File: ColorCal.c

package info (click to toggle)
psychtoolbox-3 3.0.14.20170103%2Bgit6-g605ff5c.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 103,044 kB
  • ctags: 69,483
  • sloc: ansic: 167,371; cpp: 11,232; objc: 4,708; sh: 1,875; python: 383; php: 344; makefile: 207; java: 113
file content (568 lines) | stat: -rw-r--r-- 16,878 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// ColorCal.c
//
// Author: Christopher Broussard
// Date: 2/16/09

#include "ColorCal.h"

// Globals
IOUSBDeviceInterface **ccDevice = NULL;
bool exitFunctionRegistered = false;


void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
{
	IOUSBDevRequest request;
	char command[256], buffer[64];
	int i;
	
	// Verify the number of input arguments.
	if (nrhs == 0) {
		mexErrMsgTxt("Usage: ouputData = ColorCal('command', [inputData])");
	}
	
	// Check to see if the first argument is a string.
	if (mxIsChar(prhs[0]) == false) {
		mexErrMsgTxt("First parameter must be a command string.");
	}
	
	// If the device isn't open, go ahead and open it.
	if (ccDevice == NULL) {
		mexPrintf("- Opening ColorCal device...");
		if (OpenDevice() == true) {
			mexPrintf("Done\n");
		}
		else {
			mexErrMsgTxt("(ColorCal) ColorCal2 device not attached to the computer.");
		}
	}
	
	// Make sure the exit function is registered.
	if (exitFunctionRegistered == false) {
		mexAtExit(CloseDevice);
		exitFunctionRegistered = true;
	}
	
	// Extract the command.
	if (mxGetString(prhs[0], command, 256)) {
		mexErrMsgTxt("(ColorCal) Failed to extract command string.");
	}
	
	if (strcasecmp("LEDOn", command) == 0) {
		request.bmRequestType = 0x40;
		request.wValue = 2;
		request.wLength = 0;
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to turn on LED.");
		}
	}
	else if (strcasecmp("LEDOff", command) == 0) {
		request.bmRequestType = 0x40;
		request.wValue = 3;
		request.wLength = 0;
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to turn off LED.");
		}
	}
	else if (strcasecmp("GetRawData", command) == 0) {
		UInt32 fatBuffer[7];
		
		// Create the fieldnames for the structure we'll use to return the data.
		char **fieldNames = (char**)mxMalloc(7*sizeof(char*));
		for (i = 0; i < 7; i++) {
			fieldNames[i] = (char*)mxMalloc(16*sizeof(char));
			
			switch (i) {
				case 0:
					strcpy(fieldNames[i], "Xdata");
					break;
				case 1:
					strcpy(fieldNames[i], "Xzero");
					break;
				case 2:
					strcpy(fieldNames[i], "Ydata");
					break;
				case 3:
					strcpy(fieldNames[i], "Yzero");
					break;
				case 4:
					strcpy(fieldNames[i], "Zdata");
					break;
				case 5:
					strcpy(fieldNames[i], "Zzero");
					break;
				case 6:
					strcpy(fieldNames[i], "Trigger");
					break;
			}
		}
		plhs[0] = mxCreateStructMatrix(1, 1, 7, (const char**)fieldNames);

		request.bmRequestType = 0xC0;
		request.wValue = 4;
		request.wLength = 28;
		request.pData = fatBuffer;
		
		// Send read request.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to read raw data.");
		}
		
#ifdef __ppc__
		// Swap the byte order of the results on PPC machines.
		for (i = 0; i < 7; i++) {
			fatBuffer[i] = Endian32_Swap(fatBuffer[i]);
		}
#endif

		//mexPrintf("%d\n", fatBuffer[0]);
		
