1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
#include "config.h"
#include "PSurface.h"
#include "PSurfaceSmoother.h"
#include "CircularPatch.h"
#include "DomainPolygon.h"
#include "SparseMatrix.h"
using namespace psurface;
template <class ctype>
void PSurfaceSmoother<ctype>::applyEdgeRelaxation(PSurface<2,ctype>* psurface, int edge,
bool keepPatches, std::vector<unsigned int>& nodeStack)
{
Edge& cE = psurface->edges(edge);
if (cE.triangles.size()!=2)
return;
StaticVector<float,2> quadCoords[4];
DomainPolygon quadri(psurface);
bool flipped;
psurface->triangles(cE.triangles[0]).checkConsistency("PreRelax0");
psurface->triangles(cE.triangles[1]).checkConsistency("PreRelax1");
ParamToolBox::mergeTwoTrianglesIntoQuadrangle(cE.triangles[0], cE.triangles[1],
quadri, flipped, quadCoords, nodeStack, psurface);
// apply the desired parametrization
if (psurface->triangles(cE.triangles[0]).patch != psurface->triangles(cE.triangles[1]).patch &&
keepPatches) {
applyHorizontalRelaxation(quadri, psurface);
} else
quadri.applyParametrization();
// undo the merge
CircularPatch<float> cutter(2, psurface);
// all this true copying is rather inefficient...
std::tr1::array<DomainTriangle<float>, 2> backupTriangles;
backupTriangles[0] = psurface->triangles(cE.triangles[0]);
backupTriangles[1] = psurface->triangles(cE.triangles[1]);
cutter[0] = cE.triangles[0];
cutter[1] = cE.triangles[1];
// this is necessary because if quadri.triangulate fails the nodeStack is corrupted
std::vector<unsigned int> tempNodeStack(nodeStack);
if (!quadri.triangulate(cutter, tempNodeStack)){
std::cerr << "Couldn't cut quadrangle -- aborting" << std::endl;
psurface->triangles(cE.triangles[0]) = backupTriangles[0];
psurface->triangles(cE.triangles[1]) = backupTriangles[1];
return;
}
nodeStack = tempNodeStack;
if (flipped)
psurface->triangles(cutter[1]).flip();
if (psurface->triangles(cE.triangles[0]).patch != psurface->triangles(cE.triangles[1]).patch &&
keepPatches) {
psurface->triangles(cE.triangles[0]).applyParametrization(psurface->iPos);
psurface->triangles(cE.triangles[1]).applyParametrization(psurface->iPos);
}
psurface->triangles(cE.triangles[0]).checkConsistency("PostRelax0");
psurface->triangles(cE.triangles[1]).checkConsistency("PostRelax1");
psurface->integrateTriangle(cE.triangles[0]);
psurface->integrateTriangle(cE.triangles[1]);
}
// Smooth only in horizontal direction
//
// TODO: This implementation is wastefull: We solve for x- and y- coordinates, but then
// throw away the y-coordinates again. Doesn't matter much...
template <class ctype>
void PSurfaceSmoother<ctype>::applyHorizontalRelaxation(DomainPolygon& quadri, PSurface<2,ctype>* psurface)
{
// compute lambdas
SparseMatrix<float> lambda_ij(quadri.nodes.size());
quadri.computeFloaterLambdas(lambda_ij, psurface->iPos);
// build matrix
lambda_ij *= -1;
for (int i=0; i<lambda_ij.nRows(); i++)
lambda_ij.setEntry(i, i, 1);
// compute the right side, only x-coordinates are interesting
Vector<float> b(quadri.nodes.size());
std::fill(b.begin(), b.end(), StaticVector<float,2>(0));
for (int i=0; i<quadri.nodes.size(); i++)
if (!quadri.nodes[i].isINTERIOR_NODE())
b[i][0] = quadri.nodes[i].domainPos()[0];
// solve the system
int maxIter=3000;
Vector<float> residual(quadri.nodes.size());
Vector<float> result = b;
// xCoords
for (int i=0; i<quadri.nodes.size(); i++)
result[i] = quadri.nodes[i].domainPos();
lambda_ij.BiCGSTAB(b, result, residual, maxIter, 0.000001);
for (size_t i=0; i<quadri.nodes.size(); i++)
if (quadri.nodes[i].isINTERIOR_NODE())
quadri.nodes[i].setDomainPos(StaticVector<float,2>(result[i][0], quadri.nodes[i].domainPos()[1]));
}
template <class ctype>
void PSurfaceSmoother<ctype>::applyVertexRelaxation()
