File: SurfaceBase.cpp

package info (click to toggle)
psurface 2.0.0-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,092 kB
  • sloc: cpp: 12,339; makefile: 111; awk: 38
file content (631 lines) | stat: -rw-r--r-- 20,603 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
#include "config.h"

#include <vector>
#include <set>

#ifdef _MSC_VER
    // Required to make cmath define M_PI etc.
    #define _USE_MATH_DEFINES
#endif
#include <limits>

#include <algorithm>
#include <iostream>

// Check for VC9 / VS2008 with installed feature pack.
#if defined(_MSC_VER) && (_MSC_VER>=1500)
    #if defined(_CPPLIB_VER) && _CPPLIB_VER>=505
        #include <array>
    #else
        #error Please install the Visual Studio 2008 SP1 for TR1 support.
    #endif
#else
    #include <tr1/array>
#endif

#include "StaticVector.h"
#include "StaticMatrix.h"
#include "SurfaceParts.h"
#include "SurfaceBase.h"
#include "Domains.h"

using namespace psurface;

template <class VertexType, class EdgeType, class TriangleType>
void SurfaceBase<VertexType,EdgeType,TriangleType>::removeTriangle(int tri)
{
    int i;

    // update all three neighboring edges
    for (i=0; i<3; i++){

    int thisEdge = triangles(tri).edges[i];
    if (thisEdge==-1)
        continue;

        if (edges(thisEdge).triangles.size() == 1){
        // remove this edge
            removeEdge(thisEdge);
        }else {
            edges(thisEdge).removeReferenceTo(tri);
        }

        triangles(tri).edges[i] = -1;
    }

        // remove triangle
    freeTriangleStack.push_back(tri);
}


template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::newVertex(const StaticVector<ctype,3>& p)
{

    if (freeVertexStack.size()){
        int newVertexIdx = freeVertexStack.back();
        freeVertexStack.pop_back();
        vertices(newVertexIdx) = p;
        return newVertexIdx;
    }

    vertexArray.push_back(p);
    return vertexArray.size()-1;
}

template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::newEdge(int a, int b)
{
    int newEdgeIdx;
    if (freeEdgeStack.size()) {
        newEdgeIdx = freeEdgeStack.back();
        freeEdgeStack.pop_back();
    } else {
        edgeArray.push_back(EdgeType());
        newEdgeIdx = edgeArray.size()-1;
    }

    EdgeType& newEdge = edges(newEdgeIdx);

    newEdge.from = a;
    newEdge.to   = b;

    newEdge.triangles.resize(0);

    return newEdgeIdx;
}

template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::createSpaceForTriangle(int a, int b, int c)
{
    int newTri;
    if (freeTriangleStack.size()) {
        newTri = freeTriangleStack.back();
        freeTriangleStack.pop_back();
        triangleArray[newTri] = TriangleType(a,b,c);
    } else {
        triangleArray.push_back(TriangleType(a,b,c));
        newTri = triangleArray.size()-1;
    }

    return newTri;
}

template <class VertexType, class EdgeType, class TriangleType>
void SurfaceBase<VertexType,EdgeType,TriangleType>::integrateTriangle(int triIdx)
{

    TriangleType& tri = triangles(triIdx);

    // look for and possible create the new edges
    for (int i=0; i<3; i++){

        int pointA = tri.vertices[i];
        int pointB = tri.vertices[(i+1)%3];

        int thisEdge = findEdge(pointA, pointB);

        if (thisEdge == -1){

            // this edge doesn't exist yet
            int newEdgeIdx = newEdge(pointA, pointB);

            vertices(pointA).edges.push_back(newEdgeIdx);
            vertices(pointB).edges.push_back(newEdgeIdx);

            edges(newEdgeIdx).triangles.push_back(triIdx);
            tri.edges[i] = newEdgeIdx;
        }
        else{
            if (!edges(thisEdge).isConnectedToTriangle(triIdx))
                edges(thisEdge).triangles.push_back(triIdx);

            tri.edges[i] = thisEdge;
        }
    }
}

    /** Given two vertices, this routine returns the edge that connects them,
        or -1, if no such edge exists. */
template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::findEdge(unsigned int a, unsigned int b) const
{
    assert(a>=0 && a<getNumVertices() && b>=0 && b<getNumVertices());
    for (int i=0; i<vertices(a).degree(); i++)
        if (edges(vertices(a).edges[i]).from == b ||
            edges(vertices(a).edges[i]).to   == b)
            return vertices(a).edges[i];

