1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
|
/*
PsychToolbox2/Source/Common/PsychOctaveScriptingGlue.cc
AUTHORS:
Allen.Ingling@nyu.edu awi
mario kleiner at tuebingen.mpg.de mk
PLATFORMS: All -- Glue layer for GNU/Octave and Matlab runtime environment.
HISTORY:
05/07/06 mk Derived from Allen's PsychScriptingGlue
11/08/06 mk Fixes for Matlab beta on IntelMac -- Replace mxGetPr() by mxGetData()
or mxGetScalar() in places where this is appropriate. Using mxGetPr()
in the debug-build of the Matlab beta triggers an assertion when
passing a non-double array to mxGetPr().
DESCRIPTION:
ScriptingGlue defines abstracted functions to pass values
between the calling Matlab- or GNU/Octave environment and the PsychToolbox.
NOTES:
About default arguments: In previous versions of the Psychtoolbox any matrix of size m*n=0
stood for the the "default" matrix. When passed as an argument, it indicated that the
default value for that argument should be used. This is useful when "omitting" intervening
arguments.
Because each SCREEN subfunction interpreted arguments independently the ambiguities which
are discussed below did not have to be addressed but in the subfunctions which they arrose.
(which might be none). The introduction of abstracted functions in ScriptingGlue mandates
a uniform policy for resloving ambiguities.
Sometimes we want to pass an argument of size 0x0 and mean argument of size 0x0, not the
default matrix. So ScriptingGlue functions which retrieve input arguments can not safetly
interpret an empty matrix as the default matrix.
The problem is not as bad as it seems, because we can pass an empty
numerical matrix, "[]" when a string argument is expected, or pass an empty string "''" when
a numerical argument is expected. Only in the case when an argument may be either a string or a number,
and 0 size arguments of both types are meaningful do we have a problem. The case does not seem likely ever
to arise.
For users, having two default arguments, '' and [], and having to decide which to use depending on the
type of argument accepted, complicates the use of default arguments unpleasantly. Furthermore, empty strings
are meaninful as strings, but empty numerical matrices are rarely meaninful as matrices. (why is that?)
Therefore, the best policy for ScriptingGlue functions would be: ScriptingGlue functions which
retrieve string arguments will only interpret [] as the default matrix and will interpret '' as
the empty string. ScriptingGlue functions which retrieve numerical arguments will accept either
[] or '' to be the empty string.
So [] when passed for a number is always interpreted as the default matrix,
[] is the only value which stands for default when passed for a string, Therefore, we can
reduce this further and accept only [] to stand for default, simplifing the users's decision of when to
use '' and when to use [], by ALWAYS using [].
So in conclusion:
-[] and only [] means the default matrix.
-If you want a user to pass [] to mean a 0x0 matrix, too bad, you can't do that.
All ScriptingGlue functions will report that the argument was not present if the user
passes [].
TO DO:
- baseFunctionInvoked[recLevel] and PsychSubfunctionEnabled are redundent, keep only baseFunctionInvoked[recLevel]
Less Important:
-Expand for use with N dimensional arrays.
The final required argument to these functions should be the number of dimensions and
thereafter optional function arguments can give the size of each dimension.
*/
// We have to use #ifdef PTBOCTAVE here, because PSYCH_LANGUAGE is not yet defined.
// Definition will happen a few lines downwards in Psych.h, but we can't reorder code
// here :(
#ifdef PTBOCTAVE
// I dont know why, but it is *absolutely critical* that octave/oct.h is included
// before *any* other header file, esp. Psych.h, otherwise the C++ compiler f%%2!s up
// completely!
#include <octave/oct.h>
#include <octave/parse.h>
#include <octave/ov-struct.h>
#include <octave/ov-cell.h>
#endif
// During inclusion of Psych.h, we define the special flag PTBINSCRIPTINGGLUE. This
// will cause some of the system headers in Psych.h not to be included during build
// of PsychScriptingGlue.cc - They are not needed for this and they conflict with
// GNU/Octave header files!
#define PTBINSCRIPTINGGLUE 1
#include "Psych.h"
#undef PTBINSCRIPTINGGLUE
// Define this to 1 if you want lots of debug-output for the Octave-Scripting glue.
#define DEBUG_PTBOCTAVEGLUE 0
// Special hacks to allow Psychtoolbox to build for GNU-OCTAVE:
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
#include <string.h>
#include <setjmp.h>
// This jump-buffer stores CPU- and stackstate at the position
// where our octFunction() dispatcher actually starts executing
// the functions or subfunctions code. That is the point where
// a PsychErrorExit() or PsychErrorExitMsg() will return control...
jmp_buf jmpbuffer;
// Error exit handler: Replacement for Matlabs MEX-handler:
// Prints the error-string with Octaves error printing facilities,
// sets Octave error state and longjmp's to the cleanup routine
// at the end of our octFunction dispatcher...
void mexErrMsgTxt(const char* s) {
if (s && strlen(s)>0) {
error("%s: %s", mexFunctionName,s);
}
else error("");
// Use the jump-buffer to unwind the stack...
longjmp(jmpbuffer, 1);
}
// Interface to Octave's printf...
void mexPrintf(const char* fmt, ...)
{
va_list args;
va_start (args, fmt);
octave_vformat(octave_diary, fmt, args);
octave_vformat(octave_stdout, fmt, args);
va_end(args);
}
void* mxMalloc(int size)
{
return(PsychMallocTemp((unsigned long) size));
}
void* mxCalloc(int size, int numelements)
{
return(PsychCallocTemp((unsigned long) size, (unsigned long) numelements));
}
void mxFree(void* p)
{
PsychFreeTemp(p);
}
int mexCallMATLAB(const int nargout, mxArray* argout[],
const int nargin, const mxArray* argin[],
const char* fname)
{
PsychErrorExitMsg(PsychError_unimplemented, "FATAL Error: Internal call to mexCallMATLAB(), which is not yet implemented on GNU/Octave port!");
}
double mxGetNaN(void)
{
return(lo_ieee_nan_value());
}
mxArray* mxCreateNumericArray(int numDims, int dimArray[], int arraytype, int realorcomplex)
{
mxArray* retval;
int rows, cols, layers;
if (numDims>3) PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxCreateNumericArray: Tried to create matrix with more than 3 dimensions!");
rows = dimArray[0];
cols = (numDims>1) ? dimArray[1] : 1;
layers = (numDims>2) ? dimArray[2] : 1;
dim_vector mydims((numDims>2) ? dim_vector(rows, cols, layers) : dim_vector(rows, cols));
// Allocate our mxArray-Struct:
retval = (mxArray*) PsychMallocTemp(sizeof(mxArray));
// Create corresponding octave_value object for requested type and size of matrix.
// Retrieve raw pointer to contained data and store it in our mxArray struct as well...
if (arraytype==mxUINT8_CLASS) {
if (DEBUG_PTBOCTAVEGLUE) printf("NEW UINT8 MATRIX: %i,%i,%i\n", rows, cols, layers); fflush(NULL);
// Create empty uint8ND-Array of type mxREAL...
uint8NDArray m(mydims);
// Retrieve a pointer to internal representation. As m is new
// this won't trigger a deep-copy.
retval->d = (void*) m.data();
if (DEBUG_PTBOCTAVEGLUE) printf("M-DATA %p\n", retval->d); fflush(NULL);
// Build a new oct_value object from Matrix m: This is a
// shallow-copy.
octave_value* ovp = new octave_value();
*ovp = m;
retval->o = (void*) ovp;
// At this point we can safely destroy Matrix m, as the new
// octave_object holds a reference to its representation.
}
else if (arraytype==mxDOUBLE_CLASS && rows*cols*layers > 1) {
if (DEBUG_PTBOCTAVEGLUE) printf("NEW DOUBLE MATRIX: %i,%i,%i\n", rows, cols, layers); fflush(NULL);
// Create empty ND-Array of type mxREAL...
NDArray m(mydims);
// Retrieve a pointer to internal representation. As m is new
// this won't trigger a deep-copy.
retval->d = (void*) m.data();
if (DEBUG_PTBOCTAVEGLUE) printf("M-DATA %p\n", retval->d); fflush(NULL);
// Build a new oct_value object from Matrix m: This is a
// shallow-copy.
octave_value* ovp = new octave_value();
*ovp = m;
retval->o = (void*) ovp;
// At this point we can safely destroy Matrix m, as the new
// octave_object holds a reference to its representation.
}
else if (arraytype==mxDOUBLE_CLASS && rows*cols*layers == 1) {
if (DEBUG_PTBOCTAVEGLUE) printf("NEW SCALAR:\n"); fflush(NULL);
// This is a scalar value:
retval->o = (void*) new octave_value(0.0);
double* dp = (double*) PsychMallocTemp(sizeof(double));
retval->d = (void*) dp;
}
else if (arraytype==mxDOUBLE_CLASS && rows*cols*layers == 0) {
// Special case: Empty matrix.
if (DEBUG_PTBOCTAVEGLUE) printf("NEW EMPTY DOUBLE MATRIX:\n"); fflush(NULL);
retval->o = (void*) new octave_value(Matrix(0,0));
retval->d = NULL;
}
else if (arraytype==mxLOGICAL_CLASS) {
if (DEBUG_PTBOCTAVEGLUE) printf("NEW BOOLMATRIX: %i, %i\n", rows, cols, layers); fflush(NULL);
// Create empty double-matrix of type mxREAL...
if (layers>1) PsychErrorExitMsg(PsychError_internal, "In mxCreateNumericArray: Tried to allocate a 3D psych_bool matrix!?! Unsupported.");
boolMatrix m(rows, cols);
// Retrieve a pointer to internal representation. As m is new
// this won't trigger a deep-copy.
retval->d = (void*) m.data();
// Build a new oct_value object from Matrix m: This is a
// shallow-copy.
octave_value* ovp = new octave_value();
*ovp = m;
retval->o = (void*) ovp;
// At this point we can safely destroy Matrix m, as the new
// octave_object holds a reference to its representation.
}
else {
PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxCreateNumericArray: Unknown matrix type requested!");
}
return(retval);
}
mxArray* mxCreateDoubleMatrix(int rows, int cols, int realorcomplex)
{
int dims[2];
dims[0]=rows;
dims[1]=cols;
return(mxCreateNumericArray(2, dims, mxDOUBLE_CLASS, mxREAL));
}
mxArray* mxCreateLogicalMatrix(int rows, int cols)
{
int dims[2];
dims[0]=rows;
dims[1]=cols;
return(mxCreateNumericArray(2, dims, mxLOGICAL_CLASS, mxREAL));
}
mxArray* mxCreateString(const char* instring)
{
mxArray* retval;
// Allocate our mxArray-Struct:
retval = (mxArray*) PsychMallocTemp(sizeof(mxArray));
retval->d = NULL;
retval->o = (void*) new octave_value(instring);
return(retval);
}
void* mxGetData(const mxArray* arrayPtr)
{
return(arrayPtr->d);
}
double mxGetScalar(const mxArray* arrayPtr)
{
return((double) (mxGetPr(arrayPtr)[0]));
}
double* mxGetPr(const mxArray* arrayPtr)
{
return((double*) mxGetData(arrayPtr));
}
psych_bool* mxGetLogicals(const mxArray* arrayPtr)
{
return((psych_bool*) mxGetData(arrayPtr));
}
#define GETOCTPTR(x) ((octave_value*) (x)->o)
int mxGetM(const mxArray* arrayPtr)
{
return(GETOCTPTR(arrayPtr)->rows());
}
int mxGetN(const mxArray* arrayPtr)
{
return(GETOCTPTR(arrayPtr)->columns());
}
int mxGetNumberOfDimensions(const mxArray* arrayPtr)
{
return(GETOCTPTR(arrayPtr)->ndims());
}
int* mxGetDimensions(const mxArray* arrayPtr)
{
dim_vector vdim = GETOCTPTR(arrayPtr)->dims();
int* dims = (int*) PsychMallocTemp(3*sizeof(int));
dims[0] = vdim(0);
dims[1] = vdim(1);
if (GETOCTPTR(arrayPtr)->ndims()>2) dims[2] = vdim(2); else dims[2]=1;
return(dims);
}
int mxGetString(const mxArray* arrayPtr, char* outstring, int outstringsize)
{
if (!mxIsChar(arrayPtr)) PsychErrorExitMsg(PsychError_internal, "FATAL Error: Tried to convert a non-string into a string!");
return(((snprintf(outstring, outstringsize, "%s", GETOCTPTR(arrayPtr)->string_value().c_str()))>=0) ? 0 : 1);
}
void mxDestroyArray(mxArray *arrayPtr)
{
// Destroy a mxArray:
if (arrayPtr == NULL) return;
// We only need to destroy the octave_value object referenced by arrayPtr,
// because possible data buffers referenced by the ->d field and the
// mxArray struct itself are allocted via PsychMallocTemp() anyway, so
// they get automatically released when exiting our octFile...
octave_value* ov = (octave_value*) arrayPtr->o;
if (ov) delete(ov);
arrayPtr->o = NULL;
return;
}
mxArray* mxCreateStructArray(int numDims, int* ArrayDims, int numFields, const char** fieldNames)
{
mxArray* retval;
if (numDims>2 || numDims<1) PsychErrorExitMsg(PsychError_unimplemented, "FATAL Error: mxCreateStructArray: Anything else than 1D or 2D Struct-Arrays is not supported!");
if (numFields<1) PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxCreateStructArray: numFields < 1 ?!?");
// Our dimension vector:
dim_vector mydims((numDims>1) ? dim_vector(ArrayDims[0], ArrayDims[1]) : dim_vector(ArrayDims[0]));
// Create cell array of requested dimensionality and size as template. This
// will be cloned numFields - times to create one such array per field.
class Cell myCell(mydims);
// Create an Octave_map(): A Octave_map is an associative map that associates keys (namestrings)
// with values (which are Cell-Arrays). For each named field in our struct array, we insert a
// key->value pair into the Octave_map. The key is the field name, the value is a copy of our
// cell array 'myCell', where myCell has the requested dimensions.
