File: MeasureLuminancePrecision.m

package info (click to toggle)
psychtoolbox-3 3.0.17.9.dfsg1-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 84,408 kB
  • sloc: ansic: 171,572; cpp: 20,885; objc: 5,164; sh: 1,878; python: 1,366; php: 384; makefile: 193; java: 113
file content (584 lines) | stat: -rw-r--r-- 23,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
function data=MeasureLuminancePrecision
% data=MeasureLuminancePrecision
% INSTRUCTIONS: [Currently this program requires a Cambridge Research
% Systems photometer, but you could easily adapt it to use another
% photometer.] Plug your photometer's USB cable into your computer,
% carefully place your photometer stably against your computer's screen,
% set PARAMETERS (below), then run. The results (including the best-fitting
% n-bit-precision model) will be displayed as a graph in a MATLAB figure
% window, and also saved in three files (in the same folder as this file)
% with filename extensions: png, fig, and mat. The filename describes the
% testing conditions, e.g.
% DenissMacBookPro5K-Dithering61696-o.use10Bits-LoadIdentityCLUT-Luminances8.fig
%
% EXPLANATION: Using Psychtoolbox SCREEN imaging, measures how precisely we
% can control display luminance. Loads identity into the Color Lookup Table
% (CLUT) and measures the luminance produced by each value loaded into a
% large identical patch of image pixels. (This program varies only the
% luminance, not hue, always varying the three RGB channels together, but
% the conclusion about bits of precision per channel almost certainly
% applies to general-purpose presentation of arbitrary RGB colors.) The
% attained precision will be achieved mostly by the digital-to-analog
% converter and, perhaps, partly through dither by the video driver. Since
% the 1980's most digital computer displays allocate 8 bits per color
% channel (R, G, B). In the past few years, some displays now accept 10 or
% more bits for each channel and pass that through from the pixel in memory
% through the color lookup table (CLUT) to the digital to analog converter
% that controls light output. In 2016-2017, Mario Kleiner enhanced The
% Psychtoolbox SCREEN function to allow specification of each color
% component (R G B) as a floating point number, where 0 is black and 1 is
% maximum output, so that your software, without change, will drive any
% display and benefit from as much precision as the display hardward and
% driver provide.
%
% Typically you'll run MeasureLuminancePrecision from the command line. It
% will make all the requested measurements and plot the results, including
% the best-fitting n-bit-precision model. Each figure is saved as both a
% FIG and PNG file, and the data are saved as a MAT file. The data are also
% returned as the output argument. It has luminance out "data.L" vs
% floating point color value "data.v".
%
% To use this program to measure the precision of your computer display you
% need three things:
% 1. MATLAB or Octave. http://mathworks.com
% 2. The Psychtoolbox, free from http://psychtoolbox.org.
% 3. A Cambridge Research Systems photometer or colorimeter.
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/
% It's plug and play, taking power through its USB cable. You could easily
% modify this program to work with any other photometer.
%
% As of April 2017, Apple documents (below) indicate that two currently
% available macOS computers attain 10-bit precision from pixel to display
% (in each of the three RGB channels): the Mac Pro and the iMac 27" retina
% desktop. From my testing, I add the Apple's high-end MacBook Pro laptop
% (Retina, 15-inch, Mid 2015). I tested my MacBook Pro (Retina, 15-inch,
% Mid 2015) and iMac (Retina 5K, 27-inch, Late 2014). Both use AMD drivers.
% Using MeasureLuminancePrecision, I have documented 11-bit luminance
% precision on both of these displays, enabling both o.use10Bits and
% o.useDithering,
% https://www.macrumors.com/2015/10/30/4k-5k-imacs-10-bit-color-depth-osx-el-capitan/
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html

