File: PsychScriptingGluePython.c

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (3426 lines) | stat: -rw-r--r-- 139,000 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
/*
 * PsychSourceGL/Source/Common/Base/PythonGlue/PsychScriptingGluePython.c
 *
 * AUTHORS:
 *
 * mario.kleiner.de@gmail.com   mk
 *
 * PLATFORMS: All -- Glue layer for CPython runtime environment.
 *
 * HISTORY:
 *
 * 19-June-2018     mk  Derived from PsychScriptingGlueMatlab.c
 *
 * DESCRIPTION:
 *
 * PsychScriptingGluePython defines abstracted functions to pass values
 * between the calling Python environment and the PsychToolbox CPython modules.
 *
 * Copyright (c) 2018 Mario Kleiner.
 *
 * MIT license:
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to permit
 * persons to whom the Software is furnished to do so, subject to the
 * following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
 * NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */

// During inclusion of Psych.h, we define the special flag PTBINSCRIPTINGGLUE. This
// will cause some of the system headers in Psych.h not to be included during build
// of PsychScriptingGluePython.c:
#define PTBINSCRIPTINGGLUE 1
#include "Psych.h"
#undef PTBINSCRIPTINGGLUE

#if PSYCH_LANGUAGE == PSYCH_PYTHON

// Import NumPy array handling functions: Require at least NumPy v 1.13.0, released
// in June 2017:
#define NPY_NO_DEPRECATED_API NPY_1_13_API_VERSION
#include <numpy/arrayobject.h>

#if defined(Py_LIMITED_API) && defined(__GNUC__) && (__GNUC__ < 10) && !defined(__clang__)
#error \
"This version of gcc has a bug and cannot compile this code \
with Py_LIMITED_API enabled. Either build without Py_LIMITED_API \
or upgrade gcc to a version >= 10.1 and try again. Ubuntu 20.04, \
e.g., ships a suitable compiler package named gcc-10. \
See https://github.com/numpy/numpy/issues/16970 for details."
#endif

// Define this to 1 if you want lots of debug-output for the Python-Scripting glue.
#define DEBUG_PTBPYTHONGLUE 0

// Special hacks to allow Psychtoolbox to build on Python, stubbing out Mex Api replacements.

#include <string.h>
#include <setjmp.h>

////Static functions local to ScriptingGluePython.c.
// _____________________________________________________________________________________

#define MAX_CMD_NAME_LENGTH 100

//Static variables local to ScriptingGluePython.c.  The convention is to append a abbreviation in all
//caps of the C file name to the variable name.

// nameFirstGLUE, baseFunctionInvoked, nlhsGLUE, nrhsGLUE, plhsGLUE, prhsGLUE
// are state which has to be maintained for each invocation of a mex module.
// If a modules calls itself recursively, this state has to be maintained for
// each recursive call level. We implement a little homemade stack for those
// variables. Maximum stack depth and therefore maximum recursion level for
// reentrant recursive calls is MAX_RECURSIONLEVEL. The variable recLevel
// keeps track of the current call recursion level and acts as a "stack pointer".
// It gets incremented by each entry to mexFunction() and decremented by each
// regular exit from mexFunction(). On error abort or modules reload it needs
// to get reset to initial -1 state:
#define MAX_RECURSIONLEVEL 5
#define MAX_INPUT_ARGS 100
#define MAX_OUTPUT_ARGS 100

static psych_bool nameFirstGLUE[MAX_RECURSIONLEVEL];
static psych_bool baseFunctionInvoked[MAX_RECURSIONLEVEL];
static psych_bool use_C_memory_layout[MAX_RECURSIONLEVEL];

static int nlhsGLUE[MAX_RECURSIONLEVEL];  // Number of requested return arguments.
static int nrhsGLUE[MAX_RECURSIONLEVEL];  // Number of provided call arguments.

static PyObject* plhsGLUE[MAX_RECURSIONLEVEL][MAX_OUTPUT_ARGS];             // An array of pointers to the Python return arguments.
static PyObject* prhsGLUE[MAX_RECURSIONLEVEL][MAX_INPUT_ARGS];              // An array of pointers to the Python call arguments.
static psych_bool prhsNeedsConversion[MAX_RECURSIONLEVEL][MAX_INPUT_ARGS];  // prhsGLUE needs one-time conversion to NumPy array?

static int recLevel = -1;
static psych_bool psych_recursion_debug = FALSE;
static int psych_refcount_debug = 0;

// Our own module object:
static PyObject *module = NULL;

// Full filesystem path/name to the library (DLL/dylib/libso) that defines this module:
static char modulefilename[FILENAME_MAX];

// MODULE INITIALIZATION FOR PYTHON:
// =================================

#define PPYINIT(...) _PPYINIT(__VA_ARGS__)
#define _PPYNAME(n) #n
#define PPYNAME(...) _PPYNAME(__VA_ARGS__)

static PyMethodDef GlobalPythonMethodsTable[] = {
    {PPYNAME(PTBMODULENAME), PsychScriptingGluePythonDispatch, METH_VARARGS, NULL},
    {NULL, NULL, 0, NULL}
};

// Python 3 init code:
#define _PPYINIT(n) PyMODINIT_FUNC PyInit_ ## n(void)

// Defined in PsychScriptingGluePython.c
PsychError PsychExitPythonGlue(void);

/* PythonModuleCleanup() - Call Python specific cleanup function.
 *
 * This cleanup function is only called on Python 3, and as far as i
 * understand only at interpreter shutdown time, ie. when calling quit()
 * or pressing CTRL+D. reload()ing of extension modules seems to be not
 * possible in Python 2 and 3, as described in PEP 0498:
 * https://www.python.org/dev/peps/pep-0489/#id29
 *
 * For this reason, this function is of limited value, but implemented
 * anyway for completeness and future reference.
 *
 */
void PythonModuleCleanup(void* userptr)
{
    (void) userptr;
    (void) PsychExitPythonGlue();
}

static struct PyModuleDef module_definition = {
    PyModuleDef_HEAD_INIT,                                                      // Base instance.
    PPYNAME(PTBMODULENAME),                                                     // Module name.
    "The " PPYNAME(PTBMODULENAME) " Psychtoolbox module for Python 3.\n"        // Help text.
    "Copyright (c) 2018-2023 Mario Kleiner.\n"
    "Copyright (c) 2022-2023 Alex Forrence.\n"
    "Licensed under the MIT license.",
    -1,                                                                         // -1 = No sub-interpreter support: https://docs.python.org/3/c-api/module.html#c.PyModuleDef
    GlobalPythonMethodsTable,                                                   // Function dispatch table, shared with Python 2.
    NULL,                                                                       // m_slots
    NULL,                                                                       // m_traverse
    NULL,                                                                       // m_clear
    PythonModuleCleanup                                                         // m_free = PythonModuleCleanup, cleanup at module destruction.
};

// This is the entry point - module init function, called at module import:
// PTBMODULENAME is -DPTBMODULENAME myname defined by the build script to the
// name of the module, e.g., GetSecs.
PPYINIT(PTBMODULENAME)
{
    modulefilename[0] = 0;

    // Add a help string with module synopsis to 1st function - our main dispatch function:
    GlobalPythonMethodsTable[0].ml_doc = PsychBuildSynopsisString(PPYNAME(PTBMODULENAME));

    // Initialize module:
    module = PyModule_Create(&module_definition);
    return(module);
}

// END OF MODULE INITIALIZATION FOR PYTHON:

// Return filename of the module definition file - the shared library:
const char* PsychGetPyModuleFilename(void)
{
    // Get full filesystem path/name of the module definition file, ie. the library:
    if (module && !modulefilename[0]) {
        PyObject *fname = PyModule_GetFilenameObject(module);

        if (fname)
            mxGetString(fname, modulefilename, sizeof(modulefilename) - 1);
        else
            sprintf(modulefilename, "%s", PyModule_GetFilename(module));
        Py_XDECREF(fname);
    }

    return(&modulefilename[0]);
}

// This jump-buffer stores CPU- and stackstate at the position
// where our octFunction() dispatcher actually starts executing
// the functions or subfunctions code. That is the point where
// a PsychErrorExit() or PsychErrorExitMsg() will return control...
jmp_buf jmpbuffer[MAX_RECURSIONLEVEL];

// Error exit handler:
// Prints the error-string with CPythons printing facilities, and then longjmp's
// to the cleanup routine at the end of our PsychScriptingGluePythonDispatch()
// dispatcher.
void mexErrMsgTxt(const char* s) {
    if (s && strlen(s) > 0)
        printf("%s:%s: %s\n", PsychGetModuleName(), PsychGetFunctionName(), s);
    else
        printf("%s:%s\n", PsychGetModuleName(), PsychGetFunctionName());