// Lookup or assignment will work as follows: The fieldName is used as search-key to lookup the
// cell array associated with that key. The fieldIndex is then used to index into that cell array
// and get or set the octave_value object which encodes the value of that field at that index...
Octave_map mymap(std::string(fieldNames[0]), myCell); // Assign first key in constructor.
// Assign all remaining key->Cell pairs...
for (int i=1; i<numFields; i++) mymap.assign(std::string(fieldNames[i]), myCell);
// Build our mxArray wrapper:
retval = (mxArray*) PsychMallocTemp(sizeof(mxArray));
// Fill it: Assign our map.
octave_value* ovp = new octave_value(mymap);
retval->o = (void*) ovp;
retval->d = NULL;
return(retval);
}
int mxGetFieldNumber(const mxArray* structArray, const char* fieldName)
{
if(!mxIsStruct(structArray)) {
PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxGetFieldNumber: Tried to manipulate something other than a struct-Array!");
}
// Retrieve map:
octave_value* ov = (octave_value*) structArray->o;
Octave_map om = ov->map_value();
// Find idx of key.
std::string mykey(fieldName);
for(int i=0; i<om.length(); i++) if (mykey == om.keys()(i)) return(i);
// No such key :(
return(-1);
}
void mxSetField(mxArray* pStructOuter, int index, const char* fieldName, mxArray* pStructInner)
{
if(!mxIsStruct(pStructOuter)) {
PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxSetField: Tried to manipulate something other than a struct-Array!");
}
// Retrieve map:
octave_value* ov = (octave_value*) pStructOuter->o;
Octave_map om = ov->map_value();
// Retrieve object:
octave_value* iv = (octave_value*) pStructInner->o;
if (iv->is_real_type() && iv->is_scalar_type()) {
// Our special case. Do the extra work...
*iv=octave_value(*((double*) pStructInner->d));
}
// Assign our object:
om.contents(std::string(fieldName))(index) = *iv;
// Reassign our map:
*ov = octave_value(om);
}
mxArray* mxCreateCellArray(int numDims, int* ArrayDims)
{
mxArray* retval;
// Allocate our mxArray-Struct:
retval = (mxArray*) PsychMallocTemp(sizeof(mxArray));
if (numDims>2) PsychErrorExitMsg(PsychError_unimplemented, "FATAL Error: mxCreateCellArray: 3D Cell Arrays are not supported yet on GNU/Octave build!");
// Create dimension vector:
dim_vector mydims((numDims>1) ? dim_vector(ArrayDims[0], ArrayDims[1]) : dim_vector(ArrayDims[0]));
// Create Cell object:
Cell myCell(mydims);
retval->o = (void*) new octave_value(myCell);
retval->d = NULL;
// Done.
return(retval);
}
void mxSetCell(PsychGenericScriptType *cellVector, int index, mxArray* mxFieldValue)
{
if (!mxIsCell((mxArray*) cellVector)) {
PsychErrorExitMsg(PsychError_internal, "FATAL Error: mxSetCell: Tried to manipulate something other than a cell-vector!");
}
// Get a local (shallow) copy of the current real cellVector:
octave_value* cv = (octave_value*) cellVector->o;
Cell mycell = cv->cell_value();
// Assign new mxFieldValue:
octave_value* ov = (octave_value*) mxFieldValue->o;
if (ov->is_real_type() && ov->is_scalar_type()) {
// Our special case. Do the extra work...
*ov=octave_value(*((double*) mxFieldValue->d));
}
mycell(index)=*ov;
// Assign modified vector:
*cv = mycell;
return;
}
void mxSetLogical(mxArray* dummy)
{
// This is a no-op on Octave build, because it is not needed anywhere...
return;
}
int mxIsLogical(const mxArray* a)
{
return(GETOCTPTR(a)->is_bool_type());
}
int mxIsCell(const mxArray* a)
{
return(GETOCTPTR(a)->is_cell());
}
int mxIsStruct(const mxArray* a)
{
return(GETOCTPTR(a)->is_map());
}
int mxIsNumeric(const mxArray* a)
{
return(GETOCTPTR(a)->is_numeric_type());
}
int mxIsChar(const mxArray* a)
{
return(GETOCTPTR(a)->is_char_matrix() || GETOCTPTR(a)->is_string());
}
int mxIsDouble(const mxArray* a)
{
return(GETOCTPTR(a)->is_real_type());
}
int mxIsUint8(const mxArray* a)
{
if (DEBUG_PTBOCTAVEGLUE) printf("BYTESIZE %i NUMEL %i --> mxIsUint8 = %s\n", GETOCTPTR(a)->byte_size(), GETOCTPTR(a)->numel(),
((mxIsNumeric(a) && (GETOCTPTR(a)->byte_size() / GETOCTPTR(a)->numel() == 1))) ? "TRUE":"FALSE");
return((mxIsNumeric(a) && (GETOCTPTR(a)->byte_size() / GETOCTPTR(a)->numel() == 1)) ? TRUE : FALSE);
}
int mxIsUint16(const mxArray* a)
{
return((mxIsNumeric(a) && (GETOCTPTR(a)->byte_size() / GETOCTPTR(a)->numel() == 2)) ? TRUE : FALSE);
// int t=GETOCTPTR(a)->type_id();
//return(t==octave_uint16_matrix::static_type_id());
}
int mxIsUint32(const mxArray* a)
{
return((mxIsNumeric(a) && (GETOCTPTR(a)->byte_size() / GETOCTPTR(a)->numel() == 4)) ? TRUE : FALSE);
// int t=GETOCTPTR(a)->type_id();
// return(t==octave_uint32_matrix::static_type_id());
}
int mxIsInt8(const mxArray* a)
{
return(mxIsUint8(a));
// int t=GETOCTPTR(a)->type_id();
//return(t==octave_int8_matrix::static_type_id());
}
int mxIsInt16(const mxArray* a)
{
return(mxIsUint16(a));
// int t=GETOCTPTR(a)->type_id();
//return(t==octave_int16_matrix::static_type_id());
}
int mxIsInt32(const mxArray* a)
{
return(mxIsUint32(a));
//int t=GETOCTPTR(a)->type_id();
//return(t==octave_int32_matrix::static_type_id());
}
#endif
////Static functions local to ScriptingGlue.c.
#if PSYCH_LANGUAGE == PSYCH_MATLAB
void InitializeSynopsis(char *synopsis[],int maxStrings);
#endif
// _____________________________________________________________________________________
// for Matlab
#if PSYCH_LANGUAGE == PSYCH_MATLAB | PSYCH_LANGUAGE == PSYCH_OCTAVE
#define MAX_SYNOPSIS 100
#define MAX_CMD_NAME_LENGTH 100
//Static variables local to ScriptingGlue.c. The convention is to append a abbreviation in all
//caps of the C file name to the variable name.
// nameFirstGLUE, baseFunctionInvoked, nlhsGLUE, nrhsGLUE, plhsGLUE, prhsGLUE
// are state which has to be maintained for each invocation of a mex module.
// If a modules calls itself recursively, this state has to be maintained for
// each recursive call level. We implement a little homemade stack for those
// variables. Maximum stack depth and therefore maximum recursion level for
// reentrant recursive calls is MAX_RECURSIONLEVEL. The variable recLevel
// keeps track of the current call recursion level and acts as a "stack pointer".
// It gets incremented by each entry to mexFunction() and decremented by each
// regular exit from mexFunction(). On error abort or modules reload it needs
// to get reset to initial -1 state:
#define MAX_RECURSIONLEVEL 5
static int recLevel = -1;
static psych_bool psych_recursion_debug = FALSE;
static psych_bool nameFirstGLUE[MAX_RECURSIONLEVEL];
static psych_bool baseFunctionInvoked[MAX_RECURSIONLEVEL];
static int nlhsGLUE[MAX_RECURSIONLEVEL]; // Number of requested return arguments.
static int nrhsGLUE[MAX_RECURSIONLEVEL]; // Number of provided call arguments.
#if PSYCH_LANGUAGE == PSYCH_MATLAB
static mxArray **plhsGLUE[MAX_RECURSIONLEVEL]; // A pointer to the plhs array passed to the MexFunction entry point
static CONSTmxArray **prhsGLUE[MAX_RECURSIONLEVEL]; // A pointer to the prhs array passed to the MexFunction entry point
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
#define MAX_OUTPUT_ARGS 100
#define MAX_INPUT_ARGS 100
static mxArray* plhsGLUE[recLevel][MAX_OUTPUT_ARGS]; // An array of pointers to the octave return arguments.
static mxArray* prhsGLUE[recLevel][MAX_INPUT_ARGS]; // An array of pointers to the octave call arguments.
extern const char *mexFunctionName; // This gets initialized by Octave wrapper to contain our function name.
#endif
static psych_bool subfunctionsEnabledGLUE=FALSE;
static void PsychExitGlue(void);
//local function declarations
static psych_bool PsychIsEmptyMat(CONSTmxArray *mat);
static psych_bool PsychIsDefaultMat(CONSTmxArray *mat);
static mwSize mxGetP(const mxArray *array_ptr);
static mwSize mxGetNOnly(const mxArray *arrayPtr);
static mxArray *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p);
//declarations for functions exported from code module
#if PSYCH_LANGUAGE == PSYCH_MATLAB
EXP void mexFunction(int nlhs, mxArray *plhs[], int nrhs, CONSTmxArray *prhs[]);
#endif
// firstTime: This flag defines if this is the first invocation of the module
// since it was (re-)loaded:
static psych_bool firstTime = TRUE;
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
PsychError PsychExitOctaveGlue(void);
static psych_bool jettisoned = FALSE;
#endif
// Forward declaration for GNU/Linux compile:
#ifdef __cplusplus
extern "C" void ScreenCloseAllWindows(void);
#else
void ScreenCloseAllWindows(void);
#endif
void PsychExitRecursion(void)
{
if (recLevel < 0) {
printf("PTB-CRITICAL: Recursion stack underflow in module %s! Brace for impact!\n", PsychGetModuleName());
return;
}
if (psych_recursion_debug) printf("PTB-DEBUG: Module %s leaving recursive call level %i.\n", PsychGetModuleName(), recLevel);
// Done with this call recursion level:
recLevel--;
}
/*
Main entry point for Matlab and Octave. Serves as a dispatch and handles
first time initialization.
EXP is a macro defined within Psychtoolbox source to be nothing
except on win where it is the declaration which tells the linker to
make the function visible from outside the DLL.
The subfunction dispatcher can operate in either of two modes depending
on whether the module has registed subfunctions, or only a single "base"
function.
subfunction mode:
The examines the first and second
arguments for a string naming a module subfunction. If it finds in either of those
two arguments a string naming a module subfunctoin, then it looks up the approproate
function pointer and invokes that function. Before invoking the function the dispatcher
removes the function name argument form the list of argumnets which was passed to the
module.
base mode: The dispatcher always invokes the same one subfunction and without
alterinng the list of arguments.
Modules should now register in subfunction mode to support the build-in 'version' command.
*/
#if PSYCH_LANGUAGE == PSYCH_MATLAB
EXP void mexFunction(int nlhs, mxArray *plhs[], int nrhs, CONSTmxArray *prhs[])
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
EXP octave_value_list octFunction(const octave_value_list& prhs, const int nlhs)
#endif
{
psych_bool isArgThere[2], isArgEmptyMat[2], isArgText[2], isArgFunction[2];
PsychFunctionPtr fArg[2], baseFunction;
char argString[2][MAX_CMD_NAME_LENGTH];
int i;
const mxArray* tmparg = NULL; // mxArray is mxArray under MATLAB but #defined to octave_value on OCTAVE build.
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
psych_bool errorcondition = FALSE;
// plhs is our octave_value_list of return values:
octave_value tmpval; // Temporary, needed in parser below...
octave_value_list plhs; // Our list of left-hand-side return values...
int nrhs = prhs.length();
// Child protection: Is someone trying to call us after we've shut down already?
if (jettisoned) {
// Yep! Stupido...
error("%s: Tried to call the module after it has been jettisoned!!! You need to do a 'clear %s;' now. Bug in Psychtoolbox?!?",
mexFunctionName, mexFunctionName);
return(plhs);
}
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
// Save CPU-state and stack at this position in 'jmpbuffer'. If any further code
// calls an error-exit function like PsychErrorExit() or PsychErrorExitMsg() then
// the corresponding longjmp() call in our mexErrMsgTxt() implementation (see top of file)
// will unwind the stack and restore stack-state and CPU state to the saved values in
// jmpbuffer --> We will end up at this setjmp() call again, with a cleaned up stack and
// CPU state, but setjmp will return a non-zero error code, signaling the abnormal abortion.
if (setjmp(jmpbuffer)!=0) {
// PsychErrorExit() or friends called! The CPU and stack are restored to a sane state.
// Call our cleanup-routine to release memory that is PsychMallocTemp()'ed and to other
// error-handling...
errorcondition = TRUE;
goto octFunctionCleanup;
}
#endif
// Initialization
if (firstTime) {
// Reset call recursion level to startup default:
recLevel = -1;
psych_recursion_debug = FALSE;
if (getenv("PSYCH_RECURSION_DEBUG")) psych_recursion_debug = TRUE;
//call the Psychtoolbox init function, which inits the Psychtoolbox and calls the project init.
PsychInit();
//register the exit function, which calls PsychProjectExit() to clean up for the project then
//calls whatever to clean up for all of Psych.h layer.