% My Hewlett-Packard Z Book laptop running Linux also attains 10-bit
% luminance precision. I have not yet succeeded in getting dither to work
% on the Z Book. Thanks to my former student, H�rmet Yiltiz, for setting up
% the Z Book and getting 10-bit imaging to work, with help from Mario
% Kleiner.
%
% MacBook Pro driving NEC PA244UHD 4K display
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html
%
% PARAMETERS:
% o.luminances = number of luminances to measure, 3 s each.
% o.reciprocalOfFraction = list desired values, e.g. 1, 64, 128, 256.
% o.usePhotometer = 1 use ColorCAL II XYZ; 0 simulate 8-bit rendering.
% See SET PARAMETERS below.
%
% o.ditheringCode = 61696; Required for dither on my iMac and MacBook Pro.'
% For dither, the magic number 61696 is appropriate for the graphics chips
% belonging to the AMD Radeon "Southern Islands" gpu family. Such chips are
% used in the MacBook Pro (Retina, 15-inch, Mid 2015) (AMD Radeon R9 M290X)
% and the iMac (Retina 5K, 27-inch, Late 2014) (AMD Radeon R9 M370X). As
% far as I know, in April 2017, those are the only Apple Macs with AMD
% drivers, and may be the only Macs that support more-than-8-bit luminance
% precision.
%
% Denis Pelli, April 24, 2017
%

% History:
% 24-Apr-2017   dgp     Wrote original version.
% ??-???-2019   mk      Hacked it, improved it somewhere somewhat.
% 14-Feb-2021   mk      Included into Psychtoolbox as baseline for cleanup.

%% DITHERING NOTES
% (FROM MARIO) FOR HP Z Book "Sea Islands" GPU:
% 10 bpc panel dither setup code for the zBooks "Sea Islands" (CIK) gpu:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cik.c#L8814
% The constants which are or'ed / added together in that code are defined
% here:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cikd.h#L989
% I simply or'ed the proper constants to get the numbers i told you, so PTB
% replicates the Linux display drivers behaviour. As you can see there are
% many parameters one could tweak for any given display. E.g., add/drop
% FMT_FRAME_RANDOM_ENABLE, FMT_HIGHPASS_RANDOM_ENABLE, or
% FMT_RGB_RANDOM_ENABLE for extra entertainment value. It's somewhat of a
% black art. The gpu also has various temporal dithering modes with even
% more parameters, or combined spatio-temporal modes. Most of these are
% never used or even validated by gpu hardware vendors to do the right
% thing. All the variations will have different effects on different types
% of display panels, at different refresh rates and pixel densities, for
% different types of still images or animations, so a panel with a true
% native high bit depths is still a more deterministic thing that simulated
% high bit depths. I would use dithering only for high level stimuli with
% low spatial frequencies for that reason.

% DENIS: Must we call "PsychColorCorrection"? I'm already doing correction
% based on my photometry.

% MARIO: No. But it's certainly more convenient and faster, and very
% accurate. That's the recommended way to do gamma correction on > 8 bpc
% framebuffers. For testing it would be better to leave it out, so you use
% a identity mapping like when testing on the Macs.

% DENIS: Must we call "FinalFormatting"? Is the call to "FinalFormatting"
% just loading an identity gamma? Can I, instead, just use
% LoadFormattedGammaTable to load identity?

% MARIO: No, only if you want PTB to do high precision color/gamma
% correction via the modes and settings supported by
% PsychColorCorrection(). The call itself would simply establish an
% identity gamma "curve", however operating at ~ 23 bpc linear precision
% (32 bit floating point precision is about ~ 23 bit linear precision in
% the displayable color range of 0.0 - 1.0).

% -> Another thing you could test is if that laptop can drive a
% conventional 8 bit external panel with 12 or more bits via dithering. The
% gpu can do 12 bits in the 'EnableNative16BitFramebuffer' mode. So far i
% thought +2 extra bits would be all you could get via dithering, but after
% your surprising 11 bit result on your MacBookPro, with +3 extra bits, who
% knows if there's room for more?

% -> Yet another interesting option would be booting Linux on your iMac
% 2014 Retina 5k, again with the dither settings that gave you 11 bpc under
% macOS, and see if Linux in EnableNative16BitFramebuffer mode ! can
% squeeze out more than 11 bpc.