    // Use the jump-buffer to unwind the stack...
    longjmp(jmpbuffer[recLevel], 1);
}

// Interface to printf... TODO Used anywhere?
void mexPrintf(const char* fmt, ...)
{
    va_list args;
    va_start (args, fmt);
    vfprintf(stderr, fmt, args);
    vfprintf(stdout, fmt, args);
    va_end(args);
}

void* mxMalloc(int size)
{
    return(PsychMallocTemp((unsigned long) size));
}

void* mxCalloc(int size, int numelements)
{
    return(PsychCallocTemp((unsigned long) size, (unsigned long) numelements));
}

void mxFree(void* p)
{
    PsychFreeTemp(p);
}

double mxGetNaN(void)
{
    /* TODO FIXME Stop-gap? Better solution in Python? */
    return(nan(""));
}

int mxIsLogical(const PyObject* a)
{
    return(PyBool_Check(a) || PyArray_ISBOOL((const PyArrayObject*) a));
}

int mxIsCell(const PyObject* a)
{
    return(PyTuple_Check(a));
}

int mxIsStruct(const PyObject* a)
{
    return((PyList_Check(a) && (PyList_Size((PyObject*) a) > 0) && PyDict_Check(PyList_GetItem((PyObject*) a, 0))) ||
            PyDict_Check(a));
}

int mxIsNumeric(const PyObject* a)
{
    return(PyFloat_Check(a) || PyLong_Check(a));
}

int mxIsChar(const PyObject* a)
{
    return(PyUnicode_Check(a) || PyBytes_Check(a));
}

int mxIsSingle(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_FLOAT);
}

int mxIsDouble(const PyObject* a)
{
    //return(PyArray_ISFLOAT((const PyArrayObject*) a));
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_DOUBLE);
}

int mxIsUint8(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT8);
}

int mxIsUint16(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT16);
}

int mxIsUint32(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT32);
}

int mxIsUint64(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT64);
}

int mxIsInt8(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT8);
}

int mxIsInt16(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT16);
}

int mxIsInt32(const PyObject* a)
{
//    return(PyArray_ISINTEGER((PyArrayObject*) a));
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT32);
}

int mxIsInt64(const PyObject* a)
{
    return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT64);
}

int PsychGetNumTypeFromArgType(PsychArgFormatType type)
{
    switch(type) {
        case PsychArgType_uint8:
            return(NPY_UINT8);

        case PsychArgType_uint16:
            return(NPY_UINT16);

        case PsychArgType_uint32:
            return(NPY_UINT32);

        case PsychArgType_uint64:
            return(NPY_UINT64);

        case PsychArgType_int8:
            return(NPY_INT8);

        case PsychArgType_int16:
            return(NPY_INT16);

        case PsychArgType_int32:
            return(NPY_INT32);

        case PsychArgType_int64:
            return(NPY_INT64);

        case PsychArgType_single:
            return(NPY_FLOAT);

        case PsychArgType_double:
            return(NPY_DOUBLE);

        case PsychArgType_boolean:
            return(NPY_BOOL); // 1-Byte

        case PsychArgType_char:
            return(NPY_STRING);

        case PsychArgType_cellArray:
            return(NPY_OBJECT);

        case PsychArgType_structArray:
            return(NPY_OBJECT);

        default:
            printf("PTB-CRITICAL: Can not map PsychArgFormatType %i to NumPy type!\n", type);
            PsychErrorExitMsg(PsychError_invalidArg_type, "Unknown PsychArgFormatType encountered. Don't know how to map it to NumPy.");
            return(NPY_NOTYPE);
    }
}

PyObject* mxCreateNumericArray(int numDims, ptbSize dimArray[], PsychArgFormatType arraytype)
{
    int typenum = PsychGetNumTypeFromArgType(arraytype);

    // Create empty/uninitialized array in (0) C contiguous style if use_C_memory_layout,
    // else create in (1) Fortran contiguous style:
    return(PyArray_EMPTY(numDims, (npy_intp*) dimArray, typenum, (use_C_memory_layout[recLevel]) ? 0 : 1));
}

PyObject* mxCreateDoubleMatrix(ptbSize rows, ptbSize cols)
{
    ptbSize dims[2];
    dims[0] = rows;
    dims[1] = cols;

    return(mxCreateNumericArray(2, dims, PsychArgType_double));
}

PyObject* mxCreateLogicalMatrix(ptbSize rows, ptbSize cols)
{
    ptbSize dims[2];
    dims[0] = rows;
    dims[1] = cols;
    return(mxCreateNumericArray(2, dims, PsychArgType_boolean));
}

PyObject* mxCreateString(const char* instring)
{
    PyObject* ret;

    if (!instring)
        return(PyUnicode_FromString("NULL"));

    // Try decoding from UTF-8:
    ret = PyUnicode_FromString(instring);
    PyErr_Clear();

    // On Windows, some low-level ANSI api's, e.g., input device enumeration in
    // PsychHID, return strings encoded in Windows codepage CP_ACP, the system
    // active code page. See the following Microsoft documentation for details:
    //
    // https://docs.microsoft.com/en-us/windows/desktop/Intl/conventions-for-function-prototypes
    //
    // PyUnicode_DecodeMBCS() decodes such multibyte character strings encoded in
    // the CP_ACP current system code page into Unicode. Therefore this is our
    // 1st fallback if UTF-8 decoding fails on Windows:
    // Thanks to Hiroyuki Sogo for finding this solution!
    #if PSYCH_SYSTEM == PSYCH_WINDOWS
    if (!ret) {
        ret = PyUnicode_DecodeMBCS(instring, strlen(instring), NULL);
        PyErr_Clear();
    }
    #endif

    if (!ret) {
        // Try decoding assuming current system locale setting:
        ret = PyUnicode_DecodeLocale(instring, "surrogateescape");
        PyErr_Clear();

        // If Py_LIMITED_API is enabled, it means we're compiling on
        // at least Python 3.7. If that's the case, we can skip the
        // next two checks, which deal with incompatibilties in earlier
        // Python versions
        #ifndef Py_LIMITED_API
        // Retry with strict error handler, because of backwards incompatible
        // change in Python 3.6 -> 3.7 (sigh):
        if (!ret) {
            ret = PyUnicode_DecodeLocale(instring, "strict");
            PyErr_Clear();
        }

        // Retry with Python startup locale. There were backwards incompatible
        // changes in Python 3.0 -> 3.2 -> 3.6, often only on Windows (sigh):
        if (!ret) {
            ret = PyUnicode_DecodeFSDefault(instring);
            PyErr_Clear();
        }
        #endif
    }

    if (!ret) {
        // Final attempt: Decode as Latin-1, corresponding to the first 256
        // Unicode codepoints. According to CPython source, this can essentially
        // only fail on system out-of-memory, and either returns a Latin-1
        // string if instring was Latin-1, or it will return whatever it is
        // crammed into Latin-1, ie. Byte values in range 0-255. Good enough for
        // debugging by calling script:
        ret = PyUnicode_DecodeLatin1(instring, strlen(instring), NULL);
        PyErr_Clear();
    }

    // Better than crashing:
    if (!ret)
        ret = PyUnicode_FromString("WARNING: INVALID UNDECODABLE STRING!");

    // Clear potential Unicode exceptions set by above:
    PyErr_Clear();

    return(ret);
}

void* mxGetData(const PyObject* arrayPtr)
{
    return(PyArray_DATA((PyArrayObject*)  arrayPtr));
}

double* mxGetPr(const PyObject* arrayPtr)
{
    return(PyArray_DATA((PyArrayObject*)  arrayPtr));
}

double mxGetScalar(const PyObject* arrayPtr)
{
    return(PyFloat_AsDouble((PyObject*) arrayPtr));
}