#if PSYCH_LANGUAGE == PSYCH_MATLAB
// Under Matlab we use the mexAtExit() Mex-API function to register our PsychExitGlue() routine.
// Whenever Matlab wants to flush our module (to reload it, or in response to Matlab-Shutdown,
// 'clear MODULENAME', 'clear mex' or 'clear all' command) it first calls our PsychExitGlue(),
// then unloads the module from memory...
mexAtExit(&PsychExitGlue);
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
// Octave (as of Version 2.1.73) does not seem to support a way to register such a
// cleanup handler, so we use the following trick: We tell octave to lock our OCT file
// into memory, so it can not be clear'ed out of memory by Octave with the standard clear
// command. Then we register a new Module subfunction 'JettisonModuleHelper': If this
// subcommand is called, it will call our PsychExitGlue() cleanup routine, then unlock
// ourselves from memory, now that it is safe to flush us. We provide special scripts
// clearall.m, clearoct.m, clearmex.m and clearMODULENAME.m that do what clear all,
// clear mex and clear MODULENAME would do on Matlab, by simply calling the
// MODULENAME('JettisonModuleHelper'); function, followed by a clear MODULENAME; command.
// --> User has same functionality with nearly same syntax and should be safe on Octave
// as well.
PsychRegister("JettisonModuleHelper", &PsychExitOctaveGlue);
// Lock ourselves into Octaves runtime environment so we can't get clear'ed out easily:
mlock(std::string(mexFunctionName));
#endif
// Register hidden helper function: This one dumps all registered subfunctions of
// a module into a struct array of text strings. Needed by our automatic documentation
// generator script to find out about subfunctions of a module:
PsychRegister((char*) "DescribeModuleFunctionsHelper", &PsychDescribeModuleFunctions);
firstTime = FALSE;
}
// Increment call recursion level for this invocation of the module:
recLevel++;
if (recLevel >= MAX_RECURSIONLEVEL) {
// Maximum level exceeded!
printf("PTB-CRITICAL: Maximum recursion level %i for recursive calls into module '%s' exceeded!\n", recLevel, PsychGetModuleName());
printf("PTB-CRITICAL: Aborting call sequence. Check code for recursion bugs!\n");
recLevel--;
PsychErrorExitMsg(PsychError_internal, "Module call recursion limit exceeded");
}
if (psych_recursion_debug) printf("PTB-DEBUG: Module %s entering recursive call level %i.\n", PsychGetModuleName(), recLevel);
// Store away call arguments for use by language-neutral accessor functions in ScriptingGlue.c
#if PSYCH_LANGUAGE == PSYCH_MATLAB
nlhsGLUE[recLevel] = nlhs;
nrhsGLUE[recLevel] = nrhs;
plhsGLUE[recLevel] = plhs;
prhsGLUE[recLevel] = prhs;
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
// NULL-init our pointer array of call value pointers prhsGLUE[recLevel]:
memset(&prhsGLUE[recLevel][0], 0, sizeof(prhsGLUE[recLevel]));
// Setup our prhsGLUE[recLevel] array of call argument pointers:
// We make copies of prhs to simplify the rest of PsychScriptingGlue. This copy is not
// as expensive as it might look, because Octave objects are all implemented via
// "Copy-on-write" --> Only a pointer is copied as long as we don't modify the data.
// MK: TODO FIXME -- Should we keep an extra array octave_value dummy[MAX_INPUT_ARGS];
// around, assign to that dummy[i]=prhs(i); and set ptrs to it prhsGLUE[recLevel][i]=&dummy[i];
// This would require more memory, but prevent possible heap-fragmentation due to
// lots of new()/delete() calls on each invocation of the OCT-Function --> possible
// slow-down over time, could be confused with memory leaks???
for(int i=0; i<nrhs && i<MAX_INPUT_ARGS; i++) {
// Create and assign our mxArray-Struct:
prhsGLUE[recLevel][i] = (mxArray*) PsychMallocTemp(sizeof(mxArray));
// Extract data-pointer to each prhs(i) octave_value and store a type-casted version
// which is optimal for us.
if (prhs(i).is_string() || prhs(i).is_char_matrix()) {
// A string object:
if (DEBUG_PTBOCTAVEGLUE) printf("INPUT %i: STRING\n", i); fflush(NULL);
// Strings do not have a need for a data-ptr. Just copy the octave_value object...
prhsGLUE[recLevel][i]->d = NULL;
prhsGLUE[recLevel][i]->o = (void*) new octave_value(prhs(i)); // Refcont now >= 2
// Done.
}
else if (prhs(i).is_real_type() && !prhs(i).is_scalar_type()) {
// A N-Dimensional Array:
if (DEBUG_PTBOCTAVEGLUE) printf("TYPE NAME %s\n", prhs(i).type_name().c_str()); fflush(NULL);
// Is it an uint8 or int8 NDArray?
if (strstr(prhs(i).type_name().c_str(), "int8")) {
// Seems to be an uint8 or int8 NDArray: Create an optimized uint8 object of it:
if (DEBUG_PTBOCTAVEGLUE) printf("INPUT %i: UINT8-MATRIX\n", i); fflush(NULL);
// Create intermediate representation m: This is a shallow-copy...
const uint8NDArray m(prhs(i).uint8_array_value()); // Refcount now >=2
// Get internal dataptr from it: // This triggers a deep-copy :(
prhsGLUE[recLevel][i]->d = (void*) m.data(); // Refcount now == 1
// Create a shallow backup copy of corresponding octave_value...
octave_value* ovptr = new octave_value();
*ovptr = m;
prhsGLUE[recLevel][i]->o = (void*) ovptr; // Refcont now == 2
// As soon as m gets destructed by leaving this if-branch,
// the refcount will drop to == 1...
// Done.
}
else {
// Seems to be a non-uint8 NDArray, i.e. psych_bool type or double type.
if (DEBUG_PTBOCTAVEGLUE) printf("INPUT %i: DOUBLE-MATRIX\n", i); fflush(NULL);
// We create a generic double NDArray from it...
// Create intermediate representation m: This is a shallow-copy...
const NDArray m(prhs(i).array_value()); // Refcount now >=2
// Get internal dataptr from it: // This triggers a deep-copy :(
prhsGLUE[recLevel][i]->d = (void*) m.data(); // Refcount now == 1
// Create a shallow backup copy of corresponding octave_value...
octave_value* ovptr = new octave_value();
*ovptr = m;
prhsGLUE[recLevel][i]->o = (void*) ovptr; // Refcont now == 2
// As soon as m gets destructed by leaving this if-branch,
// the refcount will drop to == 1...
// Done.
}
} else if (prhs(i).is_real_type() && prhs(i).is_scalar_type()) {
// A double or integer scalar value:
if (DEBUG_PTBOCTAVEGLUE) printf("INPUT %i: SCALAR\n", i); fflush(NULL);
prhsGLUE[recLevel][i]->o = (void*) new octave_value(prhs(i));
// Special case: We allocate our own double value and store a
// copy of the value in it.
double* m = (double*) PsychMallocTemp(sizeof(double));
*m = prhs(i).double_value();
prhsGLUE[recLevel][i]->d = (void*) m;
}
else {
// Unkown argument type that we can't handle :(
// We abort with a reasonable error message:
prhsGLUE[recLevel][i]=NULL;
// We do, however, give an extra warning, as this could be Octave related...
printf("PTB-WARNING: One of the values in the argument list was not recognized.\n");
printf("PTB-WARNING: If your script runs well on Matlab then this may be a limitation or\n");
printf("PTB-WARNING: bug in the GNU/Octave version of Psychtoolbox :( ...\n");
PsychErrorExitMsg(PsychError_unimplemented, "Unrecognized argument in list of command parameters.");
}
}
// NULL-out our pointer array of return value pointers plhsGLUE[recLevel]:
memset(&plhsGLUE[recLevel][0], 0, sizeof(plhsGLUE[recLevel]));
nrhsGLUE[recLevel] = nrhs;
nlhsGLUE[recLevel] = nlhs;
#endif
baseFunctionInvoked[recLevel]=FALSE;
//if no subfunctions have been registered by the project then just invoke the project base function
//if one of those has been registered.
if(!PsychAreSubfunctionsEnabled()){
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)(); //invoke the unnamed function
}else
PrintfExit("Project base function invoked but no base function registered");
}else{ //subfunctions are enabled so pull out the function name string and invoke it.
//assess the nature of first and second arguments for finding the name of the sub function.
for(i=0;i<2;i++)
{
isArgThere[i] = (nrhs>i) && (prhsGLUE[recLevel][i]);
#if PSYCH_LANGUAGE == PSYCH_MATLAB
if (isArgThere[i]) tmparg = prhs[i]; else tmparg = NULL;
#endif
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
if (isArgThere[i]) { tmparg = prhsGLUE[recLevel][i]; } else { tmparg = NULL; }
#endif
isArgEmptyMat[i] = isArgThere[i] ? mxGetM(tmparg)==0 || mxGetN(tmparg)==0 : FALSE;
isArgText[i] = isArgThere[i] ? mxIsChar(tmparg) : FALSE;
if(isArgText[i]){
mxGetString(tmparg,argString[i],sizeof(argString[i]));
// Only consider 2nd arg as subfunction if 1st arg isn't already a subfunction:
if ((i == 0) || (!isArgFunction[0])) {
fArg[i]=PsychGetProjectFunction(argString[i]);
}
else fArg[i] = NULL; // 1st arg is subfunction, so 2nd arg can't be as well.
}
isArgFunction[i] = isArgText[i] ? fArg[i] != NULL : FALSE;
}
//figure out which of the two arguments might be the function name and either invoke it or exit with error
//if we can't find one.
if(!isArgThere[0] && !isArgThere[1]){ //no arguments passed so execute the base function
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
}else
PrintfExit("Project base function invoked but no base function registered");
}
// (!isArgThere[0] && isArgEmptyMat[1]) --disallowed
// (!isArgThere[0] && isArgText[1]) --disallowed
// (!isArgThere[0] && !isArgText[1] --disallowed except in case of !isArgThere[0] caught above.
else if(isArgEmptyMat[0] && !isArgThere[1])
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state A)");
else if(isArgEmptyMat[0] && isArgEmptyMat[1])
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state B)");
else if(isArgEmptyMat[0] && isArgText[1]){
if(isArgFunction[1]){
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
}
else
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state C)");
}
else if(isArgEmptyMat[0] && !isArgText[1])
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state D)");
else if(isArgText[0] && !isArgThere[1]){
if(isArgFunction[0]){
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}else{ //when we receive a first argument wich is a string and it is not recognized as a function name then call the default function
/*
else
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state E)");
*/
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
}else
PrintfExit("Project base function invoked but no base function registered");
}
}
else if(isArgText[0] && isArgEmptyMat[1]){
if(isArgFunction[0]){
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state F)");
}
else if(isArgText[0] && isArgText[1]){
if(isArgFunction[0] && !isArgFunction[1]){ //the first argument is the function name
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else if(!isArgFunction[0] && isArgFunction[1]){ //the second argument is the function name
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
}
else if(!isArgFunction[0] && !isArgFunction[1]){ //neither argument is a function name
//PrintfExit("Invalid command (error state G)");
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
}else
PrintfExit("Project base function invoked but no base function registered");
}
else if(isArgFunction[0] && isArgFunction[1]) //both arguments are function names
PrintfExit("Passed two function names");
}
else if(isArgText[0] && !isArgText[1]){
if(isArgFunction[0]){
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state H)");
}
else if(!isArgText[0] && !isArgThere[1]){ //this was modified for MODULEVersion with WaitSecs.
//PrintfExit("Invalid command (error state H)");
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)(); //invoke the unnamed function
}else
PrintfExit("Project base function invoked but no base function registered");
}
else if(!isArgText[0] && isArgEmptyMat[1])
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state I)");
else if(!isArgText[0] && isArgText[1])
{
if(isArgFunction[1]){
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
}
else
PrintfExit("Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state J)");
}
else if(!isArgText[0] && !isArgText[1]){ //this was modified for Priority.
//PrintfExit("Invalid command (error state K)");
baseFunction = PsychGetProjectFunction(NULL);
if(baseFunction != NULL){
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)(); //invoke the unnamed function
}else
PrintfExit("Project base function invoked but no base function registered");
}
} //close else
// If we reach this point of execution under Matlab, then we're successfully done.
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
// If we reach this point of execution under Octave, then we're done, possibly due to
// error abort. Let's first do the memory management cleanup work necessary on Octave.
// This is either done due to successfull execution or via jump to octFunctionCleanup:
// in case of error-abort:
octFunctionCleanup:
// Release our own prhsGLUE[recLevel] array...