    return -1;
}

    /** Given three vertices, this routine returns the triangle that connects them,
        or -1, if no such triangle exists. */
template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::findTriangle(int a, int b, int c) const
{
    assert(a>=0 && a<getNumVertices());
    assert(b>=0 && b<getNumVertices());
    assert(c>=0 && c<getNumVertices());

    int oneEdge = findEdge(a, b);

    if (oneEdge==-1)
        return -1;
    for (int i=0; i<edges(oneEdge).triangles.size(); i++)
        if (triangles(edges(oneEdge).triangles[i]).isConnectedTo(c)){
            assert(edges(oneEdge).triangles[i]<getNumTriangles());
            return edges(oneEdge).triangles[i];
        }
    return -1;
}

    /// Tests whether the two edges are connected by a common triangle
template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::findCommonTriangle(int a, int b) const
{
    assert(a!=b);
    assert(a>=0 && a<getNumVertices());
    assert(b>=0 && b<getNumVertices());

    for (int i=0; i<edges(a).triangles.size(); i++)
        for (int j=0; j<edges(b).triangles.size(); j++)
            if (edges(a).triangles[i] == edges(b).triangles[j])
                return edges(a).triangles[i];

    return -1;
}

    ///
template <class VertexType, class EdgeType, class TriangleType>
std::vector<int> SurfaceBase<VertexType,EdgeType,TriangleType>::getTrianglesPerVertex(int v) const
{

    const VertexType& cV = vertices(v);

    // A temporary set for fast searching and insertion
    std::set<int> resultSet;

    for (size_t i=0; i<cV.edges.size(); i++) {

        const EdgeType& cE = edges(cV.edges[i]);
        resultSet.insert(cE.triangles.begin(),cE.triangles.end());

    }

    // copy set to std::vector;
    std::vector<int> result(resultSet.begin(), resultSet.end());

    return result;
}

    ///
template <class VertexType, class EdgeType, class TriangleType>
std::vector<int> SurfaceBase<VertexType,EdgeType,TriangleType>::getNeighbors(int v) const
{

    const VertexType& cV = vertices(v);
    std::vector<int> result;

    for (int i=0; i<cV.edges.size(); i++) {

        const EdgeType& cE = edges(cV.edges[i]);
        result.push_back(cE.theOtherVertex(v));

    }

    return result;
}

template <class VertexType, class EdgeType, class TriangleType>
int SurfaceBase<VertexType,EdgeType,TriangleType>::getNeighboringTriangle(int tri, int side) const
{
    assert(side>=0 && side<3);
    int neighboringTri = -1;
    int cE = triangles(tri).edges[side];

    if (edges(cE).triangles.size()==2) {
        neighboringTri = (edges(cE).triangles[0]==tri)
            ? edges(cE).triangles[1]
            : edges(cE).triangles[0];
    }
    return neighboringTri;
}

    /// gives the smallest interior angle of a triangle
template <class VertexType, class EdgeType, class TriangleType>
typename SurfaceBase<VertexType,EdgeType,TriangleType>::ctype SurfaceBase<VertexType,EdgeType,TriangleType>::minInteriorAngle(int n) const
{
    ctype minAngle = 2*M_PI;
    const std::tr1::array<int, 3>& p = triangles(n).vertices;

    for (int i=0; i<3; i++){
        StaticVector<ctype,3> a = vertices(p[(i+1)%3]) - vertices(p[i]);
        StaticVector<ctype,3> b = vertices(p[(i+2)%3]) - vertices(p[i]);

        ctype angle = acosf(a.dot(b) / (a.length() * b.length()));
        if (angle<minAngle)
            minAngle = angle;
    }

    return minAngle;
}

    /// returns the aspect ratio
template <class VertexType, class EdgeType, class TriangleType>
typename SurfaceBase<VertexType,EdgeType,TriangleType>::ctype SurfaceBase<VertexType,EdgeType,TriangleType>::aspectRatio(int n) const
{

    const std::tr1::array<int, 3>& p = triangles(n).vertices;

    const ctype a = (vertices(p[1]) - vertices(p[0])).length();
    const ctype b = (vertices(p[2]) - vertices(p[1])).length();
    const ctype c = (vertices(p[0]) - vertices(p[2])).length();

    const ctype aR = 2*a*b*c/((-a+b+c)*(a-b+c)*(a+b-c));