PsychNativeBooleanType* mxGetLogicals(const PyObject* arrayPtr)
{
    // PsychNativeBooleanType == psych_bool == unsigned char == 1 Byte on
    // Python with NumPy:
    return((PsychNativeBooleanType*) mxGetData(arrayPtr));
}

ptbSize mxGetNumberOfDimensions(const PyObject* arrayPtr)
{
    if (!PyArray_Check(arrayPtr))
        return(0);

    return((ptbSize) PyArray_NDIM((const PyArrayObject*) arrayPtr));
}

ptbSize mxGetM(const PyObject* arrayPtr)
{
    if (mxGetNumberOfDimensions(arrayPtr) < 1)
        return(1);

    return((ptbSize) PyArray_DIM((const PyArrayObject*)  arrayPtr, 0));
}

ptbSize mxGetN(const PyObject* arrayPtr)
{
    if (mxGetNumberOfDimensions(arrayPtr) < 2)
        return(1);

    return((ptbSize) PyArray_DIM((const PyArrayObject*)  arrayPtr, 1));
}

/*
 *    Get the 2nd array dimension.
 *
 *    The Mex API's mxGetN is sometimes undersirable because it returns the product of all dimensions above 1.  Our mxGetNOnly only returns N, for when you need that.
 *
 *    The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
 */
static ptbSize mxGetNOnly(const PyObject *arrayPtr)
{
    return(mxGetN(arrayPtr));
}

/*
 *    Get the third array dimension which we call "P".  mxGetP should act just like mxGetM and mxGetN.
 *
 *    The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
 */
static ptbSize mxGetP(const PyObject *arrayPtr)
{
    if (mxGetNumberOfDimensions(arrayPtr) < 3) {
        //printf("P %i\n", 1);
        return(1);
    }

    return((ptbSize) PyArray_DIM((const PyArrayObject*)  arrayPtr, 2));
}

int mxGetString(PyObject* arrayPtr, char* outstring, int outstringsize)
{
    if (!mxIsChar(arrayPtr))
        PsychErrorExitMsg(PsychError_internal, "FATAL Error: Tried to convert a non-string into a string!");

    // Python 3: No PyObject_Unicode(), distinguish unicode input vs. bytes 8-bit legacy string input:
    if (PyUnicode_Check(arrayPtr))
        // Provide it as Latin1 8-bit "bytes" string from unicode, giving a new reference:
        arrayPtr = PyUnicode_AsLatin1String(arrayPtr);
    else
        // Is already a 8-bit "bytes" string. Increment refcount, to counteract decref below:
        Py_INCREF(arrayPtr);

    // Got a 8-bit "bytes" string?
    if (arrayPtr) {
        // Extract as const char* C-style string - copy to return char array:
        int rc = ((snprintf(outstring, outstringsize, "%s", PyBytes_AsString(arrayPtr))) >= 0) ? 0 : 1;

        Py_DECREF(arrayPtr);
        return(rc);
    }
    else
        return(1);
}

void mxDestroyArray(PyObject *arrayPtr)
{
    // Destroy a PyObject:
    if (arrayPtr == NULL) return;

    fprintf(stderr, "WARN WARN UNIMPLEMENTED: mxDestroyArray()\n");

	return;
}

PyObject* mxCreateStructArray(int numDims, ptbSize* ArrayDims, int numFields, const char** fieldNames)
{
    int i, j, n;
    PyObject* retval = NULL;

    if (numDims != 1)
        PsychErrorExitMsg(PsychError_unimplemented, "Error: mxCreateStructArray: Anything else than 1D Struct-Array is not supported!");

    if (numFields < 1)
        PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: numFields < 1 ?!?");

    n = (int) ArrayDims[0];

    if (n < -1)
        PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: Negative number of array elements requested?!?");

    // Create a list of objects - the struct array - with each object being a
    // dictionary that contains fieldNames as keys, and PyObjects as the actual
    // values -- iow. a single "array of structs":

    // Create to-be-returned list that makes up the struct array, except if n == -1,
    // in which case we don't return a list (~ array), but just the single dict (~ struct):
    if (n != -1)
        retval = PyList_New((Py_ssize_t) n);

    // Create one dictionary for each slot:
    for (i = 0; i < abs(n); i++) {
        PyObject* slotdict = PyDict_New();

        // Create all fields for all fieldNames for this slots dictionary:
        for (j = 0; j < numFields; j++) {
            // Init value with Py_None:
            Py_INCREF(Py_None);
            if (PyDict_SetItemString(slotdict, fieldNames[j], Py_None))
                PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: Failed to init struct-Array slot with item!");
        }

        // For n >=  0, assign to i'th slot of returned list retval.
        // For n == -1, directly return our one and only slotdict as retval:
        if (n > -1)
            PyList_SetItem(retval, i, slotdict);
        else
            retval = slotdict;
    }

    return(retval);
}

PyObject* mxGetField(const PyObject* structArray, int index, const char* fieldName)
{
    if (!mxIsStruct(structArray))
        PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Tried to manipulate something other than a struct-Array!");

    // Different code-path for single element structArray aka a dict, vs. multi-element
    // structArray aka list of dicts:
    if (!PyDict_Check(structArray)) {
        if (index >= PyList_Size((PyObject*) structArray))
            PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Index exceeds size of struct-Array!");

        return(PyDict_GetItemString(PyList_GetItem((PyObject*) structArray, index), fieldName));
    }
    else {
        if (index != 0)
            PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Index exceeds size of struct-Array!");

        return(PyDict_GetItemString((PyObject*) structArray, fieldName));
    }
}

int mxIsField(PyObject* structArray, const char* fieldName)
{
    if (!mxIsStruct(structArray))
        PsychErrorExitMsg(PsychError_internal, "Error: mxIsField: Tried to manipulate something other than a struct-Array!");

    // Ok, cheating. If the fieldName exists, we always returns a field number of 1,
    // otherwise we return -1, so this function can only check if a fieldName is valid.
    // But then, that's all that this function is used for inside our implementation,
    // so we should be fine.
    if (mxGetField(structArray, 0, fieldName))
        return(1);

    // No such field :(
    return(-1);
}

// The mxSetField() function unconditionally steals the reference to
// pStructInner from our caller. In general mxSetField() is only called by
// the PsychSetStructArrayXXXXXElement() functions, and these generate a new
// reference to whatever they assign, so now the reference in this slot+field is
// the only existing one, and pStructInner will get deleted, once pStructOuter
// has fulfilled its purpose inside the Python script and goes out of scope/gets
// deleted there:
void mxSetField(PyObject* pStructOuter, int index, const char* fieldName, PyObject* pStructInner)
{
    if (psych_refcount_debug && pStructInner)
        printf("PTB-DEBUG: In mxSetField: refcount of external object %p at enter is %li. %s\n",
               pStructInner, Py_REFCNT(pStructInner),
               (Py_REFCNT(pStructInner) > 1) ? "MIGHT leak if caller does not take care." : "");

    if (!mxIsStruct(pStructOuter)) {
        Py_XDECREF(pStructInner);
        PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: Tried to manipulate something other than a struct-Array!");
    }

    PyObject *arraySlot;

    // Different code-path for single element structArray aka a dict, vs. multi-element
    // structArray aka list of dicts:
    if (PyList_Check(pStructOuter)) {
        if (index >= PyList_Size(pStructOuter)) {
            Py_XDECREF(pStructInner);
            PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: Index exceeds size of struct-Array!");
        }

        // Get dictionary for slot 'index':
        arraySlot = PyList_GetItem(pStructOuter, index);
    }
    else {
        // Single-slot array: pStructOuter is already the single struct aka dict:
        arraySlot = pStructOuter;
    }

    // Assign pStructInner as new value of field fieldName in slot index:
    // This will drop the refcount of the previous value in that slot+field,
    // and increase the refcount of pStructInner by one, iow. it doesn't steal
    // a reference, but get our own one:
    if (PyDict_SetItemString(arraySlot, fieldName, pStructInner)) {
        Py_XDECREF(pStructInner);
        PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: PyDict_SetItemString() failed!");
    }

    // The mxSetField() function unconditionally steals the reference to
    // pStructInner from our caller. In general mxSetField() is only called by
    // the PsychSetStructArrayXXXXXElement() functions, and these generate a new
    // reference to whatever they assign, so now the reference in this slot+field is
    // the only existing one, and pStructInner will get deleted, once pStructOuter
    // has fulfilled its purpose inside the Python script and goes out of scope/gets
    // deleted there:
    Py_XDECREF(pStructInner);
}

/* UNUSED, but here for reference */
PyObject* mxCreateCellArray(int numDims, ptbSize* ArrayDims)
{
    PyObject* retval;

    if (numDims > 1)
        PsychErrorExitMsg(PsychError_unimplemented, "Error: mxCreateCellArray: 2D Cell Arrays are not supported on Python build!");

    // Allocate our PyObject-Struct:
    retval = PyTuple_New((Py_ssize_t) ArrayDims[0]);