// Release memory for scalar types is done by PsychFreeAllTempMemory();
for(int i=0; i<nrhs && i<MAX_INPUT_ARGS; i++) if(prhsGLUE[recLevel][i]) {
delete(((octave_value*)(prhsGLUE[recLevel][i]->o)));
prhsGLUE[recLevel][i]=NULL;
}
// "Copy" our octave-value's into the output array: If nlhs should be
// zero (Octave-Script does not expect any return arguments), but our
// subfunction has assigned a return argument in slot 0 anyway, then
// we return that argument and release our own temp-memory. This
// provides Matlab-semantic, where unsolicited return arguments are
// printed anyway as content of the "ans" variable.
for(i=0; (i==0 && plhsGLUE[recLevel][0]!=NULL) || (i<nlhs && i<MAX_OUTPUT_ARGS); i++) {
if (plhsGLUE[recLevel][i]) {
plhs(i) = *((octave_value*)(plhsGLUE[recLevel][i]->o));
if (plhs(i).is_scalar_type()) {
// Special case: Scalar. Need to override with our double-ptrs value:
double* svalue = (double*) plhsGLUE[recLevel][i]->d;
plhs(i) = octave_value((double) *svalue);
}
// Delete our own octave_value object. All relevant data has been
// copied via "copy-on-write" into plhs(i) already:
delete(((octave_value*)(plhsGLUE[recLevel][i]->o)));
// We don't need to free() the PsychMallocTemp()'ed object pointed to
// by the d-Ptr, nor do we need to free the mxArray-Struct. This is done
// below in PsychFreeAllTempMemory(). Just NULL-out the array slot:
plhsGLUE[recLevel][i]=NULL;
}
}
// Release all memory allocated via PsychMallocTemp():
PsychFreeAllTempMemory();
// Is this a successfull return?
if (errorcondition) {
// Nope - Error return, either due to some PTB detected error or due to
// the user pressing the CTRL+C key combo. Try to call PTB's
// Screen('CloseAll') command to close the display, at least if this is
// the Screen module.
// Is this the Screen() module?
if (strcmp(PsychGetModuleName(), "Screen")==0) {
// Yes. We directly call our close and cleanup routine:
#ifdef PTBMODULE_Screen
ScreenCloseAllWindows();
#endif
} else {
// Nope. This is a Psychtoolbox OCT file other than Screen.
// We can't call directly, but we can call the 'sca' command
// from Octave:
PsychRuntimeEvaluateString("Screen('CloseAll');");
}
}
PsychExitRecursion();
// Return our octave_value_list of returned values in any case and yield control
// back to Octave:
return(plhs);
#else
PsychExitRecursion();
#endif
}
#if PSYCH_LANGUAGE == PSYCH_OCTAVE
/* Call PsychExitGlue(), followed by unlocking the module:
- Needed to safely remove modules on GNU/Octave.
*/
PsychError PsychExitOctaveGlue(void)
{
// Debug output:
if (DEBUG_PTBOCTAVEGLUE) printf("PTB-INFO: Jettisoning submodule %s ...\n", mexFunctionName); fflush(NULL);
// Call our regular exit routines to clean up and release all ressources:
PsychExitGlue();
// Mark ourselves (via global variable "jettisoned") as shut-down. Any
// further invocations of the module without previously clear'ing and
// reloading it will be prevented.
jettisoned = TRUE;
// Unlock ourselves from Octaves runtime environment so we can get clear'ed out:
munlock(std::string(mexFunctionName));
// Done. Return control to Octave - It will now remove us from its process-space - RIP.
return(PsychError_none);
}
#endif
/*
Just call the abstracted PsychExit function. This might seem dumb, but its necessary to
isolate the scripting language dependent stuff from the rest of the toolbox.
*/
void PsychExitGlue(void)
{
// Perform platform independent shutdown:
PsychErrorExitMsg(PsychExit(),NULL);
// And we are dead. Now the runtime will flush us from process memory,
// at least on Matlab and Octave 3.7+. In any case no further invocation will happen
// until reload.
}
/*
Return the mxArray pointer to the specified position. Note that we have some special rules for
for numbering the positions:
0 - This is always the command string or NULL if the project does not register a
dispatch function and does accept subcommands. If the function does accept sub
commands, in Matlab those may be passed in either the first or second position, but
PsychGetArgPtr() will always return the command as the 0th.
1 - This is the first argument among the arguments which are not the subfunction name itself.
It can occur in either the first or second position of the argument list, depending on
in which of those two positions the function name itself appears.
2.. These positions are numbered correctly
TO DO:
2 - this function should be used by the one which gets the function name.
Arguments are numbered 0..n.
-The 0th argument is a pointer to the mxArray holding
the subfunction name string if we are in subfunction mode.
-The 0th argument is undefined if not in subfunction mode.
-The 1st argument is the argument of the 1st and 2nd which is not
the subfunction name if in subfunction mode.
-The 1st argument is the first argument if not in subfunction mode.
-The 2nd-nth arguments are always the 2nd-nth arguments.
*/
//we return NULL if a postion without an arg is specified.
const mxArray *PsychGetInArgMxPtr(int position)
{
if(PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]){ //when in subfunction mode
if(position < nrhsGLUE[recLevel]){ //an argument was passed in the correct position.
if(position == 0){ //caller wants the function name argument.
if(nameFirstGLUE[recLevel])
return(prhsGLUE[recLevel][0]);
else
return(prhsGLUE[recLevel][1]);
}else if(position == 1){ //they want the "first" argument.
if(nameFirstGLUE[recLevel])
return(prhsGLUE[recLevel][1]);
else
return(prhsGLUE[recLevel][0]);
}else
return(prhsGLUE[recLevel][position]);
}else
return(NULL);
}else{ //when not in subfunction mode and the base function is not invoked.
if(position <= nrhsGLUE[recLevel])
return(prhsGLUE[recLevel][position-1]);
else
return(NULL);
}
}
mxArray **PsychGetOutArgMxPtr(int position)
{
if(position==1 || (position>0 && position<=nlhsGLUE[recLevel])){ //an ouput argument was supplied at the specified location
return(&(plhsGLUE[recLevel][position-1]));
}else
return(NULL);
}
/*
functions for enabling and testing subfunction mode
*/
void PsychEnableSubfunctions(void)
{
subfunctionsEnabledGLUE = TRUE;
}
psych_bool PsychAreSubfunctionsEnabled(void)
{
return(subfunctionsEnabledGLUE);
}
/* PsychCheckmWSizeLimits(size_t m, size_t n, size_t p)
*
* Makes sure matrix/vector dimensions stay within the limits imposed
* by a specific Psychtoolbox build for a specific 32 bit or 64 bit
* version of Matlab or Octave.
*
* 32 bit builds are always limited to 2^31-1 elements per dimension at
* most. In reality the limit is much lower, this is an upper bound.
*
* 64 bit builds may or may not allow bigger limits, depending if
* the runtime (Matlab or Octave) supports a 64 bit mwSize type. Even
* then there are some limits imposed by available system memory and
* processor architecture specific limits, e.g., many cpu's only
* truly support 48 bit of memory, not the true 64 bit.
*
*/
void PsychCheckmWSizeLimits(psych_int64 m, psych_int64 n, psych_int64 p)
{
// No problem if mwSize has capacity to contain size_t:
if (sizeof(mwSize) >= sizeof(size_t)) return;
// Mismatch: mwSize too small to contain size_t. This means
// mwSize is only defined as a 32-bit int on a system where
// size_t is a 64 bit unsigned int. As long as the provided
// size_t values are smaller than 2^31 we're good and don't
// screw up when downcasting. Otherwis we'd overflow and
// disaster would happen:
if ((m < INT_MAX) && (n < INT_MAX) && (p < INT_MAX)) return;
// Ok, this is a no-go :( Abort with some hopefully helpful
// error message:
printf("PTB-ERROR: Tried to return a vector or matrix whose size along at least one dimension\n");
printf("PTB-ERROR: exceeds the maximum supported size of 2^31 - 1 elements.\n");
if (sizeof(size_t) == 4) {
printf("PTB-ERROR: This is a limitation of all 32 bit versions of Psychtoolbox.\n");
printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Matlab or 64-bit Octave\n");
printf("PTB-ERROR: on a 64-bit operating system to get rid of this limit.\n");
}
else {
printf("PTB-ERROR: This is a limitation of your version of Octave or Matlab.\n");
printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Matlab or 64-bit Octave\n");
printf("PTB-ERROR: on a 64-bit operating system to get rid of this limit.\n");
}
PsychErrorExitMsg(PsychError_user, "One of the dimensions of a returned matrix or vector exceeds 2^31-1 elements. This is not supported on your setup!");
}
/*
Get the third array dimension which we call "P". mxGetP should act just like mxGetM and mxGetN.
The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
*/
static mwSize mxGetP(const mxArray *arrayPtr)
{
const mwSize *dimArray;
if (mxGetNumberOfDimensions(arrayPtr) < 3) {
return(1);
}
dimArray = (const mwSize*) mxGetDimensions(arrayPtr);
return dimArray[2];
}
/*
Get the 2nd array dimension.
The Mex API's mxGetN is sometimes undersirable because it returns the product of all dimensions above 1. Our mxGetNOnly only returns N, for when you need that.
The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
*/
static mwSize mxGetNOnly(const mxArray *arrayPtr)
{
const mwSize *dimArray;
dimArray = (const mwSize*) mxGetDimensions(arrayPtr);
return dimArray[1];
}
/*
mxCreateDoubleMatrix3D()
Create a 2D or 3D matrix of doubles.
Requirements are that m>0, n>0, p>=0.
*/
mxArray *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p)
{
int numDims;
mwSize dimArray[3];
if(m==0 || n==0 ){
dimArray[0]=0;dimArray[1]=0;dimArray[2]=0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
}else{
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims= (p==0 || p==1) ? 2 : 3;
return mxCreateNumericArray(numDims, (mwSize*) dimArray, mxDOUBLE_CLASS, mxREAL);
}
/*
mxCreateFloatMatrix3D()
Create a 2D or 3D matrix of floats.
Requirements are that m>0, n>0, p>=0.
*/
mxArray *mxCreateFloatMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
mwSize dimArray[3];
if(m==0 || n==0 ){
dimArray[0]=0;dimArray[1]=0;dimArray[2]=0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
}else{
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims= (p==0 || p==1) ? 2 : 3;
return mxCreateNumericArray(numDims, (mwSize*) dimArray, mxSINGLE_CLASS, mxREAL);
}
/*
mxCreateNativeBooleanMatrix3D()
Create a 2D or 3D matrix of native psych_bool types.
Requirements are that m>0, n>0, p>=0.
*/
mxArray *mxCreateNativeBooleanMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
mwSize dimArray[3];
mxArray *newArray;
if(m==0 || n==0 ){
dimArray[0]=0;dimArray[1]=0;dimArray[2]=0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
}else{
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims = (p==0 || p==1) ? 2 : 3;
newArray = mxCreateNumericArray(numDims, (mwSize*) dimArray, mxLOGICAL_CLASS, mxREAL);
#if mxLOGICAL_CLASS == mxUINT8_CLASS
#if PSYCH_SYSTEM == PSYCH_LINUX
// Manually set the flag to logical for Matlab versions < 6.5
// MK DISABLED for Matlab > 6.5 mxSetLogical(newArray);
#endif
#endif
return(newArray);
}
/*
Create a 2D or 3D matrix of ubytes.
Requirements are that m>0, n>0, p>=0.
*/
mxArray *mxCreateByteMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
mwSize dimArray[3];
if(m==0 || n==0 ){
dimArray[0]=0;dimArray[1]=0;dimArray[2]=0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
}else{
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims= (p==0 || p==1) ? 2 : 3;
return mxCreateNumericArray(numDims, (mwSize*) dimArray, mxUINT8_CLASS, mxREAL);
}
/*
Print string s and return return control to the calling environment.
*/
void PsychErrMsgTxt(char *s)
{
// If this is the Matlab version then we try to close onscreen windows here.
// The Octave version has a different implementation of this facility...
#if PSYCH_LANGUAGE == PSYCH_MATLAB
// Is this the Screen() module?
if (strcmp(PsychGetModuleName(), "Screen")==0) {
// Yes. We directly call our close and cleanup routine:
#ifdef PTBMODULE_Screen
ScreenCloseAllWindows();
#endif
} else {
// Nope. This is a Psychtoolbox MEX file other than Screen.
// We can't call directly, but we can call the 'sca' command
// from Matlab:
PsychRuntimeEvaluateString("Screen('CloseAll');");
}
PsychExitRecursion();
#endif
// Call the Matlab- or Octave error printing and error handling facilities:
mexErrMsgTxt((s && (strlen(s) > 0)) ? s : "See error message printed above.");
}
/*
classify the mxArray element format using Pyschtoolbox argument type names
*/
static PsychArgFormatType PsychGetTypeFromMxPtr(const mxArray *mxPtr)
{
PsychArgFormatType format;
if(PsychIsDefaultMat(mxPtr))
format = PsychArgType_default;
else if(mxIsUint8(mxPtr))
format = PsychArgType_uint8;
else if(mxIsUint16(mxPtr))
format = PsychArgType_uint16;
else if(mxIsUint32(mxPtr))
format = PsychArgType_uint32;
else if(mxIsInt8(mxPtr))
format = PsychArgType_int8;
else if(mxIsInt16(mxPtr))
format = PsychArgType_int16;
else if(mxIsInt32(mxPtr))
format = PsychArgType_int32;
else if(mxIsDouble(mxPtr))
format = PsychArgType_double;
else if(mxIsSingle(mxPtr))
format = PsychArgType_single;
else if(mxIsChar(mxPtr))
format = PsychArgType_char;
else if(mxIsCell(mxPtr))
format = PsychArgType_cellArray;
else if(mxIsLogical(mxPtr))
format = PsychArgType_boolean; // This is tricky because MATLAB abstracts "logicals" conditionally on platform. Depending on OS, MATLAB implements booleans with either 8-bit or 64-bit values.
else
format = PsychArgType_unclassified;
return format;
}
/*
PsychSetReceivedArgDescriptor()
Accept an argument number and direction value (input or output). Examine the specified argument and fill in an argument
descriptor struture. Ask a retainer function to store the descriptor.