		// Add the results to the struct we'll return to Matlab.
		mxSetField(plhs[0], 0, "Xdata", mxCreateDoubleScalar((double)fatBuffer[0]));
		mxSetField(plhs[0], 0, "Xzero", mxCreateDoubleScalar((double)fatBuffer[1]));
		mxSetField(plhs[0], 0, "Ydata", mxCreateDoubleScalar((double)fatBuffer[2]));
		mxSetField(plhs[0], 0, "Yzero", mxCreateDoubleScalar((double)fatBuffer[3]));
		mxSetField(plhs[0], 0, "Zdata", mxCreateDoubleScalar((double)fatBuffer[4]));
		mxSetField(plhs[0], 0, "Zzero", mxCreateDoubleScalar((double)fatBuffer[5]));
		mxSetField(plhs[0], 0, "Trigger", mxCreateDoubleScalar((double)fatBuffer[6]));
	}
	else if (strcasecmp("MeasureXYZ", command) == 0) {
		float xxx, yyy, zzz;
		request.bmRequestType = 0x40;
		request.wValue = 1;
		request.wLength = 32;
		buffer[0] = 'M'; buffer[1] = 'E'; buffer[2] = 'S';
		request.pData = buffer;
		
		// Send the request to make a measurement.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to send measurement request.");
		}
		
		// Grab the result.
		request.bmRequestType = 0xC0;
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to get measurement.");
		}
		
		// Parse the results.
		sscanf(buffer, "OK00,%6f,%6f,%6f", &xxx, &yyy, &zzz);
		
		// Setup the returned variables.
		plhs[0] = mxCreateDoubleScalar((double)xxx);
		plhs[1] = mxCreateDoubleScalar((double)yyy);
		plhs[2] = mxCreateDoubleScalar((double)zzz);
	}
	else if (strcasecmp("ZeroCalibration", command) == 0) {
		request.bmRequestType = 0x40;
		request.wValue = 1;
		request.wLength = 32;
		buffer[0] = 'U'; buffer[1] = 'Z'; buffer[2] = 'C';
		request.pData = buffer;
		
		// Send the request to zero the calibration.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to send zero calibration request.");
		}
		
		// Grab the result.
		request.bmRequestType = 0xC0;
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to get zero calibration result.");
		}
		
		if (strcmp("OK00\n", buffer) == 0) {
			plhs[0] = mxCreateDoubleScalar(1.0);
		}
		else if (strcmp("ER11\n", buffer) == 0) {
			plhs[0] = mxCreateDoubleScalar(0.0);
		}
		else {
			mexPrintf("* Buffer Data: %s\n", buffer);
			mexErrMsgTxt("(ColorCal) Failed to parse zero calibration return code.");
		}
	}
	else if (strcasecmp("ReadColorMatrix", command) == 0 || strcasecmp("ReadColourMatrix", command) == 0) {
		int xxx, yyy, zzz;
		int row;
		
		// Create the mxArray to hold the data.
		plhs[0] = mxCreateDoubleMatrix(9, 3, mxREAL);
		plhs[1] = mxCreateDoubleMatrix(9, 3, mxREAL);
		double *pr = mxGetPr(plhs[0]);	// Pointer to converted data.
		double *rpr = mxGetPr(plhs[1]); // Pointer to raw data.
		
		for (row = 0; row < 9; row++) {
			request.bmRequestType = 0x40;
			request.wValue = 1;
			request.wLength = 32;
			buffer[0] = 'r'; buffer[1] = '0'; buffer[2] = row +'1';
			request.pData = buffer;
			
			// Send the request to read the matrix.
			if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
				mexErrMsgTxt("(ColorCal) Failed to send read matrix request.");
			}
			
			// Grab the result.
			request.bmRequestType = 0xC0;
			if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
				mexErrMsgTxt("(ColorCal) Failed to read matrix.");
			}
			
			// Parse the results.
			sscanf(buffer, "OK00,%5d,%5d,%5d", &xxx, &yyy, &zzz);
			
			// Converted data.
			pr[row] = (double)DefunnyMatrixValue(xxx);
			pr[row+9] = (double)DefunnyMatrixValue(yyy);
			pr[row+18] = (double)DefunnyMatrixValue(zzz);
			