    // Done.
    return(retval);
}

/* UNUSED, but here for reference */
void mxSetCell(PsychGenericScriptType *cellVector, ptbIndex index, PyObject* mxFieldValue)
{
    if (!mxIsCell(cellVector))
        PsychErrorExitMsg(PsychError_internal, "Error: mxSetCell: Tried to manipulate something other than a cell-vector!");

    if (index >= (ptbIndex) PyTuple_Size(cellVector))
        PsychErrorExitMsg(PsychError_internal, "Error: mxSetCell: index tried to index beyond lenght of cell-vector!");

    PyTuple_SetItem(cellVector, index, mxFieldValue);

    return;
}


void mxSetLogical(PyObject* dummy)
{
    // This is a no-op, because it is not needed anywhere...
    return;
}

//local function declarations
static psych_bool PsychIsDefaultMat(const PyObject *mat);
static ptbSize mxGetP(const PyObject *array_ptr);
static ptbSize mxGetNOnly(const PyObject *arrayPtr);
static PyObject *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p);

// firstTime: This flag defines if this is the first invocation of the module
// since it was (re-)loaded:
static psych_bool firstTime = TRUE;

PsychError PsychExitPythonGlue(void);
void ScreenCloseAllWindows(void);

void* init_numpy(void)
{
    import_array();
    return(NULL);
}

void PsychExitRecursion(void)
{
    if (recLevel < 0) {
        printf("PTB-CRITICAL: Recursion stack underflow in module %s! Brace for impact!\n", PsychGetModuleName());
        return;
    }

    if (psych_recursion_debug) printf("PTB-DEBUG: Module %s leaving recursive call level %i.\n", PsychGetModuleName(), recLevel);

    // Done with this call recursion level:
    recLevel--;
}


/*     PsychUseCMemoryLayoutIfOptimal() - Opt in to data exchange memory layout optimizations.
 *
 *     Tell scripting glue to use/assume a C programming language memory layout for exchanging
 *     multi-dimensional (== 2D, 3D, n-D) matrices with the scripting environment if that layout
 *     promises higher efficiency and performance in data exchange. This is an opt-in, requesting
 *     C-layout if 'tryEnableCMemoryLayout' = TRUE, otherwise standard Fortran layout is assumed.
 *     The default is Fortran layout if this function does not get called, and it resets to Fortran
 *     layout at each return of control to the calling scripting environment. Iow. it is a per-
 *     module subfunction-call opt-in.
 *     The function returns TRUE if C memory layout is engaged, otherwise FALSE is returned.
 *     The caller may have to adjust its own data processing according to the returned value,
 *     unless the function is called with tryEnableCMemoryLayout = FALSE or not called at all, in
 *     which case Fortran layout is the thing.
 *
 *     tryEnableCMemoryLayout = FALSE (default) Fortran classic style, TRUE = C-style.
 *
 *     Returns: TRUE if C-style is to be used, FALSE (default) if Fortran classic is to be used.
 *
 */
psych_bool PsychUseCMemoryLayoutIfOptimal(psych_bool tryEnableCMemoryLayout)
{
    // Python - more specifically NumPy - uses C programming language memory layout for
    // its n-D matrices and arrays. Using Fortran classic style requires memory layout
    // conversion when exchanging >= 2D data with Python/NumPy, which can increase
    // required memory bandwith, memory consumption, lead to cache trashing and therefore
    // reduced performance in input/output argument passing. Skipping that is beneficial
    // at least for large n-D arrays, so we always choose C-memory layout if caller does
    // opt-in to allow us to do it:
    use_C_memory_layout[recLevel] = tryEnableCMemoryLayout;

    if (DEBUG_PTBPYTHONGLUE)
        printf("PTB-DEBUG:%s:%s: %s C-Memory layout for NumPy based data exchange.\n",
               PsychGetModuleName(), PsychGetFunctionName(),
               (tryEnableCMemoryLayout) ? "Enabling" : "Disabling");

    return(tryEnableCMemoryLayout);
}


/*
 *
 *    Main entry point for Python runtime. Serves as a dispatch and handles
 *    first time initialization.
 *
 *        The subfunction dispatcher can operate in either of two modes depending
 *        on whether the module has registed subfunctions, or only a single "base"
 *        function.
 *
 *        subfunction mode:
 *        The examines the  first and second
 *        arguments for a string naming a module subfunction.  If it finds in either of those
 *        two arguments a string naming a module subfunctoin, then it looks up the approproate
 *        function pointer and invokes that function.  Before invoking the function the dispatcher
 *        removes the function name argument form the list of argumnets which was passed to the
 *        module.
 *
 *        base mode:  The dispatcher always invokes the same one subfunction and without
 *        alterinng the list of arguments.
 *
 *        Modules should now register in subfunction mode to support the build-in 'version' command.
 *
 */
PyObject* PsychScriptingGluePythonDispatch(PyObject* self, PyObject* args)
{
    psych_bool          isArgThere[2], isArgEmptyMat[2], isArgText[2], isArgFunction[2];
    PsychFunctionPtr    fArg[2], baseFunction;
    char                argString[2][MAX_CMD_NAME_LENGTH];
    PyObject*           tmparg = NULL;
    PyObject*           plhs = NULL;
    int                 i;
    int                 nrhs = (int) PyTuple_Size(args);

    if (!PyTuple_Check(args)) {
        printf("FAIL FAIL FAIL!\n");
        return(NULL);
    }

    // Initialization
    if (firstTime) {
        // Reset call recursion level to startup default:
        recLevel = -1;
        psych_recursion_debug = FALSE;
        psych_refcount_debug = 0;

        if (getenv("PSYCH_RECURSION_DEBUG")) psych_recursion_debug = TRUE;
        if (getenv("PSYCH_REFCOUNT_DEBUG")) psych_refcount_debug = atoi(getenv("PSYCH_REFCOUNT_DEBUG"));

        // Initialize NumPy array extension for use in *this compilation unit* only:
        (void) init_numpy();

        // Call the Psychtoolbox init function, which inits the Psychtoolbox and calls the project init.
        PsychInit();

        // Hard to believe, but apparently true: Python does not allow unloading extension modules!
        // As a workaround, we register a subfunction "Shutdown" that allows to trigger a manual module
        // shutdown, although not a true unload. At least this might allow module state resets if done
        // carefully:
        PsychRegister("Shutdown",  &PsychExitPythonGlue);

        // Register hidden helper function: This one dumps all registered subfunctions of
        // a module into a struct array of text strings. Needed by our automatic documentation
        // generator script to find out about subfunctions of a module:
        PsychRegister((char*) "DescribeModuleFunctionsHelper",  &PsychDescribeModuleFunctions);

        firstTime = FALSE;
    }

    // Increment call recursion level for this invocation of the module:
    recLevel++;
    if (recLevel >= MAX_RECURSIONLEVEL) {
        // Maximum level exceeded!
        printf("PTB-CRITICAL: Maximum recursion level %i for recursive calls into module '%s' exceeded!\n", recLevel, PsychGetModuleName());
        printf("PTB-CRITICAL: Aborting call sequence. Check code for recursion bugs!\n");
        recLevel--;
        return(NULL);
    }

    if (psych_recursion_debug) printf("PTB-DEBUG: Module %s entering recursive call level %i.\n", PsychGetModuleName(), recLevel);

    // Default to not using C memory layout, but classic (backwards compatible) Fortran layout:
    use_C_memory_layout[recLevel] = FALSE;

    // Save CPU-state and stack at this position in 'jmpbuffer'. If any further code
    // calls an error-exit function like PsychErrorExit() or PsychErrorExitMsg() then
    // the corresponding longjmp() call in our mexErrMsgTxt() implementation (see top of file)
    // will unwind the stack and restore stack-state and CPU state to the saved values in
    // jmpbuffer --> We will end up at this setjmp() call again, with a cleaned up stack and
    // CPU state, but setjmp will return a non-zero error code, signaling the abnormal abortion.
    if (setjmp(jmpbuffer[recLevel]) != 0) {
        // PsychErrorExit() or friends called! The CPU and stack are restored to a sane state.
        // Call our cleanup-routine to release memory that is PsychMallocTemp()'ed and to other
        // error-handling...
        goto PythonFunctionCleanup;
    }

    nrhsGLUE[recLevel] = nrhs;
    for (i = 0; i < nrhs; i++) {
        tmparg = PyTuple_GetItem(args, i);
        prhsGLUE[recLevel][i] = tmparg;