*/
PsychError PsychSetReceivedArgDescriptor(int argNum, psych_bool allow64BitSizes, PsychArgDirectionType direction)
{
PsychArgDescriptorType d;
int numNamedOutputs, numOutputs;
const mxArray *mxPtr;
d.position = argNum;
d.direction = direction;
if(direction == PsychArgIn){
mxPtr = PsychGetInArgMxPtr(argNum);
d.isThere = (mxPtr && !PsychIsDefaultMat(mxPtr)) ? kPsychArgPresent : kPsychArgAbsent;
if(d.isThere == kPsychArgPresent){ //the argument is there so fill in the rest of the description
d.numDims = (int) mxGetNumberOfDimensions(mxPtr);
// If the calling function doesn't allow 64 bit sized input argument dimensions, then we check if
// the input has a size within the positive signed integer range, i.e., at most INT_MAX elements
// per dimension. Functions which can handle bigger inputs need to declare this explicitely by
// setting allow64BitSizes == TRUE:
if ((!allow64BitSizes) && ((mxGetM(mxPtr) >= INT_MAX) || (mxGetNOnly(mxPtr) >= INT_MAX) || (mxGetP(mxPtr) >= INT_MAX))) {
printf("PTB-ERROR: %i. input argument exceeds allowable maximum size of 2^31 - 1 elements\n", argNum);
printf("PTB-ERROR: in at least one dimension. Psychtoolbox can't handle such huge matrices or vectors.\n");
PsychErrorExitMsg(PsychError_user, "Input argument exceeds maximum supported count of 2^31 - 1 elements!");
}
d.mDimMin = d.mDimMax = (psych_int64) mxGetM(mxPtr);
d.nDimMin = d.nDimMax = (psych_int64) mxGetNOnly(mxPtr);
d.pDimMin = d.pDimMax = (psych_int64) mxGetP(mxPtr);
d.type = PsychGetTypeFromMxPtr(mxPtr);
}
}
else{ //(direction == PsychArgOut)
numNamedOutputs = PsychGetNumNamedOutputArgs();
numOutputs = PsychGetNumOutputArgs();
if(numNamedOutputs >=argNum)
d.isThere = kPsychArgPresent;
else if(numOutputs >=argNum)
d.isThere = kPsychArgFixed;
else
d.isThere = kPsychArgAbsent;
}
PsychStoreArgDescriptor(NULL,&d);
return(PsychError_none);
}
PsychError PsychSetSpecifiedArgDescriptor( int position,
PsychArgDirectionType direction,
PsychArgFormatType type,
PsychArgRequirementType isRequired,
psych_int64 mDimMin, // minimum minimum is 1 |
psych_int64 mDimMax, // minimum maximum is 1, maximum maximum is -1 meaning infinity
psych_int64 nDimMin, // minimum minimum is 1 |
psych_int64 nDimMax, // minimum maximum is 1, maximum maximum is -1 meaning infinity
psych_int64 pDimMin, // minimum minimum is 0
psych_int64 pDimMax) // minimum maximum is 0, maximum maximum is -1 meaning infinity
{
PsychArgDescriptorType d;
// Check size of output dimensions if this is an output operation:
if (direction == PsychArgOut) {
// Do not exceed index size limits of hw/os/build architecture,
// be it 32 bit or 64 bit:
if (((size_t) mDimMin > SIZE_MAX) || ((size_t) mDimMax > SIZE_MAX) ||
((size_t) nDimMin > SIZE_MAX) || ((size_t) nDimMax > SIZE_MAX) ||
((size_t) pDimMin > SIZE_MAX) || ((size_t) pDimMax > SIZE_MAX)) {
printf("PTB-ERROR: Tried to return a vector or matrix whose size along at least one dimension\n");
printf("PTB-ERROR: exceeds the maximum supported number of elements.\n");
if (sizeof(size_t) == 4) {
printf("PTB-ERROR: This is a limitation of all 32 bit versions of Psychtoolbox.\n");
printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Matlab or 64-bit Octave\n");
printf("PTB-ERROR: on a 64-bit operating system to get rid of this limit.\n");
}
PsychErrorExitMsg(PsychError_user, "One of the dimensions of a returned matrix or vector exceeds maximum number of elements. This is not supported on your setup!");
}
// Limits ok for given hw/os/build architecture. Check if they're ok for the
// scripting environment as well:
PsychCheckmWSizeLimits((size_t) mDimMin, (size_t) nDimMin, (size_t) pDimMin);
PsychCheckmWSizeLimits((size_t) mDimMax, (size_t) nDimMax, (size_t) pDimMax);
}
d.position = position;
d.direction = direction;
d.type = type;
//d.isThere //field set only in the received are descriptor, not in the specified argument descriptor
d.isRequired = isRequired; //field set only in the specified arg descritor, not in the received argument descriptot.
d.mDimMin = mDimMin;
d.mDimMax = mDimMax;
d.nDimMin = nDimMin;
d.nDimMax = nDimMax;
d.pDimMin = pDimMin;
d.pDimMax = pDimMax;
//NOTE that we are not setting the d.numDims field because that is inferred from pDimMin and pDimMax and the 3 dim cap.
PsychStoreArgDescriptor(&d,NULL);
return(PsychError_none);
}
/*
PsychAcceptInputArgumentDecider()
This is a subroutine of Psychtoolbox functions such as PsychCopyInDoubleArg() which read in arguments to Psychtoolbox functino
passed from the scripting environment.
Accept one constant specifying whether an argument is either required, optional, or anything will be allowed and another constant
specifying how the provided argument agrees with the specified argument. Based on the relationship between those constants either:
� Return TRUE indicating that the caller should read in the argument and itself return TRUE to indicate that the argument has been read.
� Return FALSE indicating that the caller should ignore the argument and itself return FALSE to indicate that the argument was not read.
� Exit to the calling environment with an error to indicate that the provided argument did not match the requested argument and that
it was required to match.
The domain of supplied arguments is:
matchError:
PsychError_internal -Internal Psychtoolbox error
PsychError_invalidArg_absent -There was no argument provided
PsychError_invalidArg_type -The argument was present but not the specified type
PsychError_invalidArg_size -The argument was presnet and the specified type but not the specified size
PsychError_none -The argument matched the specified argument
isRequired:
kPsychArgRequired - the argument must be present and must match the specified descriptor
kPsychArgOptional - the argument must either be absent or must be present and match the specified descriptor
kPsychArgAnything - the argument can be absent or anything
*/
psych_bool PsychAcceptInputArgumentDecider(PsychArgRequirementType isRequired, PsychError matchError)
{
if(isRequired==kPsychArgRequired){
if(matchError)
PsychErrorExit(matchError);
else
return(TRUE);
}else if(isRequired==kPsychArgOptional){
if(matchError==PsychError_invalidArg_absent)
return(FALSE);
else if(matchError)
PsychErrorExit(matchError);
else
return(TRUE);
}else if(isRequired==kPsychArgAnything){
if(!matchError)
return(TRUE);
else if(matchError==PsychError_invalidArg_absent)
return(FALSE);
else if(matchError==PsychError_invalidArg_type)
return(FALSE);
else if(matchError==PsychError_invalidArg_size)
return(FALSE);
else
PsychErrorExit(matchError);
}
PsychErrorExitMsg(PsychError_internal, "Reached end of function unexpectedly");
return(FALSE); //make the compiler happy
}
/*
PsychAcceptOutputArgumentDecider()
This is a subroutine of Psychtoolbox functions such as PsychCopyCopyDoubleArg() which output arguments from Psychtoolbox functions
back to the scripting environment.
*/
psych_bool PsychAcceptOutputArgumentDecider(PsychArgRequirementType isRequired, PsychError matchError)
{
if(isRequired==kPsychArgRequired){
if(matchError)
PsychErrorExit(matchError); //the argument was required and absent so exit with an error. Or there was some other error.
else
return(TRUE); //the argument was required and present so go read it.
}else if(isRequired==kPsychArgOptional){
if(!matchError)
return(TRUE); //the argument was optional and present so go read it.
else if(matchError==PsychError_invalidArg_absent)
return(FALSE); //the argument as optional and absent so dont' read it.
else if(matchError)
PsychErrorExit(matchError); //there was some other error
}else if(isRequired==kPsychArgAnything)
PsychErrorExitMsg(PsychError_internal, "kPsychArgAnything argument passed to an output function. Use kPsychArgOptional");
else
PsychErrorExit(PsychError_internal);
PsychErrorExitMsg(PsychError_internal, "End of function reached unexpectedly");
return(FALSE); //make the compiler happy
}
/*
PsychMatchDescriptors()
Compare descriptors for specified and received arguments. Return a mismatch error if they are
incompatible, otherwise return a no error.
PsychMatchDescriptors compares:
The argument type
The argument size
Argument presense
PsychMatchDescripts can return any of the following values describing the relationship between an
argument provided from the scripting environment and argument requested by a Psychtoolbox module:
PsychError_internal -Internal Psychtoolbox error
PsychError_invalidArg_absent -There was no argument provided
PsychError_invalidArg_type -The argument was present but not the specified type
PsychError_invalidArg_size -The argument was presnet and the specified type but not the specified size
PsychError_none -The argument matched the specified argument
This function should be enhnaced to report the nature of the disagrement
*/
PsychError PsychMatchDescriptors(void)
{
PsychArgDescriptorType *specified, *received;
PsychGetArgDescriptor(&specified, &received);
//check for various bogus conditions resulting only from Psychtoolbox bugs and issue an internal error.
if(specified->position != received->position)
PsychErrorExit(PsychError_internal);
if(specified->direction != received->direction)
PsychErrorExit(PsychError_internal);
if(specified->direction==PsychArgOut) {
if(received->isThere==kPsychArgPresent || received->isThere==kPsychArgFixed)
return(PsychError_none);
else
return(PsychError_invalidArg_absent);
}
if(specified->direction==PsychArgIn){
if(received->isThere==kPsychArgAbsent)
return(PsychError_invalidArg_absent);
//otherwise the argument is present and we proceed to the argument type and size checking block below
}
//if we get to here it means that an input argument was supplied. Check if it agrees in type and size with the specified arg and return
// an error type accordingly
if(!(specified->type & received->type))
return(PsychError_invalidArg_type);
if(received->mDimMin != received->mDimMax || received->nDimMin != received->nDimMax || received->pDimMin != received->pDimMax)
PsychErrorExit(PsychError_internal); //unnecessary mandate
if(received->mDimMin < specified->mDimMin)
return(PsychError_invalidArg_size);
if(received->nDimMin < specified->nDimMin)
return(PsychError_invalidArg_size);
if(specified->pDimMin != kPsychUnusedArrayDimension && received->pDimMin < specified->pDimMin)
return(PsychError_invalidArg_size);
if(specified->mDimMax != kPsychUnboundedArraySize && received->mDimMax > specified->mDimMax)
return(PsychError_invalidArg_size);
if(specified->nDimMax != kPsychUnboundedArraySize && received->nDimMax > specified->nDimMax)
return(PsychError_invalidArg_size);
if(specified->pDimMax != kPsychUnusedArrayDimension && specified->pDimMax != kPsychUnboundedArraySize && received->pDimMax > specified->pDimMax)
return(PsychError_invalidArg_size);
if(received->numDims > 3) //we don't allow matrices with more than 3 dimensions.
return(PsychError_invalidArg_size);
//if we get to here it means that the block above it means
return(PsychError_none);
}
PsychError PsychMatchDescriptorsOld(void)
{
PsychArgDescriptorType *specified, *received;
PsychGetArgDescriptor(&specified, &received);
//check for various bogus conditions resulting only from Psychtoolbox bugs and issue an internal error
if(specified->position != received->position)
PsychErrorExit(PsychError_internal);
if(specified->direction != received->direction)
PsychErrorExit(PsychError_internal);
switch(specified->direction) {
case PsychArgOut:
switch(specified->isRequired){
case kPsychArgRequired:
switch(received->isThere){
case kPsychArgPresent:
goto exitOk; //both the argument is present and the return variable is named within the calling environment.
case kPsychArgFixed:
goto exitOk; //the argument is present but a return variable is not named within the calling environment. In MATLAB this can only be the 1st return argument.
case kPsychArgAbsent:
return(PsychError_invalidArg_absent); //neither a return argument is present nor a return variable is named within the calling environment.
}
case kPsychArgOptional: case kPsychArgAnything:
switch(received->isThere){
case kPsychArgPresent:
goto exitOk;
case kPsychArgFixed:
goto exitOk;
case kPsychArgAbsent:
goto exitOk;
}
}
break;
case PsychArgIn:
switch(specified->isRequired){
case kPsychArgRequired:
switch(received->isThere){
case kPsychArgPresent:
break; //we still need to comppare the actual type and size to specifications.
case kPsychArgFixed:
PsychErrorExitMsg(PsychError_internal,"The input argument descriptor specifies a fixed argument, this property is unallowed for inputs.");
case kPsychArgAbsent:
return(PsychError_invalidArg_absent);
}
break;
case kPsychArgOptional: case kPsychArgAnything:
switch(received->isThere){
case kPsychArgPresent:
break; //we still need to comppare the actual type and size to specifications.
case kPsychArgFixed:
PsychErrorExitMsg(PsychError_internal,"The input argument descriptor secifies a fixed argument, this property is unallowed for inputs.");
case kPsychArgAbsent:
goto exitOk; //we do NOT need to compare the actual type and size to specifications.