%% FROM MARIO

% Denis could you send me the .mat files with various measured curves? Also
% a measurement of the iMac Retina, just with 'EnableNative10Bit' mode, but
% *without* any of the special dither settings - after a machine reboot -
% would be good. I'd like to know how it behaves at Apples factory settings
% without our PTB specific hacks, as those are so machine specific.
% DONE: for MacBook Pro.

% Btw., so far i still didn't manage to replicate your 11 bpc with
% dithering finding on any AMD hardware + 8 bit display here, even with
% more modern AMD graphics cards, so i'm still puzzled by that result. I'll
% probably add some debug code to the next PTB beta for you to run on
% macOS, to dump some hardware settings, maybe that'd give some clues about
% how that 11 bpc instead of expected max 10 bpc happens.

%% SOFTWARE CLUT
% The following 4 parameters allow testing of the software CLUT, but that's
% a relatively unimportant option and not usable on the Z Book (restricted
% to 8 bit table), so you might as well not bother testing the software
% CLUT.
% My experiments with LoadNormalizedGammaTable indicate that it is accurate
% only for very smooth gamma functions. (Mario says this is because it
% stores only a functional approximation, not the requested values.) Thus
% fiddling with the CLUT is not a recommended way to achieve fine steps in
% luminance. It is generally better to leave the CLUT alone and adjust the
% pixel values.
%
%% SET PARAMETERS
% o.luminances = how many luminances are measured to produce your
% final graph. 32 is typically enough. The CRS photometer takes 3
% s/point.
% o.reciprocalOfFraction = reciprocal of the fraction of the full luminance
% range you want to explore. Setting it to 1 will explore the whole range.
% To demonstrate 10-bit precision over the whole range you'd need to test
% 2^10=1024 luminances, which will take a long time, 3,000 s, nearly an
% hour. Setting o.reciprocalOfFraction=256 will test only 1/256 of the range,
% which is enough to reveal whether there are any steps finer than one step
% at 8-bit precision. You can request several ranges by listing them, e.g.
% [1 128]. You'll get a graph for each. Each graph will use the specified
% number of luminances.
% o.wigglePixelNotCLUT = whether to vary the value of the pixel or CLUT.
% o.loadIdentityCLUT = whether to load an identity into CLUT.

o.luminances=128; % Photometer takes 3 s/luminance. 128 luminances is enough for a pretty graph.
o.luminances=512; % Photometer takes 3 s/luminance. 512 luminances for a prettier graph.
o.reciprocalOfFraction= 32; % List one or more, e.g. 1, 128, 256.
%o.reciprocalOfFraction=[256]; % List one or more, e.g. 1, 128, 256.
%o.vBase=.8;
o.vBase=.5;
o.useDithering=[]; % 1 enable. [] default. 0 disable.
o.nBits=10; % Enable this to get 10-bit (and better with dithering) performance.
o.usePhotometer=1; % 1 use ColorCAL II XYZ; 0 simulate 8-bit rendering.
o.useShuffle=0; % Randomize order of luminances to prevent systematic effect of changing background.
o.wigglePixelNotCLUT=1; % 1 is fine. The software CLUT is not important.
o.loadIdentityCLUT=1; % 1 is fine. This nullifies the CLUT.
o.useFractionOfScreen=0; % For debugging, reduce our window to expose Command Window.
o.useVulkan=0; % Use Vulkan display backend.

if IsOctave
    pkg load statistics;
end

KbReleaseWait;

%% BEGIN
BackupCluts;
aborted = 0;

try
    %% OPEN WINDOW
    screen = 0;
    screenBufferRect = Screen('Rect',screen);

