1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
function data=MeasureLuminancePrecision
% data=MeasureLuminancePrecision
% INSTRUCTIONS: [Currently this program requires a Cambridge Research
% Systems photometer, but you could easily adapt it to use another
% photometer.] Plug your photometer's USB cable into your computer,
% carefully place your photometer stably against your computer's screen,
% set PARAMETERS (below), then run. The results (including the best-fitting
% n-bit-precision model) will be displayed as a graph in a MATLAB figure
% window, and also saved in three files (in the same folder as this file)
% with filename extensions: png, fig, and mat. The filename describes the
% testing conditions, e.g.
% DenissMacBookPro5K-Dithering61696-o.use10Bits-LoadIdentityCLUT-Luminances8.fig
%
% EXPLANATION: Using Psychtoolbox SCREEN imaging, measures how precisely we
% can control display luminance. Loads identity into the Color Lookup Table
% (CLUT) and measures the luminance produced by each value loaded into a
% large identical patch of image pixels. (This program varies only the
% luminance, not hue, always varying the three RGB channels together, but
% the conclusion about bits of precision per channel almost certainly
% applies to general-purpose presentation of arbitrary RGB colors.) The
% attained precision will be achieved mostly by the digital-to-analog
% converter and, perhaps, partly through dither by the video driver. Since
% the 1980's most digital computer displays allocate 8 bits per color
% channel (R, G, B). In the past few years, some displays now accept 10 or
% more bits for each channel and pass that through from the pixel in memory
% through the color lookup table (CLUT) to the digital to analog converter
% that controls light output. In 2016-2017, Mario Kleiner enhanced The
% Psychtoolbox SCREEN function to allow specification of each color
% component (R G B) as a floating point number, where 0 is black and 1 is
% maximum output, so that your software, without change, will drive any
% display and benefit from as much precision as the display hardward and
% driver provide.
%
% Typically you'll run MeasureLuminancePrecision from the command line. It
% will make all the requested measurements and plot the results, including
% the best-fitting n-bit-precision model. Each figure is saved as both a
% FIG and PNG file, and the data are saved as a MAT file. The data are also
% returned as the output argument. It has luminance out "data.L" vs
% floating point color value "data.v".
%
% To use this program to measure the precision of your computer display you
% need three things:
% 1. MATLAB or Octave. http://mathworks.com
% 2. The Psychtoolbox, free from http://psychtoolbox.org.
% 3. A Cambridge Research Systems photometer or colorimeter.
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/
% It's plug and play, taking power through its USB cable. You could easily
% modify this program to work with any other photometer.
%
% As of April 2017, Apple documents (below) indicate that two currently
% available macOS computers attain 10-bit precision from pixel to display
% (in each of the three RGB channels): the Mac Pro and the iMac 27" retina
% desktop. From my testing, I add the Apple's high-end MacBook Pro laptop
% (Retina, 15-inch, Mid 2015). I tested my MacBook Pro (Retina, 15-inch,
% Mid 2015) and iMac (Retina 5K, 27-inch, Late 2014). Both use AMD drivers.
% Using MeasureLuminancePrecision, I have documented 11-bit luminance
% precision on both of these displays, enabling both o.use10Bits and
% o.useDithering,
% https://www.macrumors.com/2015/10/30/4k-5k-imacs-10-bit-color-depth-osx-el-capitan/
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html
% My Hewlett-Packard Z Book laptop running Linux also attains 10-bit
% luminance precision. I have not yet succeeded in getting dither to work
% on the Z Book. Thanks to my former student, H�rmet Yiltiz, for setting up
% the Z Book and getting 10-bit imaging to work, with help from Mario
% Kleiner.
%
% MacBook Pro driving NEC PA244UHD 4K display
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html
%
% PARAMETERS:
% o.luminances = number of luminances to measure, 3 s each.
% o.reciprocalOfFraction = list desired values, e.g. 1, 64, 128, 256.
