNode(const std::vector<StaticVector<ctype,3> >& normals,
int from, int to, ctype &lambda,
NodeBundle& curr,
typename Node<ctype>::NodeType& currType, int& currTri,
int& enteringEdge,
std::vector<PathVertex<ctype> >& edgePath,
int offset)
{
// loop over the three edges of the current triangle (except for the entering edge) and
// check whether the paramPolyEdge leaves the triangle via this edge
ctype eps = 1e-5;
int i=offset;
for (int j=0; j<3; j++,i=(i+1)%3) {
if (i==enteringEdge)
continue;
StaticVector<ctype,3> x;
int p = psurface_->triangles(currTri).vertices[i];
int q = psurface_->triangles(currTri).vertices[(i+1)%3];
const Surface* surf = psurface_->surface;
StaticVector<ctype,3> targetFrom, targetTo;
for (int k=0; k<3; k++) {
targetFrom[k] = surf->points[from][k];
targetTo[k] = surf->points[to][k];
}
if (edgeIntersectsNormalFan(targetFrom, targetTo,
psurface_->vertices(p), psurface_->vertices(q),
normals[p], normals[q], x)) {
const ctype& newLambda = x[1];
const ctype& mu = x[0];
if (newLambda < lambda) {
// Error: the normal projection is not continuous!
return false;
}
int corner = -1;
if (mu<eps)
corner = i;
else if (mu>1-eps)
corner = (i+1)%3;
if (corner==-1) {
// get neighboring triangle
int neighboringTri = psurface_->getNeighboringTriangle(currTri, i);
// if no neighboring triangle then we add a boundary node
if (neighboringTri==-1) {
currType = Node<ctype>::INTERSECTION_NODE;
lambda = newLambda;
// add node on the path to the array
edgePath.push_back(PathVertex<ctype>(currTri,i,mu,currType,NodeBundle(),newLambda,enteringEdge));
throw(EdgeLeavingImageException("In [testInsertEdgeFromIntersectionNode] Edge leaving the image!\n"));
// Error: Normal images leaves domain surface!
return false;
}
// add intersection nodes on both sides
// the domain position of the new intersection node on the next triangle
// better: using getEdge()
int e = psurface_->triangles(neighboringTri).getCorner(q);
currType = Node<ctype>::INTERSECTION_NODE;
edgePath.push_back(PathVertex<ctype>(currTri, i, mu, currType,
NodeBundle(), newLambda, enteringEdge));
currTri = neighboringTri;
lambda = newLambda;
enteringEdge = e;
return true;
} else {
// parameter polyedge is leaving base grid triangle through a ghost node
// get all ghost nodes for the base grid vertex
int vertex = psurface_->triangles(currTri).vertices[corner];
curr = psurface_->getNodeBundleAtVertex(vertex);
currType = Node<ctype>::GHOST_NODE;
assert(currType==type(curr));
lambda = newLambda;
edgePath.push_back(PathVertex<ctype>(currTri,i,mu,currType,curr,
newLambda, enteringEdge, corner));
return true;
}
}
}
throw(WrongEdgeException("No intersection found (in testInsertEdgeFromIntersectionNode)!\n"));
return false;
}
template <class ctype>
bool NormalProjector<ctype>::testInsertEdgeFromTouchingNode(const std::vector<StaticVector<ctype,3> >& normals,
int from, int to, ctype &lambda,
NodeBundle& curr,
typename Node<ctype>::NodeType& currType, int& currTri,
int& enteringEdge, std::vector<PathVertex<ctype> >& edgePath,
int offset)
{
const Surface* surf = psurface_->surface;
ctype eps = 1e-5;
// The other end of the edge is *not* on this triangle
for (int i=0; i<curr.size(); i++) {
const DomainTriangle<ctype>& cT = psurface_->triangles(curr[i].tri);
int currentEdge = cT.nodes[curr[i].idx].getDomainEdge();
int j=offset;
for (int k=0; k<3; k++,j=(j+1)%3) {
//for (int j=0; j<3; j++) {
if (j==currentEdge)
continue;
StaticVector<ctype,3> x;
int p = cT.vertices[j];
int q = cT.vertices[(j+1)%3];
StaticVector<ctype,3> targetFrom, targetTo;
for (int l=0; l<3; l++) {
targetFrom[l] = surf->points[from][l];
targetTo[l] = surf->points[to][l];
}
if (edgeIntersectsNormalFan(targetFrom, targetTo,
psurface_->vertices(p), psurface_->vertices(q),
normals[p], normals[q], x)) {
const ctype& newLambda = x[1];
if (newLambda < lambda) {
// Edge insertion not possible: the normal projection is not continuous!
