1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
|
function varargout = ColorCal2(command, varargin)
% varargout = ColorCal2(command, [varargin])
%
% Description:
% Interface function to communicate with the ColorCal2 USB device.
%
% LINUX: If you want to use this function without the need to run
% Matlab or Octave as root user (i.e., without need for root login or the
% sudo command), please copy the file ...
% Psychtoolbox/PsychHardware/ColorCal2/60-cambridgeresearch-permissions.rules
% ... into the folder /etc/udev/rules.d/ on your system. This one time copy will
% require administrator privileges, but after that, any user should be able
% to use the ColorCal devices or other CRS Ltd. devices without special permissions.
%
%
% Required Input:
% command (string) - Command to send to the ColorCal2 device. Commands are
% case insensitive.
%
% Optional Input:
% varargin - Argument(s) required for a subset of the ColorCal2
% commands. Varies depending on the command.
%
% Optional Output:
% varargout - Value(s) returned for a subset of the ColorCal2 commands.
%
% Command List:
% 'DeviceInfo' - Retrieves the following device information in a struct: firmware
% version number, 8 digit serial number, and firmware build number.
% The struct's fields are romVersion, serialNumber, buildNumber.
%
% Example:
% devInfo = ColorCal2('DeviceInfo');
% 'GetRawData' - Returns the raw data for all three light channels, the
% contents of the zero correction array for all three channels, and
% the current reading of the trigger ADC. Returns a single struct
% containing the following fields: Xdata, Xzero, Ydata, Yzero, Zzero,
% Trigger. All values are unformatted.
% 'LEDOn' - Turns the LED on.
% 'LEDOff' - Turns the LED off.
% 'MeasureXYZ' - Measures the tri-stimulus value of the current light.
% Returns a struct with x, y, and z in floating point format. These
% values should be corrected by multiplying them against the calibration
% matrix typically stored in the 1st calibration matrix in the device.
%
% Example: Retrieve the xyz values and correct them with the 1st
% calibration matrix.
% cMatrix = ColorCal2('ReadColorMatrix');
% s = ColorCal2('MeasureXYZ');
% correctedValues = cMatrix(1:3,:) * [s.x s.y s.z]';
% 'ReadColorMatrix' or 'ReadColourMatrix' - Retrieves all 3 color
% calibration matrices from the device and returns them as a 9x3 matrix.
% Each set of 3 rows represents a single calibration matrix. All
% values will be in floating point format.
% 'SetLEDFunction' - Controls whether the LED is illuminated when the
% trigger signal is generated. This state is stored in non-volatile
% memory and will survive a power cycle. Takes 1 additional argument:
% 0 or 1. 0 = LED not active when triggered, 1 = LED active when
% triggered.
% 'SetTriggerThreshold' - Sets the threshold which must be exceeded by the
% first derivative of the trigger ADC before a trigger pulse is
% generated. It is stored in non-volatile memory and will survive a
% power cycle. Takes 1 additional argument which is the trigger
% threshold value.
% 'StartBootloader' - Causes the ColorCal2 to start its internal bootloader
% in preparation for a firmware upgrade.
% 'ZeroCalibration' - Removes small zero errors in the electronic system of
% the ColorCal2 device. It reads the current light level and stores
% the readings in a zero correction array. All subsequent light
% readings have this value subtracted from them before being returned.
% This command is intended to be issued when the ColorCal2 is in the
% dark. Returns 1 if the command succeeds, 0 if it fails. This
% command must be run after every power cycle of the device.
% *** These functions are for internal use only. Using these functions may
% *** brick your device. These functions are commented out below, so they
% *** must be uncommented before they can be run.
%
% 'ResetEEProm' - Resets the non-volatile memory on the ColorCal2 to its
% default value. ALL CALIBRATION DATA IS ERASED.
% 'SetColorMatrix' or 'SetColourMatrix' - Writes data into one of the
% calibration matrices. Takes 2 additional arguments: matrix number,
% and a color matrix. The ColorCal2 has 3 calibration matrices
% indexed in the range [0,2]. The color matrix must be 3x3 in
% floating point format. The values contained within the color matrix
% will be converted to a Minolta format internally.