    PsychImaging('PrepareConfiguration');
    PsychImaging('AddTask','General','UseRetinaResolution');
    PsychImaging('AddTask','General','NormalizedHighresColorRange',1);

    if o.useVulkan
        PsychImaging('AddTask','General','UseVulkanDisplay');
    end

    switch o.nBits
        case 8
            % do nothing
        case 10
            PsychImaging('AddTask','General','EnableNative10BitFramebuffer');
        case 11
            PsychImaging('AddTask','General','EnableNative11BitFramebuffer');
        case 12
            if ~o.useVulkan && IsLinux && ~IsWayland
                PsychImaging('AddTask','General','EnableNative16BitFramebuffer');
            else
                PsychImaging('AddTask','General','EnableNative16BitFloatingPointFramebuffer');
            end
    end
    %if o.nBits >= 11; Screen('ConfigureDisplay','Dithering',screenNumber,61696); end

    if ~o.useFractionOfScreen
        window = PsychImaging('OpenWindow',screen,[1 1 1]);
    else
        window = PsychImaging('OpenWindow',screen,[1 1 1],round(o.useFractionOfScreen*screenBufferRect));
    end

    HideCursor(window);
    windowInfo=Screen('GetWindowInfo',window);

    switch(windowInfo.DisplayCoreId)
        % Choose the right magic dither code for the video driver. Currently
        % this works only for AMD drivers on  Apple's iMac and MacBook Pro,
        % and HP's Z Book. See Dithering Notes above.
        case 'AMD'
            displayEngineVersion=windowInfo.GPUMinorType/10;
            switch(round(displayEngineVersion))
                case 4
                    displayGPUFamily='Evergreen';
                    % Examples:
                    % AMD Radeon HD-5770 used in MacPro 2010.
                    o.ditheringCode=61696;
                case 6
                    displayGPUFamily='Southern Islands';
                    % Examples:
                    % AMD Radeon R9 M290X used in MacBook Pro (Retina, 15-inch, Mid 2015)
                    % AMD Radeon R9 M370X used in iMac (Retina 5K, 27-inch, Late 2014)
                    o.ditheringCode=61696;
                otherwise
                    displayGPUFamily='unknown';
            end
            fprintf('Display driver: %s version %.1f, "%s"\n',...
                windowInfo.DisplayCoreId,displayEngineVersion,displayGPUFamily);
    end

    if ~o.useDithering
        o.ditheringCode=0;
    end

    if isfinite(o.useDithering)
        fprintf('ConfigureDisplay Dithering %.0f\n',o.ditheringCode);
        % The documentation suggests that the first call enables, and the
        % second call sets the value.
        Screen('ConfigureDisplay','Dithering',screen,o.ditheringCode);
        Screen('ConfigureDisplay','Dithering',screen,o.ditheringCode);
    end

    if o.wigglePixelNotCLUT
        % Compare default CLUT with identity.
        gammaRead=Screen('ReadNormalizedGammaTable',window);
        maxEntry=size(gammaRead,1)-1;
        gamma=repmat(((0:maxEntry)/maxEntry)',1,3);
        delta=gammaRead(:,2)-gamma(:,2);
        fprintf('Difference between identity and read-back of default CLUT: mean %.9f, sd %.9f\n',mean(delta),std(delta));

        % Load identity hw lut once, as it can interfere with some precision modes
        % if done each flip, at least if PTB high precision hacks are used on the
        % AMD DC display driver:
        if o.loadIdentityCLUT
            Screen('LoadNormalizedGammaTable',window,gamma);
            Screen('Flip',window);
        end
    end

    %% MEASURE LUMINANCE AT EACH VALUE
    % Each measurement takes several seconds.
    clear data d
    t=GetSecs;
    nData=length(o.reciprocalOfFraction);
    for iData=1:nData
        d.fraction=1/o.reciprocalOfFraction(iData);
        v=max(0,o.vBase);
        if v+d.fraction>=1
            v=1-d.fraction;
        end

        newOrder=1:o.luminances;

        if o.useShuffle
            % Random order to prevent systematic effect of changing background.
            newOrder=Shuffle(newOrder);
        end

        % Repeat first measurement at end to estimate background drift.
        newOrder(end+1)=newOrder(1); %#ok<*AGROW>
        for ii=1:length(newOrder)
            i=newOrder(ii);
            g=v+d.fraction*(i-1)/(o.luminances-1);
            assert(g<=1+eps)
            d.v(i)=g;
            CLUTMapSize = 256;
            gamma=repmat(((0:CLUTMapSize-1)/(CLUTMapSize-1))',1,3);

            if o.wigglePixelNotCLUT
                Screen('FillRect',window, [g, g, g]);
            else
                % Note that this method will fail on many (most?) modern operating
                % systems and graphics cards to achieve the desired results! Not
                % recommended, only left for documentation!
                iPixel=126;
                for j=-4:4
                    gamma(1+iPixel+j,1:3)=[g g g];
                end