        // Empty args, strings and structs are special - handled directly the Python way.
        // Everything else goes through NumPy C-Interfaces:
        if ((tmparg == NULL) || (tmparg == Py_None) || mxIsChar(tmparg) || mxIsStruct(tmparg)) {
            // This object is already in our desired format:
            prhsNeedsConversion[recLevel][i] = FALSE;
        }
        else {
            // This object needs to get converted into a NumPy array of a suitable format for us.
            // We will do that on first access by client via PsychGetInArgPyPtr(). We can't convert
            // here, as we don't know yet if we need to convert into C-Memory layout or Fortran layout,
            // so just note down the need for lazy conversion on first "true" access:
            prhsNeedsConversion[recLevel][i] = TRUE;

            // Bump refcount if the input object is already a NumPy array, as our PythonFunctionCleanup
            // would decref it on normal exit or error exit. If it isn't a NumPy array yet, then no
            // need to bump, as a lazy conversion later on first access will turn it into a NumPy
            // array and then do the bumping. Or the argument may never get evaluated, so it would stay
            // a non NumPy array and don't need the bump/unbump treatment:
            if (PyArray_Check(prhsGLUE[recLevel][i]))
                Py_INCREF(prhsGLUE[recLevel][i]);
        }
    }

    // Set number of output arguments to "unknown" == -1, as we don't know yet:
    nlhsGLUE[recLevel] = -1;

    // NULL-out our pointer array of return value pointers plhsGLUE[recLevel]:
    memset(&plhsGLUE[recLevel][0], 0, sizeof(plhsGLUE[recLevel]));

    baseFunctionInvoked[recLevel] = FALSE;

    // If no subfunctions have been registered by the project then just invoke the project base function
    // If one of those has been registered.
    if (!PsychAreSubfunctionsEnabled()) {
        baseFunction = PsychGetProjectFunction(NULL);
        if (baseFunction != NULL) {
            baseFunctionInvoked[recLevel] = TRUE;
            (*baseFunction)();  //invoke the unnamed function
        } else
            PsychErrorExitMsg(PsychError_internal, "Project base function invoked but no base function registered");
    } else { // Subfunctions are enabled so pull out the function name string and invoke it.
        // Assess the nature of first and second arguments for finding the name of the sub function.
        for (i = 0; i < 2; i++) {
            isArgThere[i] = (nrhs > i) && (prhsGLUE[recLevel][i]);
            if (isArgThere[i]) {
                tmparg = prhsGLUE[recLevel][i];
            } else {
                tmparg = NULL;
            }

            isArgEmptyMat[i] = isArgThere[i] ? PsychIsDefaultMat(tmparg) : FALSE;
            isArgText[i] = isArgThere[i] ? mxIsChar(tmparg) : FALSE;
            if (isArgText[i]) {
                if (mxGetString(tmparg, argString[i], sizeof(argString[i])))
                    PsychErrorExitMsg(PsychError_user, "Invalid subcommand argument passed in. Not a command name!");

                // Empty subfunction command strings map to "empty matrix", for Mex/Matlab/Octave compatibility:
                if (strlen(argString[i]) == 0)
                    isArgEmptyMat[i] = TRUE;

                // Only consider 2nd arg as subfunction if 1st arg isn't already a subfunction:
                if ((i == 0) || (!isArgFunction[0])) {
                    fArg[i] = PsychGetProjectFunction(argString[i]);
                }
                else fArg[i] = NULL; // 1st arg is subfunction, so 2nd arg can't be as well.
            }
            isArgFunction[i] = isArgText[i] ? fArg[i] != NULL : FALSE;
        }

        // Figure out which of the two arguments might be the function name and either invoke it or exit with error
        // if we can't find one.
        if (!isArgThere[0] && !isArgThere[1]) { //no arguments passed so execute the base function
            baseFunction = PsychGetProjectFunction(NULL);
            if (baseFunction != NULL) {
                baseFunctionInvoked[recLevel]=TRUE;
                (*baseFunction)();
            } else
                PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
        }
        else if (isArgEmptyMat[0] && !isArgThere[1]) {
            PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state A)");
        }
        else if (isArgEmptyMat[0] && isArgEmptyMat[1]) {
            PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state B)");
        }
        else if (isArgEmptyMat[0] && isArgText[1]) {
            if (isArgFunction[1]) {
                nameFirstGLUE[recLevel] = FALSE;
                (*(fArg[1]))();
            }
            else
                PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state C)");
        }
        else if (isArgEmptyMat[0] && !isArgText[1]) {
            PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state D)");
        }
        else if (isArgText[0] && !isArgThere[1]) {
            if (isArgFunction[0]) {
                nameFirstGLUE[recLevel] = TRUE;
                (*(fArg[0]))();
            } else {
                // When we receive a first argument  which is a string and it is not recognized as a function name then call the default function
                // first to hopefully print a synopsis on a subfunctions-enabled module, then abort with "Unknown subfunction name".
                baseFunction = PsychGetProjectFunction(NULL);
                if (baseFunction != NULL) {
                    baseFunctionInvoked[recLevel]=TRUE;
                    (*baseFunction)();
                    PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state E)");
                } else
                    PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
            }
        }
        else if (isArgText[0] && isArgEmptyMat[1]) {
            if (isArgFunction[0]) {
                nameFirstGLUE[recLevel] = TRUE;
                (*(fArg[0]))();
            }
            else
                PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state F)");
        }
        else if (isArgText[0] && isArgText[1]) {
            if (isArgFunction[0] && !isArgFunction[1]) { //the first argument is the function name
                nameFirstGLUE[recLevel] = TRUE;
                (*(fArg[0]))();
            }
            else if (!isArgFunction[0] && isArgFunction[1]) { //the second argument is the function name
                nameFirstGLUE[recLevel] = FALSE;
                (*(fArg[1]))();
            }
            else if (!isArgFunction[0] && !isArgFunction[1]) { //neither argument is a function name
                //PrintfExit("Invalid command (error state G)");
                baseFunction = PsychGetProjectFunction(NULL);
                if (baseFunction != NULL) {
                    baseFunctionInvoked[recLevel]=TRUE;
                    (*baseFunction)();
                } else
                    PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
            }
            else if (isArgFunction[0] && isArgFunction[1]) //both arguments are function names
                PsychErrorExitMsg(PsychError_user, "Passed two function names");
        }
        else if (isArgText[0] && !isArgText[1]) {
            if (isArgFunction[0]) {
                nameFirstGLUE[recLevel] = TRUE;
                (*(fArg[0]))();
            }
            else
                PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state H)");
        }
        else if (!isArgText[0] && !isArgThere[1]) {  //this was modified for MODULEVersion with WaitSecs.
            //PrintfExit("Invalid command (error state H)");
            baseFunction = PsychGetProjectFunction(NULL);
            if (baseFunction != NULL) {
                baseFunctionInvoked[recLevel]=TRUE;
                (*baseFunction)();  //invoke the unnamed function
            } else
                PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
        }
        else if (!isArgText[0] && isArgEmptyMat[1]) {
            PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state I)");
        }
        else if (!isArgText[0] && isArgText[1]) {
            if (isArgFunction[1]) {
                nameFirstGLUE[recLevel] = FALSE;
                (*(fArg[1]))();
            } else
                PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name.  (error state J)");
        }
        else if (!isArgText[0] && !isArgText[1]) {  //this was modified for Priority.
            //PrintfExit("Invalid command (error state K)");
            baseFunction = PsychGetProjectFunction(NULL);
            if (baseFunction != NULL) {
                baseFunctionInvoked[recLevel]=TRUE;
                (*baseFunction)();  //invoke the unnamed function
            } else
                PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
        }
    } //close else

    // If we reach this point of execution, then we're successfully done with function execution
    // and just need to return return arguments and clean up:
    if (psych_refcount_debug) {
        for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
            if (plhsGLUE[recLevel][i] && (Py_REFCNT(plhsGLUE[recLevel][i]) >= psych_refcount_debug))
                printf("PTB-DEBUG: At non-error exit of PsychScriptingGluePythonDispatch: Refcount of plhsGLUE[recLevel %i][arg %i] = %li.\n",
                       recLevel, i, Py_REFCNT(plhsGLUE[recLevel][i]));
        }
    }

    // Find the true number of arguments to return in the return tuple:
    if (nlhsGLUE[recLevel] < 0) {
        for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
            if (plhsGLUE[recLevel][i])
                nlhsGLUE[recLevel] = i + 1;
        }
    }

    // Multi-value return?
    if (nlhsGLUE[recLevel] > 1) {
        // Create an output tuple of suitable size:
        plhs = PyTuple_New((Py_ssize_t) nlhsGLUE[recLevel]);
        if (NULL == plhs)
            PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: Failed to create output arg return tuple!!\n");