%
% Example: Set the first color matrix to some random values.
% ColorCal2('SetColorMatrix', 0, rand(3,3));
% History:
% 03.04.2009 Written (Chris Broussard).
% 18.08.2010 Make useBigEndian persistent. Reported by Ian A. ("tatooed.tentackle@yahoo.com")
% 19.01.2013 Make compatible with GNU/Octave-3 (Mario Kleiner).
persistent usbHandle;
persistent useBigEndian;
varargout = {};
if nargin == 0
error('Usage: varargout = ColorCal2(command, [varargin])');
end
if ~ischar(command)
error('command must be a string.');
end
% Connect to the ColorCal2 if we haven't already.
if isempty(usbHandle)
LoadPsychHID;
usbHandle = PsychHID('OpenUSBDevice', 2145, 4097);
disp('- ColorCal2 connected');
% Determine the byte order of the machine.
x = typecast(uint32(1), 'uint8');
if x(4) == 1
useBigEndian = true;
else
useBigEndian = false;
end
end
% Currently, we don't vary this value.
bRequest = 0;
switch lower(command)
case {'close', 'cls'}
PsychHID('CloseUSBDevice', usbHandle);
disp('- ColorCal2 closed');
usbHandle = [];
case {'ledon', 'lon'}
bmRequestType = hex2dec('40');
wValue = 2;
wIndex = 0;
wLength = 0;
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
case {'ledoff', 'lof'}
bmRequestType = hex2dec('40');
wValue = 3;
wIndex = 0;
wLength = 0;
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
case {'measurexyz', 'mes'}
bmRequestType = hex2dec('40');
wValue = 1;
wIndex = 0;
wLength = 3;
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength, uint8('MES'));
bmRequestType = hex2dec('C0');
wLength = 32;
outString = char(PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength));
% Parse the output string.
a = sscanf(outString, 'OK00,%6f,%6f,%6f');
s.x = a(1);
s.y = a(2);
s.z = a(3);
varargout(1) = {s};
case {'zerocalibration', 'uzc'}
bmRequestType = hex2dec('40');
wValue = 1;
wLength = 3;
wIndex = 0;
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength, uint8('UZC'));
bmRequestType = hex2dec('C0');
wLength = 32;
outString = char(PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength));
% Parse the output string.
switch outString(1:4)
case 'OK00'
varargout(1) = {true};
case 'ER11'
varargout(1) = {false};
otherwise
error('Failed to parse output string from the ColorCal2');
end
case {'getrawdata', 'grd'}
bmRequestType = hex2dec('C0');
wValue = 4;
wLength = 28;
wIndex = 0;
outData = PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
% Each 4 bytes represents one value, so we must concatenate each
% group of 4 bytes to get number we want. On big endian systems we
% must swap the byte order because the USB bus works in little
% endian mode.
extractedData = [];
for i = 1:4:28
% Read 4 bytes of data and convert it into an uint32 value.
y = typecast(outData(i:i+3), 'uint32');
% Swap the byte order if on a big endian machine.
if useBigEndian
y = swapbytes(y);
end
extractedData(end+1) = double(y); %#ok<NASGU>
end
% Create a struct to hold the results.
d.Xdata = extractedData(1);
d.Xzero = extractedData(2);
d.Ydata = extractedData(3);
d.Yzero = extractedData(4);
d.Zdata = extractedData(5);
d.Zzero = extractedData(6);
d.Trigger = extractedData(7);
varargout(1) = {d};
case {'readcolormatrix', 'readcolourmatrix', 'rcm'}
colorMatrix = zeros(9, 3);
% Get data for each row in the color matrices. There are 9 rows, 3
% per matrix.
for i = 1:9
bmRequestType = hex2dec('40');
wValue = 1;
wLength = 3;
wIndex = 0;
% Grab row 'i' of the color matrix.