return false;
}
int corner = -1;
if (x[0]<eps)
corner = j;
else if (x[0]>1-eps)
corner = (j+1)%3;
if (corner==-1) {
// parameter polyedge is leaving basegrid triangle through an edge
// get neighboring triangle
int neighboringTri = psurface_->getNeighboringTriangle(curr[i].tri, j);
// if no neighboring triangle then we add a boundary node
if (neighboringTri==-1) {
currType = Node<ctype>::INTERSECTION_NODE;
lambda = newLambda;
// add node on the path to the array
edgePath.push_back(PathVertex<ctype>(curr[i].tri,j,x[0],currType,NodeBundle(),newLambda,enteringEdge));
throw(EdgeLeavingImageException("In [testInsertEdgeFromTouchingNode] Edge leaving the image!\n"));
// Error: Normal images leaves domain surface!
return false;
}
// add intersection nodes on both sides
// better: using getEdge()
int e = psurface_->triangles(neighboringTri).getCorner(q);
currType = Node<ctype>::INTERSECTION_NODE;
edgePath.push_back(PathVertex<ctype>(curr[i].tri,j,x[0],currType,NodeBundle(),
newLambda, enteringEdge));
currTri = neighboringTri;
lambda = newLambda;
enteringEdge = e;
return true;
} else {
// parameter polyedge is leaving base grid triangle through a ghost node
// get all ghost nodes for the base grid vertex
int vertex = psurface_->triangles(curr[i].tri).vertices[corner];
int copyTri = curr[i].tri;
curr = psurface_->getNodeBundleAtVertex(vertex);
currType = Node<ctype>::GHOST_NODE;
assert(currType==type(curr));
lambda = newLambda;
edgePath.push_back(PathVertex<ctype>(copyTri,j,x[0],currType,curr,
newLambda, enteringEdge,corner));
return true;
}
}
}
}
return false;
}
template <class ctype>
bool NormalProjector<ctype>::testInsertEdgeFromCornerNode(const std::vector<StaticVector<ctype,3> >& normals,
int from, int to, ctype &lambda,
NodeBundle& curr,
typename Node<ctype>::NodeType& currType, int& currTri,
int& leavingEdge, std::vector<PathVertex<ctype> >& edgePath,
int offset)
{
const Surface* surf = psurface_->surface;
ctype eps = 1e-5;
// The other end of the edge is *not* on this triangle
for (int i=0; i<curr.size(); i++) {
int cT = curr[i].tri;
int thisCorner = psurface_->triangles(cT).nodes[curr[i].idx].getCorner();
int oppEdge = (thisCorner+1)%3;
StaticVector<ctype,3> x;
int p = psurface_->triangles(cT).vertices[(thisCorner+1)%3];
int q = psurface_->triangles(cT).vertices[(thisCorner+2)%3];
StaticVector<ctype,3> targetFrom, targetTo;
for (int j=0; j<3; j++) {
targetFrom[j] = surf->points[from][j];
targetTo[j] = surf->points[to][j];
}
if (edgeIntersectsNormalFan(targetFrom, targetTo,
psurface_->vertices(p), psurface_->vertices(q),
normals[p], normals[q], x)) {
const ctype& newLambda = x[1];
if (newLambda < lambda) {
// Shouldn't this rather be a 'return false' here?