% o.usePhotometer = 1 use ColorCAL II XYZ; 0 simulate 8-bit rendering.
% See SET PARAMETERS below.
%
% o.ditheringCode = 61696; Required for dither on my iMac and MacBook Pro.'
% For dither, the magic number 61696 is appropriate for the graphics chips
% belonging to the AMD Radeon "Southern Islands" gpu family. Such chips are
% used in the MacBook Pro (Retina, 15-inch, Mid 2015) (AMD Radeon R9 M290X)
% and the iMac (Retina 5K, 27-inch, Late 2014) (AMD Radeon R9 M370X). As
% far as I know, in April 2017, those are the only Apple Macs with AMD
% drivers, and may be the only Macs that support more-than-8-bit luminance
% precision.
%
% Denis Pelli, April 24, 2017
%
% History:
% 24-Apr-2017 dgp Wrote original version.
% ??-???-2019 mk Hacked it, improved it somewhere somewhat.
% 14-Feb-2021 mk Included into Psychtoolbox as baseline for cleanup.
%% DITHERING NOTES
% (FROM MARIO) FOR HP Z Book "Sea Islands" GPU:
% 10 bpc panel dither setup code for the zBooks "Sea Islands" (CIK) gpu:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cik.c#L8814
% The constants which are or'ed / added together in that code are defined
% here:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cikd.h#L989
% I simply or'ed the proper constants to get the numbers i told you, so PTB
% replicates the Linux display drivers behaviour. As you can see there are
% many parameters one could tweak for any given display. E.g., add/drop
% FMT_FRAME_RANDOM_ENABLE, FMT_HIGHPASS_RANDOM_ENABLE, or
% FMT_RGB_RANDOM_ENABLE for extra entertainment value. It's somewhat of a
% black art. The gpu also has various temporal dithering modes with even
% more parameters, or combined spatio-temporal modes. Most of these are
% never used or even validated by gpu hardware vendors to do the right
% thing. All the variations will have different effects on different types
% of display panels, at different refresh rates and pixel densities, for
% different types of still images or animations, so a panel with a true
% native high bit depths is still a more deterministic thing that simulated
% high bit depths. I would use dithering only for high level stimuli with
% low spatial frequencies for that reason.
% DENIS: Must we call "PsychColorCorrection"? I'm already doing correction
% based on my photometry.
% MARIO: No. But it's certainly more convenient and faster, and very
% accurate. That's the recommended way to do gamma correction on > 8 bpc
% framebuffers. For testing it would be better to leave it out, so you use
% a identity mapping like when testing on the Macs.
% DENIS: Must we call "FinalFormatting"? Is the call to "FinalFormatting"
% just loading an identity gamma? Can I, instead, just use
% LoadFormattedGammaTable to load identity?
% MARIO: No, only if you want PTB to do high precision color/gamma
% correction via the modes and settings supported by
% PsychColorCorrection(). The call itself would simply establish an
% identity gamma "curve", however operating at ~ 23 bpc linear precision
% (32 bit floating point precision is about ~ 23 bit linear precision in
% the displayable color range of 0.0 - 1.0).
% -> Another thing you could test is if that laptop can drive a
% conventional 8 bit external panel with 12 or more bits via dithering. The
% gpu can do 12 bits in the 'EnableNative16BitFramebuffer' mode. So far i
% thought +2 extra bits would be all you could get via dithering, but after
% your surprising 11 bit result on your MacBookPro, with +3 extra bits, who
% knows if there's room for more?
% -> Yet another interesting option would be booting Linux on your iMac
% 2014 Retina 5k, again with the dither settings that gave you 11 bpc under
% macOS, and see if Linux in EnableNative16BitFramebuffer mode ! can
% squeeze out more than 11 bpc.