			// Raw data.
			rpr[row] = (double)xxx;
			rpr[row+9] = (double)yyy;
			rpr[row+18] = (double)zzz;
		}
	}
	else if (strcasecmp("DeviceInfo", command) == 0) {
		int rom_version, build_number, serial_number;
		
		request.bmRequestType = 0x40;
		request.wValue = 1;
		request.wLength = 32;
		buffer[0] = 'I'; buffer[1] = 'D'; buffer[2] = 'R';
		request.pData = buffer;
		
		// Send the request to get the device info.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to send device info request.");
		}
		
		// Grab the result.
		request.bmRequestType = 0xC0;
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to get device info.");
		}
		
		// Parse the results.
		sscanf(buffer, "OK00,1,%3d,100.10,%8d,%3d", &rom_version, &serial_number, &build_number);
		
		// Add the results to Matlab.
		plhs[0] = mxCreateDoubleScalar((double)rom_version);
		plhs[1] = mxCreateDoubleScalar((double)serial_number);
		plhs[2] = mxCreateDoubleScalar((double)build_number);
	}
	else if (strcasecmp("ResetEEProm", command) == 0) {
		request.bmRequestType = 0x40;
		request.wValue = 7;
		request.wLength = 0;
		
		// Send the reset command.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to send reset command.");
		}
	}
	else if (strcasecmp("StartBootloader", command) == 0) {
		request.bmRequestType = 0x40;
		request.wValue = 99;
		request.wLength = 0;
		
		// Send the bootloader command.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to send bootloader command.");
		}
	}
	else if (strcasecmp("SetTriggerThreshold", command) == 0) {		
		request.bmRequestType = 0x40;
		request.wValue = 8;
		request.wLength = 0;
		int triggerValue;
		
		// Make sure that the user passed a threshold value.
		if (nrhs != 2) {
			mexErrMsgTxt("(ColorCal) Trigger value required.");
		}
		
		// Grab the trigger value.
		triggerValue = (int)mxGetScalar(prhs[1]);
		request.wIndex = (UInt16)triggerValue;
		
		// Send the set trigger threshold command.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to set the trigger threshold.");
		}
	}
	else if (strcasecmp("SetLEDFunction", command) == 0) {
		int tValue;
		
		request.bmRequestType = 0x40;
		request.wValue = 9;
		request.wLength = 0;
		
		if (nrhs != 2) {
			mexErrMsgTxt("(ColorCal) LED function value required.");
		}
		
		// Get the LED trigger value and make sure it's valid.
		tValue = (int)mxGetScalar(prhs[1]);
		if (tValue < 0 || tValue > 1) {
			mexErrMsgTxt("(ColorCal) LED function value must be 0 or 1.");
		}
		request.wIndex = (UInt16)tValue;
		
		// Send the new LED function value.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to set the LED function value.");
		}
	}
	else if (strcasecmp("SetColorMatrix", command) == 0 || strcasecmp("SetColourMatrix", command) == 0) {
		UInt16 cBuffer[9];
		size_t dims[2];
		double *pr;
		int matrixIndex;
		
		request.bmRequestType = 0x40;
		request.wValue = 6;
		request.wLength = 18;
		request.pData = cBuffer;
		
		// Make sure that the user passed a matrix index and matrix data.
		if (nrhs != 3) {
			mexErrMsgTxt("(ColorCal) Color matrix and index required.");
		}
		
		// Make sure that the matrix index is in the range [0,2].
		matrixIndex = (int)mxGetScalar(prhs[1]);
		if (matrixIndex < 0 || matrixIndex > 2) {
			mexErrMsgTxt("(ColorCal) Matrix index must be in the range [0,2].");
		}
		request.wIndex = (UInt16)matrixIndex;
		