    // might be negative due to inexact arithmetic
    return fabs(aR);
}
#if 0
        /// returns the normal vector
    StaticVector<ctype,3> normal(int tri) const {
        const StaticVector<ctype,3> a = vertices(triangles(tri).vertices[1]) - vertices(triangles(tri).vertices[0]);
        const StaticVector<ctype,3> b = vertices(triangles(tri).vertices[2]) - vertices(triangles(tri).vertices[0]);
        StaticVector<ctype,3> n = a.cross(b);
        n.normalize();
        return n;
    }

    ///
    ctype smallestDihedralAngle(int edge) const {
        ctype minAngle = std::numeric_limits<ctype>::max();
        for (int i=0; i<edges(edge).triangles.size(); i++)
            for (int j=i+1; j<edges(edge).triangles.size(); j++)
                minAngle = std::min(minAngle,dihedralAngle(edges(edge).triangles[i], edges(edge).triangles[j]));

        return minAngle;
    }

    /// gives the surface area
    ctype area(int tri) const {
        StaticVector<ctype,3> a = vertices(triangles(tri).vertices[1]) - vertices(triangles(tri).vertices[0]);
        StaticVector<ctype,3> b = vertices(triangles(tri).vertices[2]) - vertices(triangles(tri).vertices[0]);

        return fabs(0.5 * (a.cross(b)).length());
    }

    /// gives the dihedral angle with a neighboring triangle
    ctype dihedralAngle(int first, int second) const {
        StaticVector<ctype,3> n1 = normal(first);
        StaticVector<ctype,3> n2 = normal(second);

        ctype scalProd = n1.dot(n2);
        if (scalProd < -1) scalProd = -1;
        if (scalProd >  1) scalProd =  1;

        return (triangles(first).isCorrectlyOriented(triangles(second))) ? acos(-scalProd) : acos(scalProd);
    }

    ctype length(int e) const {
        return (vertices(edges(e).from) - vertices(edges(e).to)).length();
    }

    //@}
#endif

    /** Tests whether this triangle intersects the given edge.  This routine is not
        faster than the one that returns the intersection point. */
template <class VertexType, class EdgeType, class TriangleType>
bool SurfaceBase<VertexType,EdgeType,TriangleType>:: intersectionTriangleEdge(int tri, const Edge*edge, ctype eps) const
{
    bool parallel;
    StaticVector<ctype,3> where;
    return intersectionTriangleEdge(tri, edge, where, parallel, eps);
}

    /** Tests whether this triangle intersects the given edge, and returns the intersection
        point if there is one. If not, the variable @c where is untouched. */
template <class VertexType, class EdgeType, class TriangleType>
bool SurfaceBase<VertexType,EdgeType,TriangleType>::intersectionTriangleEdge(int tri,
                                        const Edge *edge,
                                        StaticVector<ctype,3>& where,
                                                                            bool& parallel, ctype eps) const
{

    const TriangleType& cT = triangles(tri);

    const StaticVector<ctype,3> &p = vertices(edge->from);
    const StaticVector<ctype,3> &q = vertices(edge->to);
    const StaticVector<ctype,3> &a = vertices(cT.vertices[0]);
    const StaticVector<ctype,3> &b = vertices(cT.vertices[1]);
    const StaticVector<ctype,3> &c = vertices(cT.vertices[2]);

    // Cramer's rule
    ctype det = StaticMatrix<ctype,3>(b-a, c-a, p-q).det();
    if (det<-eps || det>eps){

        // triangle and edge are not parallel
        parallel = false;

        ctype nu = StaticMatrix<ctype,3>(b-a, c-a, p-a).det() / det;
        if (nu<-eps || nu>1+eps) return false;

        ctype lambda = StaticMatrix<ctype,3>(p-a, c-a, p-q).det() / det;
        if (lambda<-eps) return false;

        ctype mu = StaticMatrix<ctype,3>(b-a, p-a, p-q).det() / det;
        if (mu<-eps) return false;

        if (lambda+mu > 1+eps)
            return false;
        else {
            where = p + nu*(q-p);
            return true;
        }

    } else {

        // triangle and edge are parallel
        parallel = true;

        ctype alpha = StaticMatrix<ctype,3>(b-a, c-a, p-a).det();
        if (alpha<-eps || alpha>eps)
            return false;
        else {

            int i;

            // 2D intersection test

            // project onto the coordinate plane that is 'most parallel' to the triangle
            StaticVector<ctype,3> normal = (b-a).cross(c-a);