continue;
}
int corner = -1;
if (x[0]<eps)
corner = (thisCorner+1)%3;
else if (x[0]>1-eps)
corner = (thisCorner+2)%3;
if (corner==-1) {
// parameter polyedge is leaving basegrid triangle
// through the opposite edge
// get neighboring triangle
int neighboringTri = psurface_->getNeighboringTriangle(cT, oppEdge);
// if no neighboring triangle --> error
if (neighboringTri==-1) {
currType = Node<ctype>::INTERSECTION_NODE;
edgePath.push_back(PathVertex<ctype>(cT,oppEdge, x[0],currType,NodeBundle(),
newLambda, leavingEdge));
throw(EdgeLeavingImageException("In [testInsertEdgeFromCornerNode]: Edge leaving the image!\n"));
return false;
}
// add intersection nodes on both sides
// better: using getEdge()
int e = psurface_->triangles(neighboringTri).getCorner(q);
currType = Node<ctype>::INTERSECTION_NODE;
edgePath.push_back(PathVertex<ctype>(cT,oppEdge, x[0],currType,NodeBundle(),
newLambda, leavingEdge));
currTri = neighboringTri;
lambda = newLambda;
leavingEdge = e;
return true;
} else {
// parameter polyedge is leaving base grid triangle through a ghost node
// get all ghost nodes for the base grid vertex
int vertex = psurface_->triangles(curr[i].tri).vertices[corner];
curr = psurface_->getNodeBundleAtVertex(vertex);
currType = Node<ctype>::GHOST_NODE;
assert(currType == type(curr));
lambda = newLambda;
edgePath.push_back(PathVertex<ctype>(cT,oppEdge,x[0],currType,curr, newLambda, leavingEdge, corner));
return true;
}
}
}
// TODO think about the case below
throw(WrongEdgeException("No intersection found (in testInsertEdgeFromCornerNode)!\n"));
// If we get to here this means that the intersection of the edge from 'from' to 'to' with
// the star around the vertex corresponding to the corner node we are testing consists
// only of a single point. This can happen if the star is not a full circle. In this
// case the edge cannot be inserted and consequently we return 'false'.
return false;
}
template <class ctype>
bool NormalProjector<ctype>::onSameTriangle(const NodeBundle& a, const NodeBundle& b) const
{
for (int i=0; i<a.size(); i++)
for (int j=0; j<b.size(); j++)
if (a[i].tri==b[j].tri)
return true;
return false;
}
template <class ctype>
bool NormalProjector<ctype>::onSameTriangle(const int& tri, const NodeBundle& b) const
{
for (size_t j=0; j<b.size(); j++)
if (tri==b[j].tri)
return true;
return false;
}
template <class ctype>
bool NormalProjector<ctype>::computeInverseNormalProjection(const StaticVector<ctype,3>& p0, const StaticVector<ctype,3>& p1, const StaticVector<ctype,3>& p2,
const StaticVector<ctype,3>& n0, const StaticVector<ctype,3>& n1, const StaticVector<ctype,3>& n2,
const StaticVector<ctype,3>& target, StaticVector<ctype,3>& x)
{
const ctype eps = 1e-6;
// try to solve a cubic equation for the distance parameter nu, then compute the barycentric coordinates from it
// cubic coefficient