%% FROM MARIO
% Denis could you send me the .mat files with various measured curves? Also
% a measurement of the iMac Retina, just with 'EnableNative10Bit' mode, but
% *without* any of the special dither settings - after a machine reboot -
% would be good. I'd like to know how it behaves at Apples factory settings
% without our PTB specific hacks, as those are so machine specific.
% DONE: for MacBook Pro.
% Btw., so far i still didn't manage to replicate your 11 bpc with
% dithering finding on any AMD hardware + 8 bit display here, even with
% more modern AMD graphics cards, so i'm still puzzled by that result. I'll
% probably add some debug code to the next PTB beta for you to run on
% macOS, to dump some hardware settings, maybe that'd give some clues about
% how that 11 bpc instead of expected max 10 bpc happens.
%% SOFTWARE CLUT
% The following 4 parameters allow testing of the software CLUT, but that's
% a relatively unimportant option and not usable on the Z Book (restricted
% to 8 bit table), so you might as well not bother testing the software
% CLUT.
% My experiments with LoadNormalizedGammaTable indicate that it is accurate
% only for very smooth gamma functions. (Mario says this is because it
% stores only a functional approximation, not the requested values.) Thus
% fiddling with the CLUT is not a recommended way to achieve fine steps in
% luminance. It is generally better to leave the CLUT alone and adjust the
% pixel values.
%
%% SET PARAMETERS
% o.luminances = how many luminances are measured to produce your
% final graph. 32 is typically enough. The CRS photometer takes 3
% s/point.
% o.reciprocalOfFraction = reciprocal of the fraction of the full luminance
% range you want to explore. Setting it to 1 will explore the whole range.
% To demonstrate 10-bit precision over the whole range you'd need to test
% 2^10=1024 luminances, which will take a long time, 3,000 s, nearly an
% hour. Setting o.reciprocalOfFraction=256 will test only 1/256 of the range,
% which is enough to reveal whether there are any steps finer than one step
% at 8-bit precision. You can request several ranges by listing them, e.g.
% [1 128]. You'll get a graph for each. Each graph will use the specified
% number of luminances.
% o.wigglePixelNotCLUT = whether to vary the value of the pixel or CLUT.
% o.loadIdentityCLUT = whether to load an identity into CLUT.
o.luminances=128; % Photometer takes 3 s/luminance. 128 luminances is enough for a pretty graph.
o.luminances=512; % Photometer takes 3 s/luminance. 512 luminances for a prettier graph.
o.reciprocalOfFraction= 32; % List one or more, e.g. 1, 128, 256.
%o.reciprocalOfFraction=[256]; % List one or more, e.g. 1, 128, 256.
%o.vBase=.8;
o.vBase=.5;
o.useDithering=[]; % 1 enable. [] default. 0 disable.
o.nBits=10; % Enable this to get 10-bit (and better with dithering) performance.
o.usePhotometer=1; % 1 use ColorCAL II XYZ; 0 simulate 8-bit rendering.
o.useShuffle=0; % Randomize order of luminances to prevent systematic effect of changing background.
o.wigglePixelNotCLUT=1; % 1 is fine. The software CLUT is not important.
o.loadIdentityCLUT=1; % 1 is fine. This nullifies the CLUT.
o.useFractionOfScreen=0; % For debugging, reduce our window to expose Command Window.
o.useVulkan=0; % Use Vulkan display backend.