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength, uint8(sprintf('r0%d', i)));
bmRequestType = hex2dec('C0');
wLength = 32;
outString = char(PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength));
% Parse the output string and store the values returned.
colorMatrix(i, :) = sscanf(outString, 'OK00,%d,%d,%d')';
end
% Convert the matrix values from Minolta format to floating point.
varargout(1) = {Minolta2Float(colorMatrix)};
case {'deviceinfo', 'idr'}
bmRequestType = hex2dec('40');
wValue = 1;
wLength = 3;
wIndex = 0;
% Get the ColorCal2 device info.
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength, uint8('IDR'));
bmRequestType = hex2dec('C0');
wLength = 32;
outString = char(PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength));
% Parse the device info string.
x = sscanf(outString, 'OK00,1,%d,100.10,%d,%d');
% Set the output: rom version, serial number, and build number.
dInfo.romVersion = x(1);
dInfo.serialNumber = x(2);
dInfo.buildNumber = x(3);
varargout(1) = {dInfo};
% case {'reseteeprom', 'rse'}
% bmRequestType = hex2dec('40');
% wValue = 7;
% wLength = 0;
% wIndex = 0;
%
% % Send the reset command.
% PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
case {'startbootloader', 'sbl'}
bmRequestType = hex2dec('40');
wValue = 99;
wLength = 0;
wIndex = 0;
% Send the start bootloader command.
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
case {'settriggerthreshold', 'stt'}
bmRequestType = hex2dec('40');
wValue = 8;
wLength = 0;
% Make sure a trigger value was passed.
if nargin ~= 2
error('Usage: ColorCal2(''SetTriggerThreshold'', triggerValue)');
end
% Make sure the trigger value is scalar.
wIndex = varargin{1};
if ~isscalar(wIndex)
error('triggerValue must be scalar.');
end
% Send the set trigger threshold command.
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
case {'setledfunction', 'slf'}
bmRequestType = hex2dec('40');
wValue = 9;
wLength = 0;
% Make sure a LED function value was passed.
if nargin ~= 2
error('Usage: ColorCal2(''SetLEDFunction'', ledFunctionValue)');
end
% Make sure that the function value is 0 or 1.
wIndex = varargin{1};
if ~isscalar(wIndex)
error('ledFunctionValue must be a scalar.');
end
if ~any(wIndex == [0 1])
error('ledFunctionValue must be 0 or 1.');
end
% Send the new LED function value.
PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, wValue, wIndex, wLength);
% case {'setcolormatrix', 'setcolourmatrix', 'scm'}
% bmRequestType = hex2dec('40');
% wValue = 6;
% wLength = 18;
%
% % Check the number of input arguments.
% if nargin ~= 3
% error('Usage: ColorCal2(''SetColorMatrix'', matrixNumber, colorMatrix)');
% end
%
% % Make sure that the 2nd argument is a valid matrix number.
% matrixNumber = varargin{1};
% if isscalar(matrixNumber)
% if ~any(matrixNumber == [0 1 2])
% error('matrixNumber must be an integer in the range [0,2].');
% end
% else
% error('matrixNumber must be a scalar value in the range [0,2].');
% end
% wIndex = matrixNumber;
%
% % Make sure that argument 3 is a valid 3x3 color matrix.
% colorMatrix = varargin{2};
% if isnumeric(colorMatrix)
% if ndims(colorMatrix) ~= 2 || ~all(size(colorMatrix) == [3 3])
% error('colorMatrix must be a 3x3 matrix.');
% end
% else
% error('colorMatrix must be a numeric matrix');
% end
%
% % Convert the color matrix from floating point to Minolta format.
% colorMatrix = Float2Minolta(colorMatrix);
%
% % Repackage the color matrix into a 8 bit vector where each matrix
% % value is represented by 2 bytes.
% newColorMatrix = uint16([colorMatrix(1,:) colorMatrix(2,:) colorMatrix(3,:)]);
% if useBigEndian
% newColorMatrix = swapbytes(newColorMatrix);
% end
% newColorMatrix = typecast(newColorMatrix, 'uint8');
%
% % Send over the new color matrix.
% PsychHID('USBControlTransfer', usbHandle, bmRequestType, bRequest, ...
% wValue, wIndex, wLength, newColorMatrix);
otherwise
error('Invalid command: %s', command);
end
|