StaticVector<ctype,3> n02 = n0 - n2;
StaticVector<ctype,3> n12 = n1 - n2;
StaticVector<ctype,3> n02n12 = n02.cross(n12);
double cubic = n2.dot(n02n12);
// quadratic coefficient
StaticVector<ctype,3> p02 = p0 - p2;
StaticVector<ctype,3> p12 = p1 - p2;
StaticVector<ctype,3> p2q = p2 -target;
StaticVector<ctype,3> p02n12 = p02.cross(n12);
StaticVector<ctype,3> n02p12 = n02.cross(p12);
ctype quadratic = n2.dot(p02n12)+n2.dot(n02p12)+p2q.dot(n02n12);
// constant coefficient
StaticVector<ctype,3> p02p12 = p02.cross(p12);
ctype constant = p2q.dot(p02p12);
// linear coefficient
ctype linear = n2.dot(p02p12) + p2q.dot(n02p12) + p2q.dot(p02n12);
// save all zeros we find
std::vector<ctype> zeros;
if (std::fabs(cubic) <1e-10 && std::fabs(quadratic)<1e-10 && std::fabs(linear)<1e-10) {
return false;
} else if (std::fabs(cubic) <1e-10 && std::fabs(quadratic)<1e-10) {
// problem is linear
zeros.push_back(-constant/linear);
} else if(std::fabs(cubic)<1e-10) {
// problem is quadratic
ctype p = linear/quadratic;
ctype q = constant/quadratic;
ctype sqt = 0.25*p*p -q;
// no real solution
if (sqt<-1e-10)
return false;
zeros.push_back(-0.5*p + std::sqrt(sqt));
zeros.push_back(-0.5*p -std::sqrt(sqt));
} else {
// problem is cubic
quadratic /= cubic;
linear /= cubic;
constant /= cubic;
// Transform to reduced form z^3 + p*z + q = 0 where x = z-quadratic/3
ctype p= linear - quadratic*quadratic/3;
ctype q=quadratic*(2*quadratic*quadratic/27 - linear/3) + constant;
// use Cardano's method to solve the problem
ctype D = 0.25*q*q + std::pow(p,3)/27;
if (D>1e-10) {
// one real zero
// be careful when computing the cubic roots
ctype nu = -q/2+std::sqrt(D);
ctype zer = std::pow(std::fabs(nu),1.0/3.0) * ((nu<-1e-10) ? -1 : 1);
nu = -q/2-std::sqrt(D);
zer += std::pow(std::fabs(nu),1.0/3.0) * ((nu<-1e-10) ? -1 : 1);
zeros.push_back(zer-quadratic/3);
} else if (D<-1e-10) {
// three real zeros, using trigonometric functions to compute them
ctype a = std::sqrt(-4*p/3);
ctype b = std::acos(-0.5*q*std::sqrt(-27/(std::pow(p,3))));
for (int i=0;i<3; i++)
zeros.push_back(std::pow(-1,i+1)*a*std::cos((b+(1-i)*M_PI)/3) -quadratic/3);
} else {
// one single and one double zero
if (std::fabs(q)<1e-10) {
zeros.push_back(-quadratic/3);
if (p<-1e-10)
zeros.push_back(std::sqrt(-p)-quadratic/3);
} else if (std::fabs(p)<1e-10) { // is this case correct?
double nu = std::pow(std::fabs(q),1.0/3.0) * ((q<-eps) ? -1 : 1);
zeros.push_back(nu-quadratic/3);
} else {
zeros.push_back(3*q/p - quadratic/3);
zeros.push_back(-1.5*q/p - quadratic/3);
}
}
}
int index = -1;
StaticVector<ctype,3> r;
std::vector<StaticVector<ctype,3> > lamb(zeros.size());
for (int i=0;i<zeros.size();i++) {
ctype nu=zeros[i];
// only look in the direction of the outer normals
if (nu<-1e-1) // allowed overlaps
continue;
if (index != -1)
if (nu > zeros[index]) // is this one really closer ?