            StaticVector<ctype,2> a2D, b2D, c2D, p2D, q2D;

            for (i=0; i<3; i++)
                if (normal[i]<0)
                    normal[i] = -normal[i];

            for (i=0; i<3; i++)
                if (normal[i]>=normal[(i+1)%3] && normal[i]>=normal[(i+2)%3]) {

                    a2D = StaticVector<ctype,2>(a[(i+1)%3], a[(i+2)%3]);
                    b2D = StaticVector<ctype,2>(b[(i+1)%3], b[(i+2)%3]);
                    c2D = StaticVector<ctype,2>(c[(i+1)%3], c[(i+2)%3]);
                    p2D = StaticVector<ctype,2>(p[(i+1)%3], p[(i+2)%3]);
                    q2D = StaticVector<ctype,2>(q[(i+1)%3], q[(i+2)%3]);

                }

            if (pointInTriangle(p2D, a2D, b2D, c2D, eps) ||
                pointInTriangle(q2D, a2D, b2D, c2D, eps))
                return true;
            else
                return (lineIntersection2D(p2D, q2D, a2D, b2D, eps) ||
                        lineIntersection2D(p2D, q2D, b2D, c2D, eps) ||
                        lineIntersection2D(p2D, q2D, a2D, c2D, eps));

        }

    }

}

    /// Tests whether the point is inside the triangle given by the three argument points.
template <class VertexType, class EdgeType, class TriangleType>
bool SurfaceBase<VertexType,EdgeType,TriangleType>::pointInTriangle(const StaticVector<ctype,2>& p,
                                                                const StaticVector<ctype,2>& a,
                                                                const StaticVector<ctype,2>& b,
                                                                const StaticVector<ctype,2>& c, ctype eps)
{
    StaticVector<ctype,3> localBarycentricCoords;


    // McMat3f(this->x, b.x, c.x,  this->y, b[1], c[1],  1, 1, 1).det();
    ctype area0 = p[0] * (b[1]-c[1]) - b[0] * (p[1] - c[1]) + c[0] * (p[1] - b[1]);

    // McMat3f(a[0], this->x, c[0],  a[1], this->y, c[1],  1, 1, 1).det();
    ctype area1 = a[0] * (p[1]-c[1]) - p[0] * (a[1] - c[1]) + c[0] * (a[1] - p[1]);

    // McMat3f(a[0], b[0], c[0],  a[1], b[1], c[1],  1, 1, 1).det();
    ctype areaTotal = a[0] * (b[1]-c[1]) - b[0] * (a[1] - c[1]) + c[0] * (a[1] - b[1]);

    localBarycentricCoords[0] = area0/areaTotal;
    localBarycentricCoords[1] = area1/areaTotal;
    localBarycentricCoords[2] = 1 - localBarycentricCoords[0] - localBarycentricCoords[1];

    return (localBarycentricCoords[0]>=-eps && localBarycentricCoords[1]>=-eps && localBarycentricCoords[2]>=-eps);
}

template <class VertexType, class EdgeType, class TriangleType>
bool SurfaceBase<VertexType,EdgeType,TriangleType>::lineIntersection2D(const StaticVector<ctype,2> &p1, const StaticVector<ctype,2> &p2,
                                       const StaticVector<ctype,2> &p3, const StaticVector<ctype,2> &p4, ctype eps)
{
    const StaticVector<ctype,2> A = p2 - p1;
    const StaticVector<ctype,2> B = p3 - p4;
    const StaticVector<ctype,2> C = p1 - p3;

    ctype det = A[1]*B[0] - A[0]*B[1];

    // 1D intersection
    if (det>=-eps && det<=eps)
        return (  ((p3-p1).length() + (p3-p2).length()) / (p1-p2).length() < 1+eps ||
                  ((p4-p1).length() + (p4-p2).length()) / (p1-p2).length() < 1+eps ||
                  ((p2-p3).length() + (p2-p4).length()) / (p3-p4).length() < 1+eps ||
                  ((p1-p3).length() + (p1-p4).length()) / (p3-p4).length() < 1+eps   );

    ctype mu     = (A[0]*C[1] - A[1]*C[0]) / det;
    ctype lambda = (B[1]*C[0] - B[0]*C[1]) / det;

    return (mu>-eps && mu<1+eps && lambda>-eps && lambda<1+eps);
}


/// \todo The copying could be sped up considerably...
template <class VertexType, class EdgeType, class TriangleType>
void SurfaceBase<VertexType,EdgeType,TriangleType>::garbageCollection()
{
#ifndef NDEBUG
    std::cout << "This is the SurfaceBase garbage collection..." << std::endl;
    std::cout << freeVertexStack.size() << " vertices, "
              << freeEdgeStack.size()   << " edges, "
              << freeTriangleStack.size() << " triangles removed" << std::endl;
#endif

    std::vector<bool> isInvalid;