if IsOctave
pkg load statistics;
end
KbReleaseWait;
%% BEGIN
BackupCluts;
aborted = 0;
try
%% OPEN WINDOW
screen = 0;
screenBufferRect = Screen('Rect',screen);
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask','General','UseRetinaResolution');
PsychImaging('AddTask','General','NormalizedHighresColorRange',1);
if o.useVulkan
PsychImaging('AddTask','General','UseVulkanDisplay');
end
switch o.nBits
case 8
% do nothing
case 10
PsychImaging('AddTask','General','EnableNative10BitFramebuffer');
case 11
PsychImaging('AddTask','General','EnableNative11BitFramebuffer');
case 12
if ~o.useVulkan && IsLinux && ~IsWayland
PsychImaging('AddTask','General','EnableNative16BitFramebuffer');
else
PsychImaging('AddTask','General','EnableNative16BitFloatingPointFramebuffer');
end
end
%if o.nBits >= 11; Screen('ConfigureDisplay','Dithering',screenNumber,61696); end
if ~o.useFractionOfScreen
window = PsychImaging('OpenWindow',screen,[1 1 1]);
else
window = PsychImaging('OpenWindow',screen,[1 1 1],round(o.useFractionOfScreen*screenBufferRect));
end
HideCursor(window);
windowInfo=Screen('GetWindowInfo',window);
switch(windowInfo.DisplayCoreId)
% Choose the right magic dither code for the video driver. Currently
% this works only for AMD drivers on Apple's iMac and MacBook Pro,
% and HP's Z Book. See Dithering Notes above.
case 'AMD'
displayEngineVersion=windowInfo.GPUMinorType/10;
switch(round(displayEngineVersion))
case 4
displayGPUFamily='Evergreen';
% Examples:
% AMD Radeon HD-5770 used in MacPro 2010.
o.ditheringCode=61696;
case 6
displayGPUFamily='Southern Islands';
% Examples:
% AMD Radeon R9 M290X used in MacBook Pro (Retina, 15-inch, Mid 2015)
% AMD Radeon R9 M370X used in iMac (Retina 5K, 27-inch, Late 2014)
o.ditheringCode=61696;
otherwise
displayGPUFamily='unknown';
end
fprintf('Display driver: %s version %.1f, "%s"\n',...
windowInfo.DisplayCoreId,displayEngineVersion,displayGPUFamily);
end
if ~o.useDithering
o.ditheringCode=0;
end
if isfinite(o.useDithering)
fprintf('ConfigureDisplay Dithering %.0f\n',o.ditheringCode);
% The documentation suggests that the first call enables, and the
% second call sets the value.
Screen('ConfigureDisplay','Dithering',screen,o.ditheringCode);
Screen('ConfigureDisplay','Dithering',screen,o.ditheringCode);
end
if o.wigglePixelNotCLUT
% Compare default CLUT with identity.
gammaRead=Screen('ReadNormalizedGammaTable',window);
maxEntry=size(gammaRead,1)-1;
gamma=repmat(((0:maxEntry)/maxEntry)',1,3);
delta=gammaRead(:,2)-gamma(:,2);
fprintf('Difference between identity and read-back of default CLUT: mean %.9f, sd %.9f\n',mean(delta),std(delta));
% Load identity hw lut once, as it can interfere with some precision modes
% if done each flip, at least if PTB high precision hacks are used on the
% AMD DC display driver:
if o.loadIdentityCLUT
Screen('LoadNormalizedGammaTable',window,gamma);
Screen('Flip',window);
end
end
%% MEASURE LUMINANCE AT EACH VALUE
% Each measurement takes several seconds.
clear data d
t=GetSecs;
nData=length(o.reciprocalOfFraction);
for iData=1:nData
d.fraction=1/o.reciprocalOfFraction(iData);
v=max(0,o.vBase);
if v+d.fraction>=1
v=1-d.fraction;
end
newOrder=1:o.luminances;
if o.useShuffle
% Random order to prevent systematic effect of changing background.
newOrder=Shuffle(newOrder);
end
% Repeat first measurement at end to estimate background drift.
newOrder(end+1)=newOrder(1); %#ok<*AGROW>
for ii=1:length(newOrder)
i=newOrder(ii);
g=v+d.fraction*(i-1)/(o.luminances-1);
assert(g<=1+eps)
d.v(i)=g;
CLUTMapSize = 256;
gamma=repmat(((0:CLUTMapSize-1)/(CLUTMapSize-1))',1,3);
if o.wigglePixelNotCLUT
Screen('FillRect',window, [g, g, g]);
else
% Note that this method will fail on many (most?) modern operating
% systems and graphics cards to achieve the desired results! Not
% recommended, only left for documentation!