continue;
r[2] = nu;
// the computation of the other components might lead to nan or inf
// if this happens use a different equation to compute them
StaticVector<ctype,3> c = (p2q+nu*n2).cross(p02+nu*(n02));
StaticVector<ctype,3> d = (p02 +nu*n02).cross(p12+nu*n12);
StaticVector<ctype,3> e = p2q+nu*n2;
StaticVector<ctype,3> f = p12+nu*n12;
StaticVector<ctype,3> g = p02+nu*n02;
// computation of the other components is unstable
for (int j=0;j<3; j++) {
using std::isinf;
using std::isnan;
r[1] = c[j]/d[j];
if (isnan(r[1]) || isinf(r[1]))
continue;
r[0] = -(e[(j+1)%3]+r[1]*f[(j+1)%3])/g[(j+1)%3];
if (!(isnan(r[0]) || isinf(r[0])) && (p2q +r[0]*p02 + r[1]*p12 + r[2]*r[0]*n02+r[2]*r[1]*n12+r[2]*n2).length()<1e-3)
break;
r[0] = -(e[(j+2)%3]+r[1]*f[(j+2)%3])/g[(j+2)%3];
if (!(isnan(r[0]) || isinf(r[0])) && (p2q + r[0]*p02 + r[1]*p12 + r[2]*r[0]*n02+r[2]*r[1]*n12+r[2]*n2).length()<1e-3)
break;
}
lamb[i] = r;
if (r[0] > -eps && r[1]> -eps && (r[0]+r[1] < 1+eps)) {
index = i;
x = r;
}
}
StaticVector<ctype,3> res = p2q + x[0]*p02 + x[1]*p12 + x[2]*x[0]*n02+x[2]*x[1]*n12+x[2]*n2;
if (res.length()<1e-6) {
if (index >= 0)
return true;
return false;
}
//std::cout<<"Direct solution failed, use Newton method\n";
StaticVector<ctype,3> oldX = x;
// Fix some initial value
// Some problems have two solutions and the Newton converges to the wrong one
x.assign(0.5);
for (int i=0; i<30; i++) {
// compute Newton correction
StaticVector<ctype,3> Fxk = x[0]*(p0-p2) + x[1]*(p1-p2) + x[2]*x[0]*(n0-n2) + x[2]*x[1]*(n1-n2) + x[2]*n2 + p2 - target;
StaticMatrix<ctype,3> FPrimexk(p0 - p2 + x[2]*(n0-n2),
p1 - p2 + x[2]*(n1-n2),
x[0]*(n0-n2) + x[1]*(n1-n2) + n2);
StaticMatrix<ctype,3> FPrimexkInv = FPrimexk.inverse();
StaticVector<ctype,3> newtonCorrection; // = (-1) * FPrimexk.inverse() * Fxk;
FPrimexkInv.multMatrixVec(-Fxk, newtonCorrection);
x += newtonCorrection;
}
StaticVector<ctype,3> res2 = p2q + x[0]*p02 + x[1]*p12 + x[2]*x[0]*n02+x[2]*x[1]*n12+x[2]*n2;
if (x[0]>-eps && x[1]>-eps && (x[0]+x[1] <1+eps)) {
// Newton did not converge either
if (res2.length()>1e-6)
return false;
return true;
}
return false;
}
template <class ctype>
bool NormalProjector<ctype>::edgeIntersectsNormalFan(const StaticVector<ctype,3>& q0, const StaticVector<ctype,3>& q1,
const StaticVector<ctype,3>& p0, const StaticVector<ctype,3>& p1,
const StaticVector<ctype,3>& n0, const StaticVector<ctype,3>& n1,
StaticVector<ctype,3>& x)
{
int i;
ctype eps = 1e-6;
// solve a quadratic scalar equation for the distance parameter eta, then compute the barycentric coordinates from it
StaticVector<ctype,3> n10 = n1 - n0;
StaticVector<ctype,3> p10 = p1 - p0;
StaticVector<ctype,3> q10 = q1 - q0;
StaticVector<ctype,3> q10n10 = q10.cross(n10);
StaticVector<ctype,3> q10p10 = q10.cross(p10);
StaticVector<ctype,3> p0q0 = p0 - q0;
// quadratic coefficient
ctype quadratic = n0.dot(q10n10);
// linear coefficient
ctype linear = n0.dot(q10p10) + p0q0.dot(q10n10);
// constant coefficient
ctype constant = p0q0.dot(q10p10);
// save all zeros we find
std::vector<ctype> zeros;