}
break;
}
//if we get to here we are assured that both an input argument was specified and there is one there. In this block we compare they type and size of
//specified and provide arguments. For output arguments we skip over this block because those are not assigned types by the calling environment.
if(!(specified->type & received->type))
return(PsychError_invalidArg_type);
if(received->mDimMin != received->mDimMax || received->nDimMin != received->nDimMax || received->pDimMin != received->pDimMax)
PsychErrorExit(PsychError_internal); //unnecessary mandate
if(received->mDimMin < specified->mDimMin)
return(PsychError_invalidArg_size);
if(received->nDimMin < specified->nDimMin)
return(PsychError_invalidArg_size);
if(received->pDimMin < specified->pDimMin)
return(PsychError_invalidArg_size);
if(specified->mDimMax != kPsychUnboundedArraySize && received->mDimMax > specified->mDimMax)
return(PsychError_invalidArg_size);
if(specified->nDimMax != kPsychUnboundedArraySize && received->nDimMax > specified->nDimMax)
return(PsychError_invalidArg_size);
if(specified->pDimMax != kPsychUnboundedArraySize && received->pDimMax > specified->pDimMax)
return(PsychError_invalidArg_size);
if(received->numDims > 3) //we don't allow matrices with more than 3 dimensions.
return(PsychError_invalidArg_size);
break;
}
exitOk:
return(PsychError_none);
}
//local function definitions for ScriptingGlue.cpp
//___________________________________________________________________________________________
psych_bool PsychIsDefaultMat(CONSTmxArray *mat)
{
return (PsychIsEmptyMat(mat) && !mxIsChar(mat));
}
psych_bool PsychIsEmptyMat(CONSTmxArray *mat)
{
return(mxGetM(mat)==0 || mxGetN(mat)==0);
}
//functions for project access to module call arguments (MATLAB)
//___________________________________________________________________________________________
//functions which query the number and nature of supplied arguments
/*
PsychGetNumInputArgs()
-The count excludes the command argument and includes ALL arguments supplied, including
default arguments.
-For the time being, the only way to check if all required arguments are supplied in the
general case of mixed required and optional arguments is to check each individually. Probably
the best way to to fix this is to employ a description of which are required and which optional
and compare that against what was passed to the subfunction.
*/
int PsychGetNumInputArgs(void)
{
if(PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]) //this should probably be just baseFunctionInvoked[recLevel] wo PsychSubfunctionEnabled.
return(nrhsGLUE[recLevel]-1);
else
return(nrhsGLUE[recLevel]);
}
int PsychGetNumOutputArgs(void)
{
return(nlhsGLUE[recLevel]==0 ? 1 : nlhsGLUE[recLevel]);
}
int PsychGetNumNamedOutputArgs(void)
{
return(nlhsGLUE[recLevel]);
}
PsychError PsychCapNumInputArgs(int maxInputs)
{
if(PsychGetNumInputArgs() > maxInputs)
return(PsychError_extraInputArg);
else
return(PsychError_none);
}
PsychError PsychRequireNumInputArgs(int minInputs)
{
if(PsychGetNumInputArgs() < minInputs)
return(PsychError_missingInputArg);
else
return(PsychError_none);
}
PsychError PsychCapNumOutputArgs(int maxNamedOutputs)
{
if(PsychGetNumNamedOutputArgs() > maxNamedOutputs)
return(PsychError_extraOutputArg);
else
return(PsychError_none);
}
/*
The argument is not present if a default m*n=0 matrix was supplied, '' or []
*/
psych_bool PsychIsArgPresent(PsychArgDirectionType direction, int position)
{
int numArgs;
if(direction==PsychArgOut){
return((psych_bool)(PsychGetNumOutputArgs()>=position));
}else{
if((numArgs=PsychGetNumInputArgs())>=position)
return(!(PsychIsDefaultMat(PsychGetInArgMxPtr(position)))); //check if its default
else
return(FALSE);
}
}
/*
The argument is present if anything was supplied, including the default matrix
*/
psych_bool PsychIsArgReallyPresent(PsychArgDirectionType direction, int position)
{
return(direction==PsychArgOut ? PsychGetNumOutputArgs()>=position : PsychGetNumInputArgs()>=position);
}
PsychArgFormatType PsychGetArgType(int position) //this is for inputs because outputs are unspecified by the calling environment.
{
if(!(PsychIsArgReallyPresent(PsychArgIn, position)))
return(PsychArgType_none);
return(PsychGetTypeFromMxPtr(PsychGetInArgMxPtr(position)));
}
size_t PsychGetArgM(int position)
{
if(!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetM(PsychGetInArgMxPtr(position)));
}
size_t PsychGetArgN(int position)
{
if(!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetNOnly(PsychGetInArgMxPtr(position)));
}
size_t PsychGetArgP(int position)
{
if(!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetP(PsychGetInArgMxPtr(position)));
}
/*
PyschCheckInputArgType()
Check that the input argument at the specifid position matches at least one of the types passed in the argType
argument. If the argument violates the proscription exit with an error. Otherwise return a psych_bool indicating
whether the argument was present.
*/
psych_bool PsychCheckInputArgType(int position, PsychArgRequirementType isRequired, PsychArgFormatType argType)
{
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, argType, isRequired, 0,kPsychUnboundedArraySize,0,kPsychUnboundedArraySize,0,kPsychUnboundedArraySize);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
return(acceptArg);
}
/*functions which output arguments.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
-Naming scheme:
-Outputing return arguments:
- "PsychAllocOut*Arg" : allocate and set a pointer to volatile memory to be filled with returned information by the caller.
- "PsychCopyOut*Arg : accept a pointer to ouput values and fill in the return matrix memory with the values.
-Reading input arguments:
- "PsychAllocIn*Arg" : set a pointer to volatile memory allocated by "PsychAllocIn*Arg" and holding the input value.
- "PsychCopyIn*Arg" : accept a pointer to memory and fill in that memory with the input argument values.
-These all supply their own dynamic memory now, even functions which return arguments, and, in the case of
Put functions, even when those arguments are not present ! If you don't want the function to go allocating
memory for an unsupplied return argument, detect the presense of that argument from within your script and
conditionally invoke PsychPut*Arg. This is a feature which allows you to ignore the presense of a return
argument in the case where memory which holds a return argument serves other purposes.
-All dynamic memory provided by these functions is volatile, that is, it is lost when the mex module exits and
returns control to the Matlab environemnt. To make it non volatile, call Psych??? on it.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
*/
psych_bool PsychCopyOutDoubleArg(int position, PsychArgRequirementType isRequired, double value)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1,1,1,1,0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
(*mxpp) = mxCreateDoubleMatrix(1,1,mxREAL);
mxGetPr((*mxpp))[0] = value;
}
return(putOut);
}
/*
PsychAllocOutDoubleArg_2()
usage:
psych_bool PsychAllocOutDoubleArg_2(int position, PsychArgRequirementType isRequired, double **value)
psych_bool PsychAllocOutDoubleArg_2(int position, PsychArgRequirementType isRequired, double **value, PsychGenericScriptType **nativeDouble)
PsychAllocOutDoubleArg_2() is an experimental enhanced version of PsychAllocOutDoubleArg which will accept the kPsychNoArgReturn
constant in the position argument and then return via the optional 4th input a pointer to a native scripting type which holds the
double.
Having a reference to the native type allows us to embed doubles withing cell arrays and structs and to pass doubles as arguments to functions
called within MATLAB from a mex file.
PsychAllocOutDoubleArg_2() should be backwards compatible with PsychAllocOutDoubleArg and could supplant that function.
*/
/*
psych_bool PsychAllocOutDoubleArg_2(int position, PsychArgRequirementType isRequired, double **value, ...)
{
mxArray **mxpp;
va_list ap;
if(position != kPsychNoArgReturn){
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1,1,1,1,0,0);
PsychErrorExit(PsychMatchDescriptors());
mxpp = PsychGetOutArgMxPtr(position);
if(mxpp == NULL){ //Here we allocated memory even if the return argument is not present. Controversial.
*value= (double *)mxMalloc(sizeof(double));
return(FALSE);
}
else{
*mxpp = mxCreateDoubleMatrix3D(1,1,0);
*value = mxGetPrPtr(*mxpp);
return(TRUE);
}
}else{
va_start(ap, value);
*(mxArray**)ap=mxCreateDoubleMatrix3D(1,1,0);
*value = mxGetPrPtr(*(mxArray**)ap);
va_end(ap);
return(TRUE);
}
}
*/
psych_bool PsychAllocOutDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1,1,1,1,0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateDoubleMatrix3D(1,1,0);
*value = mxGetPr(*mxpp);
}else{
mxpp = PsychGetOutArgMxPtr(position);
*value= (double *)mxMalloc(sizeof(double));
}
return(putOut);
}
/*
PsychAllocOutDoubleMatArg()
A)return argument mandatory:
1)return argument not present: exit with an error.
2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
B)return argument optional:
1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double **array)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateDoubleMatrix3D(m,n,p);
*array = mxGetPr(*mxpp);
}else
*array= (double *) mxMalloc(sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
return(putOut);
}
/*
PsychAllocOutFloatMatArg()
This function allocates out a matrix of single precision floating point type,
that is C data type 32-bit float or Matlab/Octave data type single().
A)return argument mandatory:
1)return argument not present: exit with an error.
2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
B)return argument optional:
1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutFloatMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, float **array)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_single, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateFloatMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (float*) mxGetData(*mxpp);
}else
*array = (float*) mxMalloc(sizeof(float) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
return(putOut);
}
/*
PsychCopyOutBooleanArg()
*/
psych_bool PsychCopyOutBooleanArg(int position, PsychArgRequirementType isRequired, PsychNativeBooleanType value)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, 1,1,1,1,0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
(*mxpp) = mxCreateLogicalMatrix(1,1);
mxGetLogicals((*mxpp))[0] = value;
}
return(putOut);
}
/*
PsychAllocOutBooleanArg()
*/
psych_bool PsychAllocOutBooleanArg(int position, PsychArgRequirementType isRequired, PsychNativeBooleanType **value)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, 1,1,1,1,0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
(*mxpp) = mxCreateLogicalMatrix(1,1);
*value = mxGetLogicals((*mxpp));
}else{
mxpp = PsychGetOutArgMxPtr(position);
*value= (PsychNativeBooleanType *)mxMalloc(sizeof(PsychNativeBooleanType));
}
return(putOut);
}
/*
PsychAllocOutBooleanMatArg()
A)return argument mandatory:
1)return argument not present: exit with an error.
2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
B)return argument optional:
1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutBooleanMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, PsychNativeBooleanType **array)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateNativeBooleanMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (PsychNativeBooleanType *)mxGetLogicals(*mxpp);
}else{
*array= (PsychNativeBooleanType *) mxMalloc(sizeof(PsychNativeBooleanType) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
PsychAllocOutUnsignedByteMatArg()
Like PsychAllocOutDoubleMatArg() execept for unsigned bytes instead of doubles.
*/
psych_bool PsychAllocOutUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint8 **array)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint8, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateByteMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (psych_uint8 *)mxGetData(*mxpp);
}else{
*array= (psych_uint8 *) mxMalloc(sizeof(psych_uint8) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
* PsychAllocOutUnsignedInt16MatArg()
*
* Like PsychAllocOutDoubleMatArg() execept for unsigned shorts instead of doubles.
*/
psych_bool PsychAllocOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 **array)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
mwSize dimArray[3];
int numDims;
// Compute output array dimensions:
if (m<=0 || n<=0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims = (p == 0 || p == 1) ? 2 : 3;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateNumericArray(numDims, (mwSize*) dimArray, mxUINT16_CLASS, mxREAL);
*array = (psych_uint16 *)mxGetData(*mxpp);
}else{
*array= (psych_uint16 *) mxMalloc(sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
psych_bool PsychCopyOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double *fromArray)
{
mxArray **mxpp;
double *toArray;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateDoubleMatrix3D(m,n,p);
toArray = mxGetPr(*mxpp);
//copy the input array to the output array now
memcpy(toArray, fromArray, sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
psych_bool PsychCopyOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 *fromArray)
{
mxArray **mxpp;
psych_uint16 *toArray;
PsychError matchError;
psych_bool putOut;
mwSize dimArray[3];
int numDims;
// Compute output array dimensions:
if (m<=0 || n<=0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckmWSizeLimits(m,n,p);
dimArray[0] = (mwSize) m; dimArray[1] = (mwSize) n; dimArray[2] = (mwSize) p;
}
numDims = (p == 0 || p == 1) ? 2 : 3;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m,m,n,n,p,p);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateNumericArray(numDims, (mwSize*) dimArray, mxUINT16_CLASS, mxREAL);
toArray = (psych_uint16*) mxGetData(*mxpp);
//copy the input array to the output array now
memcpy(toArray, fromArray, sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
PsychCopyOutCharArg()
Accept a null terminated string and return it in the specified position.
*/
psych_bool PsychCopyOutCharArg(int position, PsychArgRequirementType isRequired, const char *str)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_char, isRequired, 0, strlen(str),0,strlen(str),0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
*mxpp = mxCreateString(str);
}
return(putOut);
}
/*functions which input arguments.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
*/
/*
A)input argument mandatory:
1)input argument not present: exit with error.
2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
B)input argument optional:
1)input argument not present: return FALSE
2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
*/
// TO DO: Needs to be updated for kPsychArgAnything
psych_bool PsychAllocInDoubleMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, double **array)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,-1,1,-1,0,-1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*m = (int) mxGetM(mxPtr);
*n = (int) mxGetNOnly(mxPtr);
*p = (int) mxGetP(mxPtr);
*array=mxGetPr(mxPtr);
}
return(acceptArg);
}
/* Alloc-in double matrix, but allow for 64-bit dimension specs. */
psych_bool PsychAllocInDoubleMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, double **array)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,-1,1,-1,0,-1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*m = (psych_int64) mxGetM(mxPtr);
*n = (psych_int64) mxGetNOnly(mxPtr);
*p = (psych_int64) mxGetP(mxPtr);
*array=mxGetPr(mxPtr);
}
return(acceptArg);
}
/* Like PsychAllocInFloatMatArg64, but with 32-Bit int type size return-arguments. */
psych_bool PsychAllocInFloatMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, float **array)
{
psych_int64 mb, nb, pb;
psych_bool rc = PsychAllocInFloatMatArg64(position, isRequired, &mb, &nb, &pb, array);
*m = (int) mb;
*n = (int) nb;
*p = (int) pb;
return(rc);
}
/*
Alloc-In a single precision floating point matrix, i.e. a matrix of
C data type 32 bit float, aka Matlab/Octave data type single().