        // "Copy" our return values into the output tuple: If nlhs should be
        // zero (Python-Script does not expect any return arguments), but our
        // subfunction has assigned a return argument in slot 0 anyway, then
        // we return that argument and release our own temp-memory. This
        // provides "Matlab"-semantic, where a first unsolicited return argument
        // is printed anyway to the console for diagnostic purpose:
        for (i = 0; (i == 0 && plhsGLUE[recLevel][0] != NULL) || (i < nlhsGLUE[recLevel]); i++) {
            if (plhsGLUE[recLevel][i]) {
                // Assign return argument to proper slot of tuple:
                if (PyTuple_SetItem(plhs, (Py_ssize_t) i, plhsGLUE[recLevel][i])) {
                    printf("PTB-CRITICAL: Could not insert return argument for slot %i of output tuple!\n", i);
                    PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: PyTuple_SetItem() failed.\n");
                }

                // NULL-out the array slot, only the output plhs tuple has a reference to
                // the output PyObject argument in slot i:
                plhsGLUE[recLevel][i] = NULL;
            }
            else {
                printf("PTB-DEBUG: Return argument for slot %i of output tuple not defined!\n", i);

                // Ref and assign empty return argument to proper slot of tuple:
                Py_INCREF(Py_None);
                if (PyTuple_SetItem(plhs, (Py_ssize_t) i, Py_None)) {
                    printf("PTB-CRITICAL: Could not insert return argument for slot %i of output tuple!\n", i);
                    PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: PyTuple_SetItem() failed.\n");
                }
            }
        }
    }
    else if ((nlhsGLUE[recLevel] == 1) && (plhsGLUE[recLevel][0] != NULL)) {
        // Single return argument:
        plhs = plhsGLUE[recLevel][0];
        plhsGLUE[recLevel][0] = NULL;
    }
    else {
        // No return value at all:
        Py_INCREF(Py_None);
        plhs = Py_None;
    }

PythonFunctionCleanup:
    // The following code is executed both at end of normal execution, and also
    // during an error return. It has to do the common cleanup work:

    // Release references to NumPy PyArrays, as the PyObject -> PyArray code always
    // returns a new reference which we should get rid off, now that we don't need
    // it anymore:
    for (i = 0; i < nrhs; i++) {
        if (PyArray_Check(prhsGLUE[recLevel][i]))
            Py_XDECREF(prhsGLUE[recLevel][i]);

        prhsGLUE[recLevel][i] = NULL;
    }

    // Release "orphaned" output arguments that haven't been returned to the interpreter,
    // e.g., because of a PythonFunctionCleanup - error return:
    for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
        if (psych_refcount_debug && plhsGLUE[recLevel][i] && (Py_REFCNT(plhsGLUE[recLevel][i]) >= psych_refcount_debug))
            printf("PTB-DEBUG: Orphaned output argument at cleanup: Refcount of plhsGLUE[recLevel %i][arg %i] = %li --> unref --> %li.\n",
                   recLevel, i, Py_REFCNT(plhsGLUE[recLevel][i]), Py_REFCNT(plhsGLUE[recLevel][i]) - 1);

        Py_XDECREF(plhsGLUE[recLevel][i]);
        plhsGLUE[recLevel][i] = NULL;
    }

    // Release all memory allocated via PsychMallocTemp():
    PsychFreeAllTempMemory();

    // Reset to not using C memory layout, but classic (backwards compatible) Fortran layout:
    use_C_memory_layout[recLevel] = FALSE;

    // Done with this call recursion level:
    PsychExitRecursion();

    // Return PyObject tuple with all return arguments:
    return(plhs);
}


/*  Call PsychExitGlue():
 *  Needed to safely reset modules in Python.
 */
PsychError PsychExitPythonGlue(void)
{
    // Debug output:
    if (DEBUG_PTBPYTHONGLUE)
        printf("PTB-INFO: Jettisoning submodule %s ...\n", PsychGetModuleName());

    // Mark ourselves as not yet initialized:
    firstTime = TRUE;

    // Call our regular exit routines to clean up and release all ressources:
    PsychErrorExitMsg(PsychExit(), NULL);

    // Done. Return control to Python:
    return(PsychError_none);
}


// PsychPyArgGet() helper for PsychGetInArgPyPtr() aka PsychGetInArgPtr():
// Does lazy, on-demand, one-time conversion of numeric data types to
// corresponding NumPy array data types of a suitable memory layout for
// our purpose. Adjusts reference counts of old/new instance of input arg
// accordingly and updates prhsGLUE cached copy. Does Fortran -> C conversion
// as needed.
static PyObject* PsychPyArgGet(int position)
{
    PyObject *ret = prhsGLUE[recLevel][position];

    if (psych_refcount_debug && (Py_REFCNT(prhsGLUE[recLevel][position]) >= psych_refcount_debug))
        printf("PTB-DEBUG:%s:PsychPyArgGet: Before convert: Refcount of prhsGLUE[recLevel %i][arg %i] = %li.\n",
               PsychGetFunctionName(), recLevel, position, Py_REFCNT(prhsGLUE[recLevel][position]));

    // Does this input argument need conversion to a NumPy array of suitable format?
    if (prhsNeedsConversion[recLevel][position]) {
        // Yes: Reset "needs conversion" flag and do the one-time conversion:
        prhsNeedsConversion[recLevel][position] = FALSE;

        // Convert it, either into C memory layout or Fortran memory layout. This
        // gives us a *new* reference to a NumPy array in *any* case, even if it was
        // an identity assignment because in-ret was already a suitable NumPy
        // array - in that case the refcount of original prhsGLUE got bumped by one.
        ret = PyArray_FROM_OF(ret, ((use_C_memory_layout[recLevel]) ? NPY_ARRAY_IN_ARRAY : NPY_ARRAY_IN_FARRAY));

        // If prhsGLUE was already a NumPy array, then its refcount got bumped in
        // the initial assignment code in PsychScriptingGluePythonDispatch(), so
        // need to undo the bump here, now that we have a new 'ret' reference,
        // before we assign a potentially new ret as the new prhsGLUE:
        if (PyArray_Check(prhsGLUE[recLevel][position]))
            Py_DECREF(prhsGLUE[recLevel][position]);

        if (DEBUG_PTBPYTHONGLUE || psych_refcount_debug)
            printf("PTB-DEBUG:%s:PsychPyArgGet: Arg %i: Conversion to NumPy array of %s triggered [refcount now %li]: %s\n",
                   PsychGetFunctionName(),
                   position, use_C_memory_layout[recLevel] ? "C layout" : "Fortran layout", Py_REFCNT(ret),
                   (ret == prhsGLUE[recLevel][position]) ? "No-Op passthrough." : "New object.");

        // Now that the new ret is a NumPy array in the wanted final format,
        // assign it, so we do not need to repeat the conversion on future access:
        prhsGLUE[recLevel][position] = ret;

        // At the end of this ballet, if this was a no-op conversion, then the
        // reference count of prhsGLUE should be unchanged. If it was a real
        // conversion, then only the Python interpreter should hold references
        // original prhsGLUE input argument aka the 'args' input tuple argument
        // to the PsychScriptingGluePythonDispatch(), and our new updated prhsGLUE,
        // aka ret is a new refcount == 1 NumPy array of suitable format and memory
        // layout, which we can now use and will dispose of in PythonFunctionCleanup
        // by dropping its refcount by one to zero.
    }

    if (psych_refcount_debug && (Py_REFCNT(prhsGLUE[recLevel][position]) >= psych_refcount_debug))
        printf("PTB-DEBUG:%s:PsychPyArgGet: After  convert: Refcount of prhsGLUE[recLevel %i][arg %i] = %li.\n",
                PsychGetFunctionName(), recLevel, position, Py_REFCNT(prhsGLUE[recLevel][position]));