    // clean up vertices
    if (freeVertexStack.size()) {

        int offset = 0;

        std::vector<int> vertexOffsets(vertexArray.size());
        isInvalid.resize(vertexArray.size());

        for (size_t i=0; i<isInvalid.size(); i++)
            isInvalid[i] = false;

        for (size_t i=0; i<freeVertexStack.size(); i++)
            isInvalid[freeVertexStack[i]] = true;

        for (size_t i=0; i<vertexArray.size(); i++){
            vertexOffsets[i] = offset;

            if (isInvalid[i])
                offset++;
        }

        ////////////////////
        for (size_t i=0; i<vertexOffsets.size(); i++)
            vertexArray[i-vertexOffsets[i]] = vertexArray[i];

        vertexArray.resize(vertexArray.size()-offset);


        // Adjust edges
        for (size_t i=0; i<edgeArray.size(); i++) {
            edgeArray[i].from -= vertexOffsets[edgeArray[i].from];
            edgeArray[i].to   -= vertexOffsets[edgeArray[i].to];
        }

        // Adjust triangles
        for (size_t i=0; i<triangleArray.size(); i++)
            for (size_t j=0; j<3; j++)
                triangleArray[i].vertices[j] -= vertexOffsets[triangleArray[i].vertices[j]];

        freeVertexStack.resize(0);
    }

    // clean up edges
    if (freeEdgeStack.size()) {

        int offset = 0;

        std::vector<int> edgeOffsets(edgeArray.size());
        isInvalid.resize(edgeArray.size());

        for (size_t i=0; i<isInvalid.size(); i++)
            isInvalid[i] = false;

        for (size_t i=0; i<freeEdgeStack.size(); i++)
            isInvalid[freeEdgeStack[i]] = true;

        for (size_t i=0; i<edgeArray.size(); i++){
            edgeOffsets[i] = offset;

            if (isInvalid[i])
                offset++;
        }

        ////////////////////
        for (size_t i=0; i<edgeOffsets.size(); i++)
            edgeArray[i-edgeOffsets[i]] = edgeArray[i];

        edgeArray.resize(edgeArray.size()-offset);

        // Adjust vertices
        for (size_t i=0; i<vertexArray.size(); i++)
            for (size_t j=0; j<vertexArray[i].degree(); j++)
                vertexArray[i].edges[j] -= edgeOffsets[vertexArray[i].edges[j]];

        // Adjust triangles
        for (size_t i=0; i<triangleArray.size(); i++)
            for (size_t j=0; j<3; j++)
                if (triangleArray[i].edges[j]>=0)
                    triangleArray[i].edges[j] -= edgeOffsets[triangleArray[i].edges[j]];

        freeEdgeStack.resize(0);
    }

    // clean up triangles
    if (freeTriangleStack.size()) {

        int offset = 0;

        std::vector<int> triangleOffsets(triangleArray.size());
        isInvalid.resize(triangleArray.size());

        for (size_t i=0; i<isInvalid.size(); i++)
            isInvalid[i] = false;

        for (size_t i=0; i<freeTriangleStack.size(); i++)
            isInvalid[freeTriangleStack[i]] = true;

        for (size_t i=0; i<triangleArray.size(); i++){
            triangleOffsets[i] = offset;

            if (isInvalid[i])
                offset++;
        }

        ////////////////////
        for (size_t i=0; i<triangleOffsets.size(); i++)
            triangleArray[i-triangleOffsets[i]] = triangleArray[i];

        triangleArray.resize(triangleArray.size()-offset);


        // Adjust edges
        for (size_t i=0; i<edgeArray.size(); i++)
            for (size_t j=0; j<edgeArray[i].triangles.size(); j++)
                edgeArray[i].triangles[j] -= triangleOffsets[edgeArray[i].triangles[j]];

        freeTriangleStack.resize(0);
    }


#ifndef NDEBUG
    std::cout << "   ...Garbage collection finished!" << std::endl;
#endif
}

// ////////////////////////////////////////////////////////
//   Explicit template instantiations.
//   If you need more, you can add them here.
// ////////////////////////////////////////////////////////

namespace psurface {
  template class PSURFACE_EXPORT SurfaceBase<Vertex<float>, Edge, DomainTriangle<float> >;
  template class PSURFACE_EXPORT SurfaceBase<Vertex<double>, Edge, DomainTriangle<double> >;
}