iPixel=126;
for j=-4:4
gamma(1+iPixel+j,1:3)=[g g g];
end
Screen('LoadNormalizedGammaTable',window,gamma,1);
Screen('FillRect',window,iPixel/(CLUTMapSize-1));
end
Screen('TextSize',window, 30);
msg1=sprintf('Series %d of %d.\n',iData,nData);
msg2=sprintf('%d luminances spanning 1/%.0f of digital range at %.2f.\n',o.luminances,1/d.fraction,d.v(1));
msg3=sprintf('Luminance %d of %d.\n',ii,length(newOrder));
msg4='Now measuring luminances. Will then analyze and plot the results.\n';
DrawFormattedText(window, [msg1 msg2 msg3 msg4], 10, 30);
Screen('Flip',window);
if o.usePhotometer
if ii==1
% Give the photometer time to react to new luminance.
WaitSecs(8);
else
if o.useShuffle
WaitSecs(8);
else
WaitSecs(2);
end
end
L=GetLuminance; % Read photometer
else
% No photometer. Simulate 8-bit performance.
L=200*round(g*255)/255;
L=L-20*ii/512; % Simulate background drift.
end
if ii<length(newOrder)
d.L(i)=L;
else
% Last iteration: Estimate and remove background drift.
d.deltaL=L-d.L(newOrder(1));
nn=newOrder(1:o.luminances);
d.L(nn)=d.L(nn)-d.deltaL*(0:o.luminances-1)/o.luminances;
fprintf('Corrected for luminance drift of %.2f%% during measurement.\n',100*d.deltaL/d.L(1));
end
if KbCheck
aborted = 1;
break;
end
end
data(iData)=d;
if KbCheck
aborted = 1;
break;
end
end
t=(GetSecs-t)/length(data)/o.luminances;
catch
sca;
psychrethrow(psychlasterror);
end
sca;
close all;
if aborted
fprintf('\n\nMeasurement script aborted. Bye!\n\n');
return;
end
%% ANALYZE RESULTS
% We compare our data with the prediction for n-bit precision, and choose
% the best fit.
clear sd
for iData=1:length(data)
d=data(iData);
nMin=log2(1/d.fraction);
vShift=-1:0.01:1;
sd=ones(16,length(vShift))*nan;
for bits=nMin:16
for j=1:length(vShift)
white=2^bits-1;
v=d.v+vShift(j)*2^-bits;
q=floor(v*white)/white;
x=[ones(size(d.v))' q'];
[~, ~, ~, ~, stats]=regress(d.L',x);
sd(bits,j)=sqrt(stats(4));
end
fprintf('Modelbits= %d, minsd = %f\n', bits, min(sd(bits,:)))
end
minsd=min(min(sd));
[bits, jShift]=find(sd==minsd,1);
j=round((length(vShift)+1)/2);
fprintf('min sd %.2f at %d bits %.4f shift; sd %.2f at 11 bits %.4f shift\n',minsd,bits,vShift(jShift),sd(11,j),vShift(j));
data(iData).model.bits=bits;
data(iData).model.vShift=vShift(jShift);
data(iData).model.sd=sd(bits,jShift);
white=2^bits-1;
v=d.v+vShift(jShift)*2^-bits;
q=floor(v*white)/white;
x=[ones(size(d.v')) q'];
b=regress(d.L',x);
data(iData).model.b=b;
data(iData).model.v=linspace(d.v(1),d.v(end),1000);
v=data(iData).model.v+vShift(jShift)*2^-bits;
q=floor(v*white)/white;
data(iData).model.L=b(1)+b(2)*q;
end
%% PLOT RESULTS
o.luminances=length(data(1).L);
if exist('t','var')
fprintf('Photometer took %.1f s/luminance.\n',t);
end