This function allows to alloc in matrices with more than 2^32 elements
per matrix dimension on 64 bit systems. Therefore the returned size
descriptors must be psych_int64 variables, not int variables or bad things
will happen.
If the function receives a double() precision input matrix instead of the
expected single() precision matrix, it will automatically create a temporary
copy, with all values copied/converted from double to single data type, aka
double -> float cast. This is transparent to the caller, so it can always
operate on a returned float matrix -- at a performance penalty for the extra
copy of course.
A)input argument mandatory:
1)input argument not present: exit with error.
2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
B)input argument optional:
1)input argument not present: return FALSE
2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
*/
psych_bool PsychAllocInFloatMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, float **array)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
double* arrayD;
float* arrayF;
psych_int64 i;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_single, isRequired, 1,-1,1,-1,0,-1);
matchError=PsychMatchDescriptors();
// Argument provided, but not of required float type?
if (matchError == PsychError_invalidArg_type) {
// If the input type is double precision floating point, then we convert
// it here into single precision floating point via a temporary buffer.
// This is used for functions which absolutely need float input, e.g.,
// OpenGL-ES rendering code, but should accept double input from usercode
// so usercode doesn not need to be specifically ported for OpenGL-ES platforms.
// Performance may suffer somwehat though...
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,-1,1,-1,0,-1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*m = (psych_int64) mxGetM(mxPtr);
*n = (psych_int64) mxGetNOnly(mxPtr);
*p = (psych_int64) mxGetP(mxPtr);
// Get a double pointer to the double input data matrix:
arrayD = (double*) mxGetData(mxPtr);
// Allocate temporary float input matrix. It will get deallocated
// automatically at return to runtime:
*array = (float*) PsychMallocTemp(sizeof(float) * (*m) * (*n) * (*p));
arrayF = *array;
// Copy/Convert loop:
for (i = (*m) * (*n) * (*p); i > 0; i--) *(arrayF++) = (float) *(arrayD++);
}
return(acceptArg);
}
// Regular path: Matching float (aka single()) matrix/vector provided:
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*m = (psych_int64) mxGetM(mxPtr);
*n = (psych_int64) mxGetNOnly(mxPtr);
*p = (psych_int64) mxGetP(mxPtr);
*array = (float*) mxGetData(mxPtr);
}
return(acceptArg);
}
/*
PsychAllocInIntegerListArg()
In a scriptiong language such as MATLAB where numbers are almost always stored as doubles, this function is useful to check
that the value input is an integer value stored within a double type.
Otherwise it just here to imitate the version written for other scripting languages.
*/
psych_bool PsychAllocInIntegerListArg(int position, PsychArgRequirementType isRequired, int *numElements, int **array)
{
int m, n, p, i;
double *doubleMatrix;
psych_bool isThere;
isThere=PsychAllocInDoubleMatArg(position, isRequired, &m, &n, &p, &doubleMatrix);
if(!isThere)
return(FALSE);
p= (p==0) ? 1 : p;
if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
return(FALSE);
}
*numElements = m * n * p;
*array = (int*) mxMalloc((size_t) *numElements * sizeof(int));
for(i=0; i < *numElements; i++){
if(!PsychIsIntegerInDouble(doubleMatrix+i))
PsychErrorExit(PsychError_invalidIntegerArg);
(*array)[i] = (int) doubleMatrix[i];
}
return(TRUE);
}
/*
PsychAllocInByteMatArg()
Like PsychAllocInDoubleMatArg() except it returns an array of unsigned bytes.
*/
psych_bool PsychAllocInUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, unsigned char **array)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_uint8, isRequired, 1,-1,1,-1,0,-1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*m = (int) mxGetM(mxPtr);
*n = (int) mxGetNOnly(mxPtr);
*p = (int) mxGetP(mxPtr);
*array=(unsigned char *)mxGetData(mxPtr);
}
return(acceptArg);
}
/*
PsychCopyInDoubleArg()
For 1x1 double.
Return in *value a double passed in the specified position, or signal an error if there is no
double there and the argument is required, or don't change "value" if the argument is optional
and none is supplied.
Note that if the argument is optional and ommitted PsychGetDoubleArg won't overwrite *value, allowing
for specification of default values within project files without checking for their
presense and conditinally filing in values.
*/
// TO DO: Needs to be updated for kPsychArgAnything
psych_bool PsychCopyInDoubleArg(int position, PsychArgRequirementType isRequired, double *value)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,1,1,1,1,1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*value=mxGetPr(mxPtr)[0];
}
return(acceptArg);
}
/*
Like PsychCopyInDoubleArg() with the additional restriction that the passed value not have a fractoinal componenet
and that the it fit within thebounds of a C integer
We could also accept matlab native integer types by specifying a conjunction of those as the third argument
in the PsychSetSpecifiedArgDescriptor() call, but why bother ?
*/
psych_bool PsychCopyInIntegerArg(int position, PsychArgRequirementType isRequired, int *value)
{
const mxArray *mxPtr;
double tempDouble;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,1,1,1,1,1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
tempDouble=mxGetPr(mxPtr)[0];
if(!PsychIsIntegerInDouble(&tempDouble))
PsychErrorExit(PsychError_invalidIntegerArg);
*value=(int)tempDouble;
}
return(acceptArg);
}
psych_bool PsychCopyInIntegerArg64(int position, PsychArgRequirementType isRequired, psych_int64 *value)
{
const mxArray *mxPtr;
double tempDouble;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,1,1,1,1,1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
tempDouble=mxGetPr(mxPtr)[0];
if(!PsychIsInteger64InDouble(&tempDouble))
PsychErrorExit(PsychError_invalidIntegerArg);
*value= (psych_int64) tempDouble;
}
return(acceptArg);
}
/*
PsychAllocInDoubleArg()
*/
psych_bool PsychAllocInDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1,1,1,1,1,1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
*value=mxGetPr(mxPtr);
}
return(acceptArg);
}
/*
PsychAllocInCharArg()
Reads in a string and sets *str to point to the string.
This function violates the rule for AllocIn fuctions that if the argument is optional and absent we allocate
space. That turns out to be an unuseful feature anyway, so we should probably get ride of it.
The second argument has been modified to passively accept, without error, an argument in the specified position of non-character type.
0 kPsychArgOptional Permit either an argument of the specified type or no argument. An argument of any a different type is an error.
1 kPsychArgRequired Permit only an argument of the specifed type. If no argument is present, exit with error.
2 kPsychArgAnything Permit any argument type without error, but only read the specified type.
*/
psych_bool PsychAllocInCharArg(int position, PsychArgRequirementType isRequired, char **str)
{
const mxArray *mxPtr;
int status;
psych_uint64 strLen;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_char, isRequired, 0, kPsychUnboundedArraySize ,0, kPsychUnboundedArraySize, 0 , 1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
strLen = ((psych_uint64) mxGetM(mxPtr) * (psych_uint64) mxGetNOnly(mxPtr) * (psych_uint64) sizeof(mxChar)) + 1;
if (strLen >= INT_MAX) PsychErrorExitMsg(PsychError_user, "Tried to pass in a string with more than 2^31 - 1 characters. Unsupported!");
*str = (char *) PsychCallocTemp((size_t) strLen, sizeof(char));
status = mxGetString(mxPtr, *str, (mwSize) strLen);
if(status!=0)
PsychErrorExitMsg(PsychError_internal, "mxGetString failed to get the string");
}
return(acceptArg);
}
/*
Get a psych_bool flag from the specified argument position. The matlab type can be be psych_bool, uint8, or
char. If the numerical value is equal to zero or if its empty then the flag is FALSE, otherwise the
flag is TRUE.
PsychGetFlagArg returns TRUE if the argument was present and false otherwise:
A- Argument required
1- Argument is present: load *argVal and return TRUE
2- Argument is absent: exit with an error
B- Argument is optional
1- Argument is present: load *argVal and return TRUE
2- Argument is absent: leave *argVal alone and return FALSE
Note: if we modify PsychGetDoubleArg to accept all types and coerce them, then we could simplify by
calling that instead of doing all of this stuff...
*/
psych_bool PsychAllocInFlagArg(int position, PsychArgRequirementType isRequired, psych_bool **argVal)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType)(PsychArgType_double|PsychArgType_char|PsychArgType_uint8|PsychArgType_boolean),
isRequired, 1,1,1,1,kPsychUnusedArrayDimension,kPsychUnusedArrayDimension);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
//unlike other PsychAllocIn* functions, here we allocate new memory and copy the input to it rather than simply returning a pointer into the received array.
//That's because we want the booleans returned to the caller by PsychAllocInFlagArg() to alwyas be 8-bit booleans, yet we accept as flags either 64-bit double, char,
//or logical type. Restricting to logical type would be a nuisance in the MATLAB environment and does not solve the problem because on some platforms MATLAB
//uses for logicals 64-bit doubles and on others 8-bit booleans (check your MATLAB mex/mx header files).
*argVal = (psych_bool *)mxMalloc(sizeof(psych_bool));
mxPtr = PsychGetInArgMxPtr(position);
if(mxIsLogical(mxPtr)){
if(mxGetLogicals(mxPtr)[0])
**argVal=(psych_bool)1;
else
**argVal=(psych_bool)0;
}else{
if(mxGetScalar(mxPtr))
**argVal=(psych_bool)1;
else
**argVal=(psych_bool)0;
}
}
return(acceptArg); //the argument was not present (and optional).
}
psych_bool PsychAllocInFlagArgVector(int position, PsychArgRequirementType isRequired, int *numElements, psych_bool **argVal)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
int i;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
// MK: Disabled. Doesn't work without conversion of mxGetData into many subcases...
// PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType)(PsychArgType_double | PsychArgType_char | PsychArgType_uint8 | PsychArgType_boolean),
// isRequired, 1, kPsychUnboundedArraySize, 1, kPsychUnboundedArraySize, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
// Ok. Let's see if anybody ever complains about this...
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType)(PsychArgType_double | PsychArgType_boolean),
isRequired, 1, kPsychUnboundedArraySize, 1, kPsychUnboundedArraySize, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
if ((psych_uint64) mxGetM(mxPtr) * (psych_uint64) mxGetN(mxPtr) >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
*numElements = 0;
return(FALSE);
}
*numElements = (int) (mxGetM(mxPtr) * mxGetN(mxPtr));
//unlike other PsychAllocIn* functions, here we allocate new memory and copy the input to it rather than simply returning a pointer into the received array.
//That's because we want the booleans returned to the caller by PsychAllocInFlagArgVector() to alwyas be 8-bit booleans, yet we accept as flags either 64-bit double, char,
//or logical type. Restricting to logical type would be a nuisance in the MATLAB environment and does not solve the problem because on some platforms MATLAB
//uses for logicals 64-bit doubles and on others 8-bit booleans (check your MATLAB mex/mx header files).
*argVal = (psych_bool *)mxMalloc(sizeof(psych_bool) * ((size_t) *numElements));
for(i=0; i< *numElements;i++){
if(mxIsLogical(mxPtr)){
if(mxGetLogicals(mxPtr)[i])
(*argVal)[i]=(psych_bool)1;
else
(*argVal)[i]=(psych_bool)0;
}else{
if(mxGetPr(mxPtr)[i])
(*argVal)[i]=(psych_bool)1;
else
(*argVal)[i]=(psych_bool)0;
}
}
}
return(acceptArg); //the argument was not present (and optional).
}
/*
PsychCopyInFlagArg()
*/
psych_bool PsychCopyInFlagArg(int position, PsychArgRequirementType isRequired, psych_bool *argVal)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType)(PsychArgType_double|PsychArgType_char|PsychArgType_uint8|PsychArgType_boolean),
isRequired, 1,1,1,1,kPsychUnusedArrayDimension,kPsychUnusedArrayDimension);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
if(mxIsLogical(mxPtr)){
if(mxGetLogicals(mxPtr)[0])
*argVal=(psych_bool)1;
else
*argVal=(psych_bool)0;
}else{
if(mxGetScalar(mxPtr))
*argVal=(psych_bool)1;
else
*argVal=(psych_bool)0;
}
}
return(acceptArg); //the argument was not present (and optional).
}
psych_bool PsychCopyOutFlagArg(int position, PsychArgRequirementType isRequired, psych_bool argVal)
{
return(PsychCopyOutDoubleArg(position, isRequired, (double)argVal));
}
/*
PsychAllocOutFlagListArg()
This seems silly. Find out where its used and consider using an array of booleans instead. Probably the best thing
is just to transparently map arrays of booleans to logical arrays MATLAB.
In Matlab our psych_bool flags are actually doubles. This will not be so in all scripting languages. We disguise the
implementation of psych_bool flags within the scripting envrironment by making the flag list opaque and
providing accessor fucntions PsychLoadFlagListElement, PsychSetFlagListElement, and PsychClearFlagListElement.
TO DO: maybe this should return a logical array instead of a bunch of doubles. Itwould be better for modern versions
of MATLAB which store doubles as bytes internally.
*/
psych_bool PsychAllocOutFlagListArg(int position, PsychArgRequirementType isRequired, int numElements, PsychFlagListType *flagList)
{
return(PsychAllocOutDoubleMatArg(position, isRequired, (int)1, numElements, (int)0, flagList));
}
void PsychLoadFlagListElement(int index, psych_bool value, PsychFlagListType flagList)
{
flagList[index]=(double)value;
}
void PsychSetFlagListElement(int index, PsychFlagListType flagList)
{
flagList[index]=(double)1;
}
void PsychClearFlagListElement(int index, PsychFlagListType flagList)
{
flagList[index]=(double)0;
}
// functions which allocate native types without assigning them to return arguments.