                Screen('LoadNormalizedGammaTable',window,gamma,1);
                Screen('FillRect',window,iPixel/(CLUTMapSize-1));
            end

            Screen('TextSize',window, 30);
            msg1=sprintf('Series %d of %d.\n',iData,nData);
            msg2=sprintf('%d luminances spanning 1/%.0f of digital range at %.2f.\n',o.luminances,1/d.fraction,d.v(1));
            msg3=sprintf('Luminance %d of %d.\n',ii,length(newOrder));
            msg4='Now measuring luminances. Will then analyze and plot the results.\n';
            DrawFormattedText(window, [msg1 msg2 msg3 msg4], 10, 30);
            Screen('Flip',window);

            if o.usePhotometer
                if ii==1
                    % Give the photometer time to react to new luminance.
                    WaitSecs(8);
                else
                    if o.useShuffle
                        WaitSecs(8);
                    else
                        WaitSecs(2);
                    end
                end

                L=GetLuminance; % Read photometer
            else
                % No photometer. Simulate 8-bit performance.
                L=200*round(g*255)/255;
                L=L-20*ii/512; % Simulate background drift.
            end

            if ii<length(newOrder)
                d.L(i)=L;
            else
                % Last iteration: Estimate and remove background drift.
                d.deltaL=L-d.L(newOrder(1));
                nn=newOrder(1:o.luminances);
                d.L(nn)=d.L(nn)-d.deltaL*(0:o.luminances-1)/o.luminances;
                fprintf('Corrected for luminance drift of %.2f%% during measurement.\n',100*d.deltaL/d.L(1));
            end

            if KbCheck
                aborted = 1;
                break;
            end
        end

        data(iData)=d;

        if KbCheck
            aborted = 1;
            break;
        end
    end

    t=(GetSecs-t)/length(data)/o.luminances;
catch
    sca;
    psychrethrow(psychlasterror);
end

sca;
close all;

if aborted
    fprintf('\n\nMeasurement script aborted. Bye!\n\n');
    return;
end

%% ANALYZE RESULTS
% We compare our data with the prediction for n-bit precision, and choose
% the best fit.
clear sd
for iData=1:length(data)
    d=data(iData);
    nMin=log2(1/d.fraction);
    vShift=-1:0.01:1;
    sd=ones(16,length(vShift))*nan;

    for bits=nMin:16
        for j=1:length(vShift)
            white=2^bits-1;
            v=d.v+vShift(j)*2^-bits;
            q=floor(v*white)/white;
            x=[ones(size(d.v))' q'];
            [~, ~, ~, ~, stats]=regress(d.L',x);
            sd(bits,j)=sqrt(stats(4));
        end
        fprintf('Modelbits= %d, minsd = %f\n', bits, min(sd(bits,:)))
    end

    minsd=min(min(sd));
    [bits, jShift]=find(sd==minsd,1);
    j=round((length(vShift)+1)/2);
    fprintf('min sd %.2f at %d bits %.4f shift; sd %.2f at 11 bits %.4f shift\n',minsd,bits,vShift(jShift),sd(11,j),vShift(j));
    data(iData).model.bits=bits;
    data(iData).model.vShift=vShift(jShift);
    data(iData).model.sd=sd(bits,jShift);
    white=2^bits-1;
    v=d.v+vShift(jShift)*2^-bits;
    q=floor(v*white)/white;
    x=[ones(size(d.v')) q'];
    b=regress(d.L',x);
    data(iData).model.b=b;
    data(iData).model.v=linspace(d.v(1),d.v(end),1000);
    v=data(iData).model.v+vShift(jShift)*2^-bits;
    q=floor(v*white)/white;
    data(iData).model.L=b(1)+b(2)*q;
end