if (std::fabs(quadratic)<1e-10 && std::fabs(linear)<1e-10) {
return false;
} else if (std::fabs(quadratic)<1e-10) {
// problem is linear
zeros.push_back(-constant/linear);
} else {
// problem is quadratic
ctype p = linear/quadratic;
ctype q = constant/quadratic;
ctype sqt = 0.25*p*p -q;
// no real solution
if (sqt<-1e-10)
return false;
zeros.push_back(-0.5*p + std::sqrt(sqt));
zeros.push_back(-0.5*p -std::sqrt(sqt));
}
int index = -1;
StaticVector<ctype,3> r;
std::vector<StaticVector<ctype,3> > lamb(zeros.size());
for (int i=0;i<zeros.size();i++) {
ctype eta=zeros[i];
// only look in the direction of the outer normals
if (eta<-1e-1)
continue;
r[2] = eta;
// the computation of the other components might lead to nan or inf
// if this happens use a different equation to compute them
StaticVector<ctype,3> c =(p0q0+eta*n0).cross(q10);
StaticVector<ctype,3> d =q10.cross(p10+eta*n10);
for (int j=0;j<3; j++) {
using std::isinf;
using std::isnan;
r[0] = c[j]/d[j];
if (isnan(r[0]) || isinf(r[0]))
continue;
r[1] = (p0q0[(j+1)%3]+eta*n0[(j+1)%3] + r[0]*(p10[(j+1)%3]+eta*n10[(j+1)%3]))/q10[(j+1)%3];
// computation of the other components can be instable
if (!(isnan(r[1]) || isinf(r[1])) && (p0q0 + r[0]*p10 + r[2]*n0 +r[2]*r[0]*n10 -r[1]*q10).length()<1e-3 )
break;
r[1] = (p0q0[(j+2)%3]+eta*n0[(j+2)%3] + r[0]*(p10[(j+2)%3]+eta*n10[(j+2)%3]))/q10[(j+2)%3];
// computation of the other components can be instable
if (!(isnan(r[1]) || isinf(r[1])) && (p0q0 + r[0]*p10 + r[2]*n0 + r[2]*r[0]*n10 -r[1]*q10).length()<1e-3)
break;
}
lamb[i] = r;
if (r[0] >= -eps && r[1]>= -eps && (r[0]<=1+eps) && (r[1] <= 1+eps)) {
index = i;
x = r;
}
}
StaticVector<ctype,3> res = p0q0 + x[0]*p10 + x[2]*n0 + x[2]*x[0]*n10 -x[1]*q10;
if (res.length()<eps)
{
if (index >= 0)
return true;
return false;
}
// if the direct compuation failed, use a Newton method to compute at least one zero
StaticVector<ctype,3> oldX = x;
// Fix some initial value
// sometimes it only works when the initial value is an intersection...
x[0] = x[1] = 0.5;
x[2] = 0.5;
StaticVector<ctype,3> newtonCorrection;
for (i=0; i<30; i++) {
// compute Newton correction
StaticVector<ctype,3> Fxk = p0-q0 + x[0]*(p1-p0) + x[2]*n0 + x[2]*x[0]*(n1-n0) - x[1]*(q1-q0);
StaticMatrix<ctype,3> FPrimexk(p1-p0 + x[2]*(n1-n0),
q0-q1,
n0 + x[0]*(n1-n0));
StaticMatrix<ctype,3> FPrimexkInv = FPrimexk.inverse();
FPrimexkInv.multMatrixVec(-Fxk, newtonCorrection);
x += newtonCorrection;
}
StaticVector<ctype,3> res2 = p0q0 + x[0]*p10 + x[2]*n0 + x[2]*x[0]*n10 -x[1]*q10;
if (res2.length()<=eps) {
if (x[0]>=-eps && x[0]<=(1+eps) && x[1]>=-eps && x[1]<=(1+eps))
return true;
return false;
}
std::cout<<"Newton did not converge either!\n";
return false;
}
template <class ctype>
bool NormalProjector<ctype>::rayIntersectsTriangle(const StaticVector<ctype,3>& basePoint, const StaticVector<ctype,3>& direction,
const StaticVector<ctype,3>& a, const StaticVector<ctype,3>& b, const StaticVector<ctype,3>& c,
StaticVector<ctype,2>& localCoords, ctype& normalDist, ctype eps)
{
const StaticVector<ctype,3> &p = basePoint;