    return(ret);
}


/*
 *    Return the PyObject pointer to the specified position. Note that we have some special rules for
 *    numbering the positions:
 *
 *    0 - This is always the command string or NULL if the project does not register a
 *        dispatch function and does accept subcommands.  If the function does accept sub
 *        commands, those may be passed in either the first or second position, but
 *        PsychGetArgPtr() will always return the command as the 0th.
 *
 *    1 - This is the first argument among the arguments which are not the subfunction name itself.
 *        It can occur in either the first or second position of the argument list, depending on
 *        in which of those two positions the function name itself appears.
 *
 *    2.. These positions are numbered correctly
 *
 *    TO DO:
 *
 *    2 - this function should be used by the one which gets the function name.
 *
 *
 *    Arguments are numbered 0..n.
 *
 *        - The 0th argument is a pointer to the PyObject holding
 *          the subfunction name string if we are in subfunction mode.
 *
 *        - The 0th argument is undefined if not in subfunction mode.
 *
 *        - The 1st argument is the argument of the 1st and 2nd which is not
 *          the subfunction name if in subfunction mode.
 *
 *        - The 1st argument is the first argument if not in subfunction mode.
 *
 *        - The 2nd-nth arguments are always the 2nd-nth arguments.
 */
const PyObject *PsychGetInArgPyPtr(int position)
{
    if (PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]) { //when in subfunction mode
        if (position < nrhsGLUE[recLevel]) { //an argument was passed in the correct position.
            if (position == 0) { //caller wants the function name argument.
                if (nameFirstGLUE[recLevel])
                    return(PsychPyArgGet(0));
                else
                    return(PsychPyArgGet(1));
            } else if (position == 1) { //they want the "first" argument.
                if (nameFirstGLUE[recLevel])
                    return(PsychPyArgGet(1));
                else
                    return(PsychPyArgGet(0));
            } else
                return(PsychPyArgGet(position));
        } else
            return(NULL);
    } else { //when not in subfunction mode and the base function is not invoked.
        if (position <= nrhsGLUE[recLevel])
            return(PsychPyArgGet(position-1));
        else
            return(NULL);
    }
}


PyObject **PsychGetOutArgPyPtr(int position)
{
    // Output argument PyObject
    if ((position == 1) ||
        ((position > 0) && ((position <= nlhsGLUE[recLevel]) || (nlhsGLUE[recLevel] == -1)))) {
        return(&(plhsGLUE[recLevel][position-1]));
    } else {
        printf("PTB-CRITICAL: PsychGetOutArgPyPtr() invalid position %i referenced [nlhs=%i], returning NULL!\n", position, nlhsGLUE[recLevel]);
        return(NULL);
    }
}


const PsychGenericScriptType *PsychGetInArgPtr(int position)
{
    return((const PsychGenericScriptType*) PsychGetInArgPyPtr(position));
}


/* PsychCheckSizeLimits(size_t m, size_t n, size_t p)
 *
 * Makes sure matrix/vector dimensions stay within the limits imposed
 * by a specific Psychtoolbox build for a specific 32 bit or 64 bit
 * version of Python.
 *
 * 32 bit builds are always limited to 2^31-1 elements per dimension at
 * most. In reality the limit is much lower, this is an upper bound.
 *
 * 64 bit builds may or may not allow bigger limits, depending if
 * the Python runtime supports a 64 bit ptbSize type. Even
 * then there are some limits imposed by available system memory and
 * processor architecture specific limits, e.g., many cpu's only
 * truly support 48 bit of memory, not the true 64 bit.
 *
 */
void PsychCheckSizeLimits(psych_int64 m, psych_int64 n, psych_int64 p)
{
    // No problem if ptbSize has capacity to contain size_t:
    if (sizeof(ptbSize) >= sizeof(size_t)) return;

    // Mismatch: ptbSize too small to contain size_t. This means
    // ptbSize is only defined as a 32-bit int on a system where
    // size_t is a 64 bit unsigned int. As long as the provided
    // size_t values are smaller than 2^31 we're good and don't
    // screw up when downcasting. Otherwis we'd overflow and
    // disaster would happen:
    if ((m < INT_MAX) && (n < INT_MAX) && (p < INT_MAX)) return;

    // Ok, this is a no-go :( Abort with some hopefully helpful
    // error message:
    printf("PTB-ERROR: Tried to return a vector or matrix whose size along at least one dimension\n");
    printf("PTB-ERROR: exceeds the maximum supported size of 2^31 - 1 elements.\n");
    if (sizeof(size_t) == 4) {
        printf("PTB-ERROR: This is a limitation of all 32 bit versions of Psychtoolbox.\n");
        printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Python on a 64-Bit\n");
        printf("PTB-ERROR: operating system to get rid of this limit.\n");
    }
    else {
        printf("PTB-ERROR: This is a limitation of your version of Python.\n");
        printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Python\n");
        printf("PTB-ERROR: on a 64-bit operating system to get rid of this limit.\n");
    }
    PsychErrorExitMsg(PsychError_user, "One of the dimensions of a returned matrix or vector exceeds 2^31-1 elements. This is not supported on your setup!");
}


/*
 *    mxCreateDoubleMatrix3D()
 *
 *    Create a 2D or 3D matrix of doubles.
 *
 *    Requirements are that m>0, n>0, p>=0.
 */
PyObject *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p)
{
    int numDims;
    ptbSize dimArray[3];

    if (m == 0 || n == 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;    //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p==0 || p==1) ? 2 : 3;

    return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_double));
}


/*
 *    mxCreateFloatMatrix3D()
 *
 *    Create a 2D or 3D matrix of floats.
 *
 *    Requirements are that m>0, n>0, p>=0.
 */
PyObject *mxCreateFloatMatrix3D(size_t m, size_t n, size_t p)
{
    int numDims;
    ptbSize dimArray[3];

    if (m == 0 || n == 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;    //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p==0 || p==1) ? 2 : 3;

    return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_single));
}


/*
 *    mxCreateNativeBooleanMatrix3D()
 *
 *    Create a 2D or 3D matrix of native psych_bool types.
 *
 *    Requirements are that m>0, n>0, p>=0.
 */
PyObject *mxCreateNativeBooleanMatrix3D(size_t m, size_t n, size_t p)
{
    int numDims;
    ptbSize dimArray[3];

    if (m == 0 || n == 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;    //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p==0 || p==1) ? 2 : 3;

    return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_boolean));
}


/*
 *    Create a 2D or 3D matrix of ubytes.
 *
 *    Requirements are that m>0, n>0, p>=0.
 */
PyObject *mxCreateByteMatrix3D(size_t m, size_t n, size_t p)
{
    int numDims;
    ptbSize dimArray[3];

    if (m == 0 || n == 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;    //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p==0 || p==1) ? 2 : 3;

    return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint8));
}


static PyObject* PyExc[PsychError_last + 1] = { 0 };

/*
 * Python implementation of Python specific error handling.
 * Set proper Python exception state.
 */
void PsychProcessErrorInScripting(PsychError error, const char* message)
{
    PyObject *exception;

    if (PyExc[PsychError_invalidArg_absent] == NULL) {
        PyExc[PsychError_none] =                                 NULL;

        PyExc[PsychError_invalidArg_absent] =                    PyExc_SyntaxError;
        PyExc[PsychError_invalidArg_extra] =                     PyExc_SyntaxError;
        PyExc[PsychError_invalidArg_type] =                      PyExc_TypeError;
        PyExc[PsychError_invalidArg_size] =                      PyExc_ValueError;

        PyExc[PsychError_extraInputArg] =                        PyExc_SyntaxError;
        PyExc[PsychError_missingInputArg] =                      PyExc_SyntaxError;
        PyExc[PsychError_extraOutputArg] =                       PyExc_SyntaxError;
        PyExc[PsychError_missingOutputArg] =                     PyExc_SyntaxError;