%% PLOT RESULTS
o.luminances=length(data(1).L);

if exist('t','var')
    fprintf('Photometer took %.1f s/luminance.\n',t);
end

figure;
set(gcf,'PaperPositionMode','auto');
set(gcf,'Position',[0 300 320*length(data) 320]);

for iData=1:length(data)
    d=data(iData);
    subplot(1,length(data),iData)
    plot(d.v,d.L);
    hold on
    plot(d.model.v,d.model.L,'g');
    legend('data',sprintf('%.0f-bit model',d.model.bits));
    legend('boxoff');
    hold off
    ha=gca;

    if IsOctave
        set(ha, 'ticklength', [0.02, 0.025]);
    else
        ha.TickLength(1)=0.02;
    end

    title(sprintf('%.0f luminances spanning 1/%.0f of digital range',o.luminances,1/d.fraction));

    if o.wigglePixelNotCLUT
        xlabel('Pixel value');
    else
        xlabel('CLUT');
    end

    ylabel('Luminance (cd/m^2)');
    pbaspect([1 1 1]);
    computer=Screen('Computer');
    name=[computer.machineName ','];
    yLim=ylim;
    dy=-0.06*diff(yLim);
    y=yLim(2)+dy;
    xLim=xlim;
    x=xLim(1)+0.03*diff(xLim);
    text(x,y,name);
    name='';

    if isfinite(o.useDithering)
        name=sprintf('%sditheringCode %d, ',name,o.ditheringCode);
    end

    name=sprintf('%suse%iBits, ',name,o.nBits);

    y=y+dy;
    text(x,y,name);
    name='';

    if o.loadIdentityCLUT
        name=[name 'loadIdentityCLUT, '];
    end

    if ~o.usePhotometer
        name=[name 'simulating 8 bits, '];
    end

    name=sprintf('%sshift %.2f, ',name,d.model.vShift);
    name=sprintf('%smodel sd %.2f%%, ',name,100*d.model.sd/d.L(1));
    y=y+dy;
    text(x,y,name);
    name='';
    name=sprintf('%s%d luminances span a %.0f-bit prec. step at %.3f',name,o.luminances,log2(1/d.fraction),d.v(1));
    y=y+dy;
    text(x,y,name);
end

folder=fileparts(mfilename('fullpath'));
cd(folder);
name=computer.machineName;

if isfinite(o.useDithering)
    name=sprintf('%s-Dither%d',name,o.ditheringCode);
end

name=sprintf('%s-Use%iBits',name,o.nBits);

if ~o.usePhotometer
    name=[name '-Simulating8Bits'];
end

if o.useShuffle
    name=[name '-Shuffled'];
end

name=sprintf('%s-Luminances%d',name,o.luminances);
name=sprintf('%s-Span%.0fBitStep',name,log2(1/d.fraction));
name=sprintf('%s-At%.3f',name,d.v(1));
name=sprintf('%s-modelBits%.0f',name,d.model.bits);
name=strrep(name,'''',''); % Remove quote marks.
name=strrep(name,' ',''); % Remove spaces.
save([name '.mat'],'data'); % Save data as MAT file.
print(gcf,'-dpng',[name,'.png']); % Save figure as png file.

if IsOctave
    hgsave(gcf,[name,'.fig'],'-v7'); % Save figure as fig file.
else
    savefig(gcf,[name,'.fig'],'compact'); % Save figure as fig file.
end
end

%% GET LUMINANCE
function L=GetLuminance
% L=GetLuminance(o.usePhotometer)
% Measure luminance (cd/m^2).
% Cambridge Research Systems ColorCAL II XYZ Colorimeter.
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/nest/product-support
persistent CORRMAT
if isempty(CORRMAT)
    % Get ColorCAL II XYZ correction matrix (CRT=1; WLED LCD=2; OLED=3):
    CORRMAT=ColorCal2('ReadColorMatrix');
end
s = ColorCal2('MeasureXYZ');
XYZ = CORRMAT(4:6,:) * [s.x s.y s.z]';
L=XYZ(2);
end