StaticVector<ctype,3> e1 = b-a;
StaticVector<ctype,3> e2 = c-a;
e1.normalize();
e2.normalize();
bool parallel = fabs(StaticMatrix<ctype,3>(e1, e2, direction).det()) <eps;
// Cramer's rule
if (!parallel){
ctype det = StaticMatrix<ctype,3>(b-a, c-a, direction).det();
// triangle and edge are not parallel
ctype nu = StaticMatrix<ctype,3>(b-a, c-a, p-a).det() / det;
// only allow a certain overlaps
if (nu>1e-1) //1e-2
return false;
ctype lambda = StaticMatrix<ctype,3>(p-a, c-a, direction).det() / det;
if (lambda<-eps) return false;
ctype mu = StaticMatrix<ctype,3>(b-a, p-a, direction).det() / det;
if (mu<-eps) return false;
if (lambda + mu > 1+eps)
return false;
else {
localCoords[0] = 1-lambda-mu;
localCoords[1] = lambda;
normalDist = -nu;
return true;
}
} else {
// triangle and edge are parallel
ctype alpha = StaticMatrix<ctype,3>(b-a, c-a, p-a).det();
if (alpha<-eps || alpha>eps)
return false;
else {
printf("ray and triangle are parallel!\n");
return false;
}
}
}
template <class ctype>
NodeIdx NormalProjector<ctype>::getCornerNode(const DomainTriangle<ctype>& cT, int corner)
{
assert(corner>=0 && corner<3);
for (size_t i=0; i<cT.nodes.size(); i++)
if ((cT.nodes[i].isCORNER_NODE() || cT.nodes[i].isGHOST_NODE()) &&
cT.nodes[i].getCorner()==corner)
return i;
return -1;
}
template <class ctype>
typename Node<ctype>::NodeType NormalProjector<ctype>::type(const NodeBundle& b) const
{
assert(b.size()>0);
for (size_t i=0; i<b.size(); i++)
assert(psurface_->nodes(b[i]).type == psurface_->nodes(b[0]).type);
return psurface_->nodes(b[0]).type;
}
template <class ctype>
int NormalProjector<ctype>::getCommonTri(const NodeBundle& a, const NodeBundle& b)
{
for (size_t i=0; i<a.size(); i++)
for (size_t j=0; j<b.size(); j++)
if (a[i].tri==b[j].tri)
return a[i].tri;
return -1;
}
template <class ctype>
std::vector<int> NormalProjector<ctype>::getCommonTris(const NodeBundle& a, const NodeBundle& b)
{
std::vector<int> result;
for (size_t i=0; i<a.size(); i++)
for (size_t j=0; j<b.size(); j++)
if (a[i].tri==b[j].tri)
result.push_back(a[i].tri);
return result;
}
template <class ctype>
void NormalProjector<ctype>::setupEdgePointArrays()
{
int i, j;
for (i=0; i<psurface_->getNumTriangles(); i++) {
DomainTriangle<ctype>& cT = psurface_->triangles(i);
cT.edgePoints[0].clear();
cT.edgePoints[1].clear();
cT.edgePoints[2].clear();
for (j=0; j<cT.nodes.size(); j++) {
Node<ctype>& cN = cT.nodes[j];
if (cN.isINTERIOR_NODE())
continue;
if (cN.isCORNER_NODE() || cN.isGHOST_NODE()) {
int corner = cN.getCorner();
cT.edgePoints[corner].insert(cT.edgePoints[corner].begin(), j);
cT.edgePoints[(corner+2)%3].push_back(j);
continue;
}
ctype lambda = cN.getDomainEdgeCoord();
int domainEdge = cN.getDomainEdge();
std::vector<int>& cEP = cT.edgePoints[domainEdge];
int idx = 0;
while (idx<cEP.size() && cT.nodes[cEP[idx]].getDomainEdgeCoord(domainEdge)<lambda) {
idx++;
}
cEP.insert(cEP.begin()+idx, j);
}
}
}
// ///////////////////////////////////////////////////////////////
// A few static methods for the 1d-in-2d case.