		// Check the matrix dimensions.
		if (mxGetNumberOfDimensions(prhs[2]) != 2) {
			mexErrMsgTxt("(ColorCal) Matrix must only have 2 dimensions.");
		}
		dims[0] = mxGetM(prhs[2]); dims[1] = mxGetN(prhs[2]);
		if (dims[0] != 3 || dims[1] != 3) {
			mexErrMsgTxt("(ColorCal) Matrix must be 3x3.");
		}
		
		// Populate the data phase by iterating over each row.
		pr = mxGetPr(prhs[2]);
		for (i = 0; i < 3; i++) {
			cBuffer[i*3] = RefunnyMatrixValue(pr[i]);
			cBuffer[i*3+1] = RefunnyMatrixValue(pr[i+3]);
			cBuffer[i*3+2] = RefunnyMatrixValue(pr[i+6]);
		}
		
		// Send the new color matrix.
		if ((*ccDevice)->DeviceRequest(ccDevice, &request) != kIOReturnSuccess) {
			mexErrMsgTxt("(ColorCal) Failed to set the color matrix.");
		}
	}
	else {
		mexErrMsgTxt("(ColorCal) Invalid command.");
	}
}


// Converts from floating point to Minolta format.  Performs a byte swap if
// run on a PPC machine.
UInt16 RefunnyMatrixValue(double value)
{
	UInt16 minoltaValue;
	
	value *= 10000.0;
	
	if (value < 0) {
		value *= -1;
		value += 50000.0;
	}
	
	minoltaValue = (UInt16)value;
	
#ifdef __ppc__
	// On PPC machines we need to change the by order from big endian to little.
	minoltaValue = Endian16_Swap(minoltaValue);
#endif
	
	return minoltaValue;
}


// Converts a raw matrix value from Minolta format to floating point.
double DefunnyMatrixValue(int value)
{
	mexPrintf("%d\n", value);
	
	if (value >= 50000) {
		return -((double)value - 50000.0) / 10000.0;
	}
	else {
		return (double)value / 10000.0;
	}
}


static void CloseDevice(void)
{
	if (ccDevice != NULL) {
		mexPrintf("- Closing ColorCal Device\n");
		(void)(*ccDevice)->USBDeviceClose(ccDevice);
		(void)(*ccDevice)->Release(ccDevice);
		ccDevice = NULL;
	}
}


bool OpenDevice(void)
{
	mach_port_t             masterPort;
	kern_return_t           kr;
	CFMutableDictionaryRef  matchingDict;
	SInt32                  usbVendor = kColorCal2VendorID;
	SInt32                  usbProduct = kColorCal2ProductID;
	IOUSBDeviceInterface    **dev = NULL;
	io_iterator_t           iterator;
	IOCFPlugInInterface     **plugInInterface = NULL;
	HRESULT                 result;
	io_service_t            usbDevice;
	SInt32                  score;
	UInt16                  vendor;
	UInt16                  product;
	UInt16                  release;
	bool					deviceFound = false;
	
	// Create a master port for communication with the I/O Kit
	kr = IOMasterPort(MACH_PORT_NULL, &masterPort);
	if (kr || !masterPort) {
		mexErrMsgTxt("(ColorCal) Couldn?t create a master I/O Kit port.");
	}
	
	// Set up matching dictionary for class IOUSBDevice and its subclasses
	matchingDict = IOServiceMatching(kIOUSBDeviceClassName);
	if (!matchingDict) {
		mach_port_deallocate(mach_task_self(), masterPort);
		mexErrMsgTxt("(ColorCal) Couldn?t create a USB matching dictionary\n");
	}
	
	//Add the vendor and product IDs to the matching dictionary.
	//This is the second key in the table of device-matching keys of the
	//USB Common Class Specification
	CFDictionarySetValue(matchingDict, CFSTR(kUSBVendorName),
	CFNumberCreate(kCFAllocatorDefault,
	kCFNumberSInt32Type, &usbVendor));
	