{
#if 0
const int numVertices = par->getNumVertices();
theWorkArea->startWorking(numVertices, "");
int vCounter = 0;
DomainVertex* centerPoint;
// loop over all regular vertices
for (centerPoint=par->vertices.first(); centerPoint;
centerPoint=par->vertices.succ(centerPoint), vCounter++) {
theWorkArea->progressStep();
if (!(vCounter%100) && theWorkArea->wasInterrupted())
break;
int i, j, k;
for (DomainTriangle* cT=par->triangles.first(); cT; cT=par->triangles.succ(cT))
cT->checkConsistency("Beginning of relaxation Loop\n");
////////////////////////////////////////
// merge the star of the current node into one DomainPolygon
DomainPolygon fullStar;
int newCenterNode = -1;
McDArray<DomainTriangle*> fullStarTris(0);
if (!ParamToolBox::mergeStarIntoPolygon(centerPoint, fullStar, fullStarTris, newCenterNode))
continue;
////////////////////////////////////////
// apply the requested parametrization
if (portRadius.getValue() > 0.995) {
fullStar.applyParametrization();
} else {
//////////////////////////////////////////////////////////////////////
// apply parametrization to only a part of the graph
// find shortest edge length
float minLength = FLT_MAX;
for (i=0; i<fullStar.boundaryPoints.size(); i++)
if (fullStar.nodes[fullStar.cornerNode(i)].domainPos.length() < minLength)
minLength = centerPoint->edges[i]->length();
float freeRadius = minLength*portRadius.getValue();
McDArray<int> interiorNodes(0);
McDArray<int> boundaryNodes(0);
int cN;
for (cN=0; cN<fullStar.nodes.size(); cN++)
if (fullStar.nodes[cN].domainPos.length() < freeRadius)
interiorNodes.append(cN);
else
boundaryNodes.append(cN);
assert(boundaryNodes.size()>=3);
// compute lambdas
McSparseMatrix<float, false> lambda_ij(interiorNodes.size()+boundaryNodes.size());
fullStar.computeFloaterLambdas(lambda_ij, interiorNodes, boundaryNodes);
// build matrix
lambda_ij *= -1;
for (i=0; i<lambda_ij.nRows(); i++)
lambda_ij.setEntry(i, i, 1);
// compute the right side, split in x and y coordinates
// this doesn't really use the sparse matrix well
McDArray<float> b_x(interiorNodes.size()+boundaryNodes.size());
McDArray<float> b_y(interiorNodes.size()+boundaryNodes.size());
b_x.fill(0);
b_y.fill(0);
for (j=0; j<boundaryNodes.size(); j++)
b_x[interiorNodes.size()+j] = fullStar.nodes[boundaryNodes[j]].domainPos.x;
for (j=0; j<boundaryNodes.size(); j++)
b_y[interiorNodes.size()+j] = fullStar.nodes[boundaryNodes[j]].domainPos.y;
// solve the system
int maxIter=3000;
McDArray<float> residue;
McDArray<float> result = b_x;
// xCoords
for (i=0; i<interiorNodes.size(); i++)
result[i] = fullStar.nodes[interiorNodes[i]].domainPos.x;
lambda_ij.SOR(b_x, result, residue, &maxIter, 0.000001, 0.9);
for (i=0; i<interiorNodes.size(); i++)
fullStar.nodes[interiorNodes[i]].domainPos.x = result[i];
// yCoords
maxIter = 3000;
result = b_y;
for (i=0; i<interiorNodes.size(); i++)
result[i] = fullStar.nodes[interiorNodes[i]].domainPos.y;
lambda_ij.SOR(b_y, result, residue, &maxIter, 0.000001, 0.9);
for (i=0; i<interiorNodes.size(); i++)
fullStar.nodes[interiorNodes[i]].domainPos.y = result[i];
}
//////////////////////////////////////////////////////////////////////
// look for the nodes that is closest to (0, 0). It will become
// the new centerPoint
if (!portKeepPatches.getValue(1)) {
int cN;
float minDist = FLT_MAX;
for (cN=0; cN<fullStar.nodes.size(); cN++){
if (fullStar.nodes[cN].domainPos.length2() < minDist){
newCenterNode = cN;
minDist = fullStar.nodes[cN].domainPos.length2();
}
}
}
if (fullStar.nodes[newCenterNode].type != PlaneParam::Node::INTERIOR_NODE)
printf("Warning: New centernode is not INTERIOR_NODE!\n");
//////////////////////////////////////////////////////////////////////
// recut the star