// this is useful for embedding native structures within each other.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
PsychAllocateNativeDoubleMat()
Create an opaque native matrix. Return both
- Its handle, which is specified when nesting the native matrix nesting withing other native types.
- A handle to the C array of doubles enclosed by the native type.
If (*cArray != NULL) we copy m*n*p elements from cArray into the native matrix, otherwise not.
In any case, *cArray will point to the C array of doubles enclosed by the native type in the end.
*/
void PsychAllocateNativeDoubleMat(psych_int64 m, psych_int64 n, psych_int64 p, double **cArray, PsychGenericScriptType **nativeElement)
{
double *cArrayTemp;
PsychCheckmWSizeLimits(m, n, p);
*nativeElement = mxCreateDoubleMatrix3D(m,n,p);
cArrayTemp = mxGetPr(*nativeElement);
if(*cArray != NULL) memcpy(cArrayTemp, *cArray, sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
*cArray=cArrayTemp;
}
double PsychGetNanValue(void)
{
return(mxGetNaN());
}
/* PsychAllocInCharFromNativeArg()
*
* Given a pointer to a native PsychGenericScriptType datatype which represents character
* strings in the runtime's native encoding, try to extract a standard char-string of it and
* return it in the referenced char *str. Return TRUE on success, FALSE on failure, e.g., because
* the nativeCharElement didn't contain a parseable string.
*
*/
psych_bool PsychAllocInCharFromNativeArg(PsychGenericScriptType *nativeCharElement, char **str)
{
mxArray *mxPtr;
int status;
psych_uint64 strLen;
*str = NULL;
mxPtr = (mxArray*) nativeCharElement;
strLen = ((psych_uint64) mxGetM(mxPtr) * (psych_uint64) mxGetNOnly(mxPtr) * (psych_uint64) sizeof(mxChar)) + 1;
if (strLen >= INT_MAX) PsychErrorExitMsg(PsychError_user, "Tried to pass in a string with more than 2^31 - 1 characters. Unsupported!");
*str = (char *) PsychCallocTemp((size_t) strLen, sizeof(char));
status = mxGetString(mxPtr, *str, (mwSize) strLen);
if(status!=0) return(FALSE);
return(TRUE);
}
/* PsychRuntimeGetPsychtoolboxRoot()
*
* Try to retrieve filesystem path to Psychtoolbox root folder (the result from PsychtoolboxRoot() in Matlab/Octave)
* or users configuration folder (the result from PsychtoolboxConfigDir() in Matlab/Octave) from runtime. The result,
* if any, will be cached for later fast lookup.
*
* getConfigDir = TRUE => Return PsychtoolboxConfigDir().
* getConfigDir = FALSE => Return PsychtoolboxRoot().
*
* This function may fail to retrieve the path, in which case it returns an empty null-terminated string, i.e., strlen() == 0.
* On successfull recovery of the path, returns a const char* to a readonly string which encodes the path.
*
*/
const char* PsychRuntimeGetPsychtoolboxRoot(psych_bool getConfigDir)
{
static psych_bool firstTime = TRUE;
static char psychtoolboxRootPath[FILENAME_MAX+1];
static char psychtoolboxConfigPath[FILENAME_MAX+1];
char* myPathvarChar = NULL;
mxArray *plhs[1]; // Capture the runtime result of PsychtoolboxRoot/ConfigDir
if (firstTime) {
// Reset firstTime flag:
firstTime = FALSE;
// Init to null-terminated empty strings, so it is well-defined in case of error:
psychtoolboxRootPath[0] = 0;
psychtoolboxConfigPath[0] = 0;
mexSetTrapFlag(1); // Tell Octave/MATLAB that we'll handle exceptions
// We could have used mexCallMATLABWithTrap below, but Octave doesn't support it.
// Unfortunately, MATLAB plans to deprecate mexSetTrapFlag in lieu of *WithTrap, so
// we'll need to patch Octave or make some sort of wrapper function in here.
// Call into runtime to get the path to the root folder: This will return 0 on success.
// A non-zero return value probably means that the script wasn't in the path. When that
// happens, there will be an error in the command window, but control stays with the mex
// file (thanks to mexSetTrapFlag(1) above) and it'll continue to run.
if (0 == mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxRoot")) {
myPathvarChar = mxArrayToString(plhs[0]);
if (myPathvarChar) {
strncpy(psychtoolboxRootPath, myPathvarChar, FILENAME_MAX);
mxFree(myPathvarChar);
}
}
mxDestroyArray(plhs[0]);
// At this point we did our best and psychtoolboxRootPath is valid: Either a path string,
// or an empty string signalling failure to get the path.
// Same game again for PsychtoolboxConfigDir:
if (0 == mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxConfigDir")) {
myPathvarChar = mxArrayToString(plhs[0]);
if (myPathvarChar) {
strncpy(psychtoolboxConfigPath, myPathvarChar, FILENAME_MAX);
mxFree(myPathvarChar);
}
}
mxDestroyArray(plhs[0]);
mexSetTrapFlag(0); // Tell the runtime that we'll no longer handle exceptions
}
// Return whatever we've got:
return((getConfigDir) ? &psychtoolboxConfigPath[0] : &psychtoolboxRootPath[0]);
}
/* PsychCopyInPointerArg() - Copy in a void* memory pointer which is
* encoded as a 32 bit or 64 bit unsigned integer, depending if this
* is a 32 bit or 64 bit build of Psychtoolbox.
*/
psych_bool PsychCopyInPointerArg(int position, PsychArgRequirementType isRequired, void **ptr)
{
const mxArray *mxPtr;
PsychError matchError;
psych_bool acceptArg;
psych_bool is64Bit;
// 64 bit build?
is64Bit = sizeof(size_t) > 4;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, ((is64Bit) ? PsychArgType_uint64 : PsychArgType_uint32), isRequired, 1,1,1,1,1,1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if(acceptArg){
mxPtr = PsychGetInArgMxPtr(position);
if (is64Bit) {
*ptr = (void*) (size_t) (((psych_uint64*) mxGetData(mxPtr))[0]);
} else {
*ptr = (void*) (size_t) (((psych_uint32*) mxGetData(mxPtr))[0]);
}
}
return(acceptArg);
}
/* PsychCopyOutPointerArg() - Copy out a void* memory pointer which gets
* encoded as a 32 bit or 64 bit unsigned integer, depending if this
* is a 32 bit or 64 bit build of Psychtoolbox.
*/
psych_bool PsychCopyOutPointerArg(int position, PsychArgRequirementType isRequired, void* ptr)
{
mxArray **mxpp;
PsychError matchError;
psych_bool putOut;
psych_bool is64Bit;
mwSize dimArray[2];
int numDims = 2;
dimArray[0] = dimArray[1] = 1;
// 64 bit build?
is64Bit = sizeof(size_t) > 4;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, ((is64Bit) ? PsychArgType_uint64 : PsychArgType_uint32), isRequired, 1,1,1,1,0,0);
matchError=PsychMatchDescriptors();
putOut=PsychAcceptOutputArgumentDecider(isRequired, matchError);
if(putOut){
mxpp = PsychGetOutArgMxPtr(position);
if (is64Bit) {
*mxpp = mxCreateNumericArray(numDims, (mwSize*) dimArray, mxUINT64_CLASS, mxREAL);
((psych_uint64*) mxGetData(*mxpp))[0] = (psych_uint64) ((size_t) ptr);
} else {
*mxpp = mxCreateNumericArray(numDims, (mwSize*) dimArray, mxUINT32_CLASS, mxREAL);
((psych_uint32*) mxGetData(*mxpp))[0] = (psych_uint32) ((size_t) ptr);
}
}
return(putOut);
}
/* PsychRuntimePutVariable()
*
* CAUTION: Not supported on Matlab R2006b or earlier on the MS-Windows platform! Function will fail on such
* runtimes. PTB functions that rely on this function will not work on pre R2007a on Windows!
*
* Copy a given native variable of type PsychGenericScriptType, e.g., as created by PsychAllocateNativeDoubleMat()
* in case of a double matrix, as a new variable into a specified workspace.
*
* 'workspace' Namestring of workspace: "base" copy to base workspace. "caller" copy into calling functions workspace,
* 'global' create new global variable with given name.
*
* CAUTION: Matlab and Octave show different behaviour when using the "caller" workspace! It is strongly
* recommended to avoid the "caller" workspace to avoid ugly compatibility bugs!!
*
* 'variable' Name of the new variable.
*
* 'pcontent' The actual content that should be copied into the variable.
*
*
* Example: You want to create a double matrix with (m,n,p) rows/cols/layers as a variable 'myvar' in the base
* workspace and initialize it with content from the double array mycontent:
*
* PsychGenericScriptType* newvar = NULL;
* double* newvarcontent = mycontent; // mycontent is double* onto existing data.
* PsychAllocateNativeDoubleMat(m, n, p, &newvarcontent, &newvar);
* At this point, newvar contains the content of 'mycontent' and 'newvarcontent' points to
* the copy. You could alter mycontent now without affecting the content of newvarcontent or newvar.
*
* Create the corresponding variable in the base workspace:
* PsychRuntimePutVariable("base", "myvar", newvar);
*
* The calling M-File etc. can access the content newvarcontent under the variable name 'myvar'.
*
* As usual, the double matrix newvarcontent will be auto-destroyed when returning to the runtime,
* but the variable 'myvar' will remain valid until it goes out of scope.
*
* Returns zero on success, non-zero on failure.
*/
int PsychRuntimePutVariable(const char* workspace, const char* variable, PsychGenericScriptType* pcontent)
{
#if PSYCH_LANGUAGE == PSYCH_MATLAB
return(mexPutVariable(workspace, variable, pcontent));
#else
PsychErrorExitMsg(PsychError_unimplemented, "Function PsychRuntimePutVariable() not yet supported for this runtime system!");
#endif
}
/* PsychRuntimeGetVariable()
*
* CAUTION: Not supported on Matlab R2006b or earlier on the MS-Windows platform! Function will fail on such
* runtimes. PTB functions that rely on this function will not work on pre R2007a on Windows!
*
* Copy a given native variable of type PsychGenericScriptType, as a new variable from a specified workspace.
*
* 'workspace' Namestring of workspace: "base" copy from base workspace. "caller" copy from calling functions workspace,
* 'global' get global variable with given name.
*
* CAUTION: Matlab and Octave show different behaviour when using the "caller" workspace! It is strongly
* recommended to avoid the "caller" workspace to avoid ugly compatibility bugs!!
*
* 'variable' Name of the variable to get a copy of.
*
* 'pcontent' Pointer to a PsychGenericScriptType* where the location of the new variables content should be stored.
* The pointed to pointer will be set to NULL on failure.
*
* Returns TRUE on success, FALSE on failure.
*/
psych_bool PsychRuntimeGetVariable(const char* workspace, const char* variable, PsychGenericScriptType** pcontent)
{
// Init to empty default:
*pcontent = NULL;
#if PSYCH_LANGUAGE == PSYCH_MATLAB
*pcontent = mexGetVariable(workspace, variable);
// Return true on success, false on failure:
return((*pcontent) ? TRUE : FALSE);
#else
PsychErrorExitMsg(PsychError_unimplemented, "Function PsychRuntimeGetVariable() not yet supported for this runtime system!");
#endif
}
/* PsychRuntimeGetVariablePtr()
*
* CAUTION: Not supported on Matlab R2006b or earlier on the MS-Windows platform! Function will fail on such
* runtimes. PTB functions that rely on this function will not work on pre R2007a on Windows!
*
* Retrieve a *read-only* pointer to a given native variable of type PsychGenericScriptType in the specified workspace.
* The variable is not copied, just referenced, so you *must not modify/write to the location* only perform read access!
*
* 'workspace' Namestring of workspace: "base" get from base workspace. "caller" get from calling functions workspace,
* 'global' get global variable with given name.
*
* CAUTION: Matlab and Octave show different behaviour when using the "caller" workspace! It is strongly
* recommended to avoid the "caller" workspace to avoid ugly compatibility bugs!!
*
* 'variable' Name of the variable to get a reference.
*
* 'pcontent' Pointer to a PsychGenericScriptType* where the location of the variables content should be stored.
* The pointed to pointer will be set to NULL on failure.
*
* Returns TRUE on success, FALSE on failure.
*/
psych_bool PsychRuntimeGetVariablePtr(const char* workspace, const char* variable, PsychGenericScriptType** pcontent)
{
// Init to empty default:
*pcontent = NULL;
#if PSYCH_LANGUAGE == PSYCH_MATLAB
*pcontent = (PsychGenericScriptType*) mexGetVariablePtr(workspace, variable);
// Return true on success, false on failure:
return((*pcontent) ? TRUE : FALSE);
#else
PsychErrorExitMsg(PsychError_unimplemented, "Function PsychRuntimeGetVariablePtr() not yet supported for this runtime system!");
#endif
}
/* PsychRuntimeEvaluateString()
*
* Simple function evaluation by scripting environment via feval() style functions.
* This asks the runtime environment to execute/evaluate the given string 'cmdstring',
* passing no return arguments back, except an error code.
*
*/
int PsychRuntimeEvaluateString(const char* cmdstring)
{
#if PSYCH_LANGUAGE == PSYCH_MATLAB
return(mexEvalString(cmdstring));
#else
int parse_status;
// Call Octaves evalstring-parser:
eval_string(std::string(cmdstring), (bool) TRUE, parse_status);
return(parse_status);
#endif
}
//end of Matlab & Octave only stuff.
#endif
|