figure;
set(gcf,'PaperPositionMode','auto');
set(gcf,'Position',[0 300 320*length(data) 320]);
for iData=1:length(data)
d=data(iData);
subplot(1,length(data),iData)
plot(d.v,d.L);
hold on
plot(d.model.v,d.model.L,'g');
legend('data',sprintf('%.0f-bit model',d.model.bits));
legend('boxoff');
hold off
ha=gca;
if IsOctave
set(ha, 'ticklength', [0.02, 0.025]);
else
ha.TickLength(1)=0.02;
end
title(sprintf('%.0f luminances spanning 1/%.0f of digital range',o.luminances,1/d.fraction));
if o.wigglePixelNotCLUT
xlabel('Pixel value');
else
xlabel('CLUT');
end
ylabel('Luminance (cd/m^2)');
pbaspect([1 1 1]);
computer=Screen('Computer');
name=[computer.machineName ','];
yLim=ylim;
dy=-0.06*diff(yLim);
y=yLim(2)+dy;
xLim=xlim;
x=xLim(1)+0.03*diff(xLim);
text(x,y,name);
name='';
if isfinite(o.useDithering)
name=sprintf('%sditheringCode %d, ',name,o.ditheringCode);
end
name=sprintf('%suse%iBits, ',name,o.nBits);
y=y+dy;
text(x,y,name);
name='';
if o.loadIdentityCLUT
name=[name 'loadIdentityCLUT, '];
end
if ~o.usePhotometer
name=[name 'simulating 8 bits, '];
end
name=sprintf('%sshift %.2f, ',name,d.model.vShift);
name=sprintf('%smodel sd %.2f%%, ',name,100*d.model.sd/d.L(1));
y=y+dy;
text(x,y,name);
name='';
name=sprintf('%s%d luminances span a %.0f-bit prec. step at %.3f',name,o.luminances,log2(1/d.fraction),d.v(1));
y=y+dy;
text(x,y,name);
end
folder=fileparts(mfilename('fullpath'));
cd(folder);
name=computer.machineName;
if isfinite(o.useDithering)
name=sprintf('%s-Dither%d',name,o.ditheringCode);
end
name=sprintf('%s-Use%iBits',name,o.nBits);
if ~o.usePhotometer
name=[name '-Simulating8Bits'];
end
if o.useShuffle
name=[name '-Shuffled'];
end
name=sprintf('%s-Luminances%d',name,o.luminances);
name=sprintf('%s-Span%.0fBitStep',name,log2(1/d.fraction));
name=sprintf('%s-At%.3f',name,d.v(1));
name=sprintf('%s-modelBits%.0f',name,d.model.bits);
name=strrep(name,'''',''); % Remove quote marks.
name=strrep(name,' ',''); % Remove spaces.
save([name '.mat'],'data'); % Save data as MAT file.
print(gcf,'-dpng',[name,'.png']); % Save figure as png file.
if IsOctave
hgsave(gcf,[name,'.fig'],'-v7'); % Save figure as fig file.
else
savefig(gcf,[name,'.fig'],'compact'); % Save figure as fig file.
end
end
%% GET LUMINANCE
function L=GetLuminance
% L=GetLuminance(o.usePhotometer)
% Measure luminance (cd/m^2).
% Cambridge Research Systems ColorCAL II XYZ Colorimeter.
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/nest/product-support
persistent CORRMAT
if isempty(CORRMAT)
% Get ColorCAL II XYZ correction matrix (CRT=1; WLED LCD=2; OLED=3):
CORRMAT=ColorCal2('ReadColorMatrix');
end
s = ColorCal2('MeasureXYZ');
XYZ = CORRMAT(4:6,:) * [s.x s.y s.z]';
L=XYZ(2);
end
|