// we first do a cut the polygon into 'pizza slices'
*centerPoint = fullStar.nodes[newCenterNode].imagePos;
for (i=0; i<fullStarTris.size(); i++){
fullStar.slice(newCenterNode, centerPoint, i*3);
fullStar.checkConsistency("Slicing");
}
// the polygon has been cut. Move each slice to its
// original triangle
int cN;
for (i=0; i<fullStarTris.size(); i++) {
for (cN=0; cN<fullStar.nodes.size(); cN++)
fullStar.nodes[cN].location = PlaneParam::Node::IN_POLYGON;
DomainTriangle* cT = fullStarTris[i];
int offset=0;
if (cT->points[0]==centerPoint)
offset = 0;
else if (cT->points[1]==centerPoint)
offset = 1;
else
offset = 2;
// copy edgePoint arrays
for (j=0; j<3; j++){
cT->edgePoints[(j+offset)%3] = fullStar.edgePoints[(3*i+1+j)%fullStar.edgePoints.size()];
fullStar.edgePoints[(3*i+1+j)%fullStar.edgePoints.size()].clear();
}
// copy nodes using a graph-search algorithm
for (j=0; j<3; j++){
for (k=0; k<cT->edgePoints[j].size(); k++)
if (fullStar.nodes[cT->edgePoints[j][k]].location != PlaneParam::Node::IN_TRIANGLE)
moveSubGraph(cT->edgePoints[j][k], fullStar, newCenterNode);
}
// make a copy of the centerNode
fullStar.nodes.appendSpace(1);
int localCenterNode = fullStar.nodes.size()-1;
fullStar.nodes[localCenterNode].setValue(fullStar.nodes[newCenterNode].domainPos,
fullStar.nodes[newCenterNode].imagePos,
PlaneParam::Node::CORNER_NODE);
fullStar.nodes[localCenterNode].location = PlaneParam::Node::IN_TRIANGLE;
for (j=fullStar.nodes[newCenterNode].degree()-1; j>=0; j--)
if (fullStar.nodes[fullStar.nodes[newCenterNode].neighbors[j]].location == PlaneParam::Node::IN_TRIANGLE) {
fullStar.nodes[localCenterNode].neighbors.append(fullStar.nodes[newCenterNode].neighbors[j]);
fullStar.nodes[fullStar.nodes[newCenterNode].neighbors[j]].replaceReferenceTo(newCenterNode, localCenterNode);
fullStar.nodes[newCenterNode].neighbors.remove(j);
}
cT->edgePoints[0+offset][0] = localCenterNode;
cT->edgePoints[(2+offset)%3].last() = localCenterNode;
//////////////////////////////////////
// sort out the nodes that belong onto the triangle
int numTriNodes = 0;
int triNode;
for (triNode=0; triNode<fullStar.nodes.size(); triNode++)
if (fullStar.nodes[triNode].location == PlaneParam::Node::IN_TRIANGLE)
numTriNodes++;
int triCount = 0;
cT->nodes.resize(numTriNodes);
McDArray<int> offArr(fullStar.nodes.size());
for (triNode=0; triNode<fullStar.nodes.size(); triNode++)
if (fullStar.nodes[triNode].location == PlaneParam::Node::IN_TRIANGLE) {
cT->nodes[triCount] = fullStar.nodes[triNode];
fullStar.invalidate(triNode);
offArr[triNode] = triCount;
triCount++;
}
for (j=0; j<numTriNodes; j++)
for (k=0; k<cT->nodes[j].neighbors.size(); k++)
cT->nodes[j].neighbors[k] = offArr[cT->nodes[j].neighbors[k]];
for (j=0; j<3; j++)
for (k=0; k<cT->edgePoints[j].size(); k++)
cT->edgePoints[j][k] = offArr[cT->edgePoints[j][k]];
/////////////////////////////////////
cT->checkConsistency("After Vertex Relaxation\n");
cT->installBarycentricCoordinates();
fullStar.checkConsistency("before garbage collection\n");
// reuse offArr
fullStar.garbageCollection(offArr);
newCenterNode -= offArr[newCenterNode];
fullStar.checkConsistency("after garbage collection\n");
}
}
theWorkArea->stopWorking();
#endif
}
template <class ctype>
void PSurfaceSmoother<ctype>::moveSubGraph(int startingNode, DomainPolygon& from, int centerNode)
{
#if 0
if (startingNode==centerNode)
return;
from.nodes[startingNode].location = Node::IN_TRIANGLE;
for (int i=0; i<from.nodes[startingNode].degree(); i++)
if (from.nodes[from.nodes[startingNode].neighbors(i)].location!=Node::IN_TRIANGLE)
moveSubGraph(from.nodes[startingNode].neighbors(i), from, centerNode);
#endif
}
namespace psurface {
template class PSurfaceSmoother<float>;
}
|