	CFDictionarySetValue(matchingDict, CFSTR(kUSBProductName),
	CFNumberCreate(kCFAllocatorDefault,
	kCFNumberSInt32Type, &usbProduct));
	
	kr = IOServiceGetMatchingServices(masterPort, matchingDict, &iterator);
	if (kr) {
		mexErrMsgTxt("(ColorCal) Couldn't get matching services\n");
	}
	
	// Attempt to find the correct device.
	while (usbDevice = IOIteratorNext(iterator)) {
		// Create an intermediate plug-in
		kr = IOCreatePlugInInterfaceForService(usbDevice,
		kIOUSBDeviceUserClientTypeID, kIOCFPlugInInterfaceID,
		&plugInInterface, &score);
		
		// Don?t need the device object after intermediate plug-in is created
		kr = IOObjectRelease(usbDevice);
		if ((kIOReturnSuccess != kr) || !plugInInterface) {
			printf("Unable to create a plug-in (%08x)\n", kr);
			continue;
		}
		
		// Now create the device interface
		result = (*plugInInterface)->QueryInterface(plugInInterface,
		CFUUIDGetUUIDBytes(kIOUSBDeviceInterfaceID),
		(LPVOID *)&dev);
		
		// Don?t need the intermediate plug-in after device interface is created.
		(*plugInInterface)->Release(plugInInterface);
		
		if (result || !dev) {
			printf("Couldn?t create a device interface (%08x)\n", (int) result);
			continue;
		}
		
		// Check these values for confirmation.
		kr = (*dev)->GetDeviceVendor(dev, &vendor);
		kr = (*dev)->GetDeviceProduct(dev, &product);
		kr = (*dev)->GetDeviceReleaseNumber(dev, &release);
		if ((vendor != kColorCal2VendorID) || (product != kColorCal2ProductID)) {
			mexPrintf("Found unwanted device (vendor = %d, product = %d)\n", vendor, product);
			(void) (*dev)->Release(dev);
			continue;
		}
		else {
			deviceFound = true;
			//mexPrintf("Vendor: 0x%x\nProduct: 0x%x\nRelease: 0x%x\n", vendor, product, release);
			break;
		}
		
	}
	
	if (deviceFound) {
		// Open the device to change its state
		kr = (*dev)->USBDeviceOpen(dev);
		if (kr != kIOReturnSuccess) {
			(void) (*dev)->Release(dev);
			mexErrMsgTxt("(ColorCal) Unable to open device.");
		}
		
		// Configure device
		kr = ConfigureDevice(dev);
		if (kr != kIOReturnSuccess) {
			(void) (*dev)->USBDeviceClose(dev);
			(void) (*dev)->Release(dev);
			mexErrMsgTxt("Unable to configure device");
		}
		
		// Store a reference to the device.
		ccDevice = dev;
	}
	
	// Finished with master port
	mach_port_deallocate(mach_task_self(), masterPort);
	masterPort = 0;
	
	return deviceFound;
}


IOReturn ConfigureDevice(IOUSBDeviceInterface **dev)
{
	UInt8                           numConfig;
	IOReturn                        kr;
	IOUSBConfigurationDescriptorPtr configDesc;
	
	// Get the number of configurations. The sample code always chooses
	// the first configuration (at index 0) but your code may need a
	// different one
	kr = (*dev)->GetNumberOfConfigurations(dev, &numConfig);
	
	if (!numConfig) {
		return -1;
	}
	
	// Get the configuration descriptor for index 0
	kr = (*dev)->GetConfigurationDescriptorPtr(dev, 0, &configDesc);
	if (kr) {
		printf("Couldn?t get configuration descriptor for index %d (err = %08x)\n", 0, kr);
		return -1;
	}
	
	// Set the device?s configuration. The configuration value is found in
	// the bConfigurationValue field of the configuration descriptor
	kr = (*dev)->SetConfiguration(dev, configDesc->bConfigurationValue);
	if (kr) {
		printf("Couldn?t set configuration to value %d (err = %08x)\n", 0, kr);
		return -1;
	}
	
	return kIOReturnSuccess;
}