// ///////////////////////////////////////////////////////////////
template <class ctype>
bool NormalProjector<ctype>::computeInverseNormalProjection(const StaticVector<ctype,2>& p0,
const StaticVector<ctype,2>& p1,
const StaticVector<ctype,2>& n0,
const StaticVector<ctype,2>& n1,
const StaticVector<ctype,2>& q,
ctype& local)
{
ctype a = (p1[1]-p0[1])*(n1[0]-n0[0]) - (p1[0]-p0[0])*(n1[1]-n0[1]);
ctype b = -(q[1]-p0[1])*(n1[0]-n0[0]) + (p1[1]-p0[1])*n0[0] + (q[0]-p0[0])*(n1[1]-n0[1]) - (p1[0]-p0[0])*n0[1];
ctype c = -(q[1]-p0[1])*n0[0] + (q[0]-p0[0])*n0[1];
// Is the quadratic formula degenerated to a linear one?
if (std::abs(a) < 1e-10) {
local = -c/b;
//printf("mu: %g, old local %g\n", mu, ((q[0]-p0[0]) / (p1[0]-p0[0])));
return local >= 0 && local <= 1;
}
// The abc-formula
ctype mu_0 = (-b + std::sqrt(b*b - 4*a*c))/(2*a);
ctype mu_1 = (-b - std::sqrt(b*b - 4*a*c))/(2*a);
if (mu_0 >= 0 && mu_0 <= 1) {
local = mu_0;
return true;
} else if (mu_1 >= 0 && mu_1 <= 1) {
local = mu_1;
return true;
}
return false;
}
template <class ctype>
bool NormalProjector<ctype>::normalProjection(const StaticVector<ctype,2>& base,
const StaticVector<ctype,2>& direction,
int& bestSegment,
ctype& rangeLocalPosition,
const std::vector<std::tr1::array<int,2> >& targetSegments,
const std::vector<std::tr1::array<ctype, 2> >& coords)
{
bestSegment = -1;
int nTargetSegments = targetSegments.size();
ctype bestDistance = std::numeric_limits<ctype>::max();
for (int i=0; i<nTargetSegments; i++) {
StaticVector<ctype,2> p0, p1;
p0[0] = coords[targetSegments[i][0]][0];
p0[1] = coords[targetSegments[i][0]][1];
p1[0] = coords[targetSegments[i][1]][0];
p1[1] = coords[targetSegments[i][1]][1];
ctype distance, targetLocal;
if (!rayIntersectsLine(base, direction, p0, p1, distance, targetLocal))
continue;
if (distance < bestDistance) {
bestDistance = distance;
bestSegment = i;
rangeLocalPosition = targetLocal;
}
}
return bestSegment != -1;
}
template <class ctype>
bool NormalProjector<ctype>::
rayIntersectsLine(const StaticVector<ctype, 2>& basePoint,
const StaticVector<ctype, 2>& direction,
const StaticVector<ctype, 2>& a,
const StaticVector<ctype, 2>& b,
ctype& distance, ctype& targetLocal)
{
// we solve the equation basePoint + x_0 * normal = a + x_1 * (b-a)
StaticMatrix<ctype,2> mat;
mat[0][0] = direction[0];
mat[1][0] = direction[1];
mat[0][1] = a[0]-b[0];
mat[1][1] = a[1]-b[1];
/** \todo Easier with expression templates */
StaticVector<ctype,2> rhs;
rhs[0] = a[0]-basePoint[0];
rhs[1] = a[1]-basePoint[1];
StaticVector<ctype,2> x;
// Solve the system. If it is singular the normal and the segment
// are parallel and there is no intersection
ctype detinv = mat[0][0]*mat[1][1]-mat[0][1]*mat[1][0];
if (std::abs(detinv)<1e-80)
return false;
detinv = 1/detinv;
x[0] = detinv*(mat[1][1]*rhs[0]-mat[0][1]*rhs[1]);
x[1] = detinv*(mat[0][0]*rhs[1]-mat[1][0]*rhs[0]);
// x[0] is the distance, x[1] is the intersection point
// in local coordinates on the segment
if (x[1]<0 || x[1] > 1)
return false;
distance = x[0];
targetLocal = x[1];
return true;
}
// ////////////////////////////////////////////////////////
// Explicit template instantiations.
// If you need more, you can add them here.
// ////////////////////////////////////////////////////////
namespace psurface {
template class PSURFACE_EXPORT NormalProjector<float>;
template class PSURFACE_EXPORT NormalProjector<double>;
}
|