        PyExc[PsychError_toomanyWin] =                           PyExc_MemoryError;
        PyExc[PsychError_outofMemory] =                          PyExc_MemoryError;
        PyExc[PsychError_scumberNotWindex] =                     PyExc_ValueError;
        PyExc[PsychError_windexNotScumber] =                     PyExc_ValueError;
        PyExc[PsychError_invalidWindex] =                        PyExc_IndexError;
        PyExc[PsychError_invalidIntegerArg] =                    PyExc_ValueError;
        PyExc[PsychError_invalidScumber] =                       PyExc_IndexError;
        PyExc[PsychError_invalidNumdex] =                        PyExc_IndexError;
        PyExc[PsychError_invalidColorArg] =                      PyExc_ValueError;
        PyExc[PsychError_invalidDepthArg] =                      PyExc_ValueError;
        PyExc[PsychError_invalidRectArg] =                       PyExc_ValueError;
        PyExc[PsychError_invalidNumberBuffersArg] =              PyExc_ValueError;
        PyExc[PsychError_nullWinRecPntr] =                       PyExc_RuntimeError;
        PyExc[PsychError_registerLimit] =                        PyExc_MemoryError;
        PyExc[PsychError_registered] =                           PyExc_RuntimeError;
        PyExc[PsychError_longString] =                           PyExc_ValueError;
        PyExc[PsychError_longStringPassed] =                     PyExc_ValueError;
        PyExc[PsychError_unimplemented] =                        PyExc_NotImplementedError;
        PyExc[PsychError_internal] =                             PyExc_RuntimeError;
        PyExc[PsychError_invalidArgRef] =                        PyExc_ValueError;
        PyExc[PsychError_OpenGL] =                               PyExc_EnvironmentError;
        PyExc[PsychError_system] =                               PyExc_EnvironmentError;
        PyExc[PsychError_InvalidWindowRecord] =                  PyExc_ValueError;
        PyExc[PsychError_unsupportedVideoMode] =                 PyExc_ValueError;
        PyExc[PsychError_user] =                                 PyExc_Exception;
        PyExc[PsychError_unrecognizedPreferenceName] =           PyExc_NameError;
        PyExc[PsychError_unsupportedOS9Preference] =             PyExc_NameError;
        PyExc[PsychError_inputMatrixIllegalDimensionSize] =      PyExc_ValueError;
        PyExc[PsychError_stringOverrun] =                        PyExc_BufferError;
        PyExc[PsychErorr_argumentValueOutOfRange] =              PyExc_ValueError;
    };

    // No error? Clear exception/error state:
    if (error == PsychError_none) {
        PyErr_Clear();
        return;
    }

    // Trust that the Python C-API or our own code has already set
    // a proper exception and error state if any error state is set:
    if (PyErr_Occurred())
        return;

    if (error == PsychError_system) {
        if (errno) {
            PyErr_SetFromErrno(PyExc_OSError);
            errno = 0;
            return;
        }
        else {
            #if PSYCH_SYSTEM == PSYCH_WINDOWS
                PyErr_SetFromWindowsErr(0);
                return;
            #endif
        }
        // Otherwise fall through to generic handling...
    }

    // Map to half-way suitable exception type and return with or without
    // additional error message:
    exception = PyExc[error];
    if (message != NULL)
        PyErr_SetString(exception, message);
    else
        PyErr_SetNone(exception);

    return;
}

/*
 *    Print string s and return return control to the calling environment.
 */
void PsychErrMsgTxt(char *s)
{
    PsychGenericScriptType *pcontent = NULL;

    // Is this the Screen() module?
    if (strcmp(PsychGetModuleName(), "Screen") == 0) {
        // Yes. We directly call our close and cleanup routine:
        #ifdef PTBMODULE_Screen
            ScreenCloseAllWindows();
        #endif
    } else {
        // Nope. This is a module other than Screen. Try to call Screen('Close')
        // via scripting environemnt:
        if (PsychRuntimeGetVariablePtr("global", "Screen", &pcontent)) {
            // Is it a function wrapper? Then call it Octave-style:
            if (!strcmp(PyEval_GetFuncName(pcontent), "Screen") && !strcmp(PyEval_GetFuncDesc(pcontent), "()"))
                PsychRuntimeEvaluateString("Screen('CloseAll');");
            else // Nope. Is it a module? Then call it module-style:
                if (!strcmp(PyEval_GetFuncName(pcontent), "module"))
                    PsychRuntimeEvaluateString("Screen.Screen('CloseAll');");
                else
                    printf("PsychErrMsgTxt: Failed to call Screen('CloseAll') - Weird signature, not the Screen module?!?\n");
        }
    }

    // Call the error printing and error handling facilities:
    mexErrMsgTxt((s && (strlen(s) > 0)) ? s : "See error message printed above.");
}


/*
 *    classify the PyObject element format using Pyschtoolbox argument type names
 *
 */
static PsychArgFormatType PsychGetTypeFromPyPtr(const PyObject *ppyPtr)
{
    PsychArgFormatType format;

    // First check for "empty" default argument:
    if (PsychIsDefaultMat(ppyPtr))
        format = PsychArgType_default;
    // then for string, as we use Python strings here, not NumPy array strings.
    else if (mxIsChar(ppyPtr))
        format = PsychArgType_char;
    // then for struct, as we use Python structs here, not NumPy array strings.
    else if (mxIsStruct(ppyPtr))
        format = PsychArgType_structArray;
    // then everything else, safely assuming it is a NumPy array object:
    else if (mxIsUint8(ppyPtr))
        format = PsychArgType_uint8;
    else if (mxIsUint16(ppyPtr))
        format = PsychArgType_uint16;
    else if (mxIsUint32(ppyPtr))
        format = PsychArgType_uint32;
    else if (mxIsUint64(ppyPtr))
        format = PsychArgType_uint64;
    else if (mxIsInt8(ppyPtr))
        format = PsychArgType_int8;
    else if (mxIsInt16(ppyPtr))
        format = PsychArgType_int16;
    else if (mxIsInt32(ppyPtr))
        format = PsychArgType_int32;
    else if (mxIsInt64(ppyPtr))
        format = PsychArgType_int64;
    else if (mxIsDouble(ppyPtr))
        format = PsychArgType_double;
    else if (mxIsSingle(ppyPtr))
        format = PsychArgType_single;
    else if (mxIsCell(ppyPtr))
        format = PsychArgType_cellArray;
    else if (mxIsLogical(ppyPtr))
        format = PsychArgType_boolean;
    else
        format = PsychArgType_unclassified;

    return format;
}


/*
 *    PsychSetReceivedArgDescriptor()
 *
 *    Accept an argument number and direction value (input or output).  Examine the specified argument and fill in an argument
 *    descriptor struture.  Ask a retainer function to store the descriptor.
 *
 */
PsychError PsychSetReceivedArgDescriptor(int argNum, psych_bool allow64BitSizes, PsychArgDirectionType direction)
{
    PsychArgDescriptorType  d;
    int                     numNamedOutputs, numOutputs;
    const PyObject          *ppyPtr;

    d.position = argNum;
    d.direction = direction;
    if (direction == PsychArgIn) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(argNum);
        d.isThere = (ppyPtr && !PsychIsDefaultMat(ppyPtr)) ? kPsychArgPresent : kPsychArgAbsent;
        if (d.isThere == kPsychArgPresent) { //the argument is there so fill in the rest of the description
            d.numDims = (int) mxGetNumberOfDimensions(ppyPtr);

            // If the calling function doesn't allow 64 bit sized input argument dimensions, then we check if
            // the input has a size within the positive signed integer range, i.e., at most INT_MAX elements
            // per dimension. Functions which can handle bigger inputs need to declare this explicitely by
            // setting allow64BitSizes == TRUE:
            if ((!allow64BitSizes) && ((mxGetM(ppyPtr) >= INT_MAX) || (mxGetNOnly(ppyPtr) >= INT_MAX) || (mxGetP(ppyPtr) >= INT_MAX))) {
                printf("PTB-ERROR: %i. Input argument exceeds allowable maximum size of 2^31 - 1 elements\n", argNum);
                printf("PTB-ERROR: in at least one dimension. Psychtoolbox can't handle such huge matrices or vectors.\n");
                PsychErrorExitMsg(PsychError_user, "Input argument exceeds maximum supported count of 2^31 - 1 elements!");
            }

            d.mDimMin = d.mDimMax = (psych_int64) mxGetM(ppyPtr);
            d.nDimMin = d.nDimMax = (psych_int64) mxGetNOnly(ppyPtr);
            d.pDimMin = d.pDimMax = (psych_int64) mxGetP(ppyPtr);
            d.type = PsychGetTypeFromPyPtr(ppyPtr);
        }
    }
    else { //(direction == PsychArgOut)
        numNamedOutputs = PsychGetNumNamedOutputArgs();
        numOutputs = PsychGetNumOutputArgs();
        if (numNamedOutputs >=argNum)
            d.isThere = kPsychArgPresent;
        else if (numOutputs >=argNum)
            d.isThere = kPsychArgFixed;
        else
            d.isThere = kPsychArgAbsent;
    }

    PsychStoreArgDescriptor(NULL,&d);
    return(PsychError_none);
}


//local function definitions for ScriptingGluePython.c
//___________________________________________________________________________________________


psych_bool PsychIsDefaultMat(const PyObject *mat)
{
    return ((mat == Py_None) ||
            (PyList_Check(mat) && (PyList_Size((PyObject *) mat) == 0)) ||
            (PyArray_Check(mat) && ((PyArray_SIZE((PyArrayObject*) mat) == 0) || (PyArray_IsZeroDim(mat) && !PyArray_CheckScalar(mat)))));
}


//functions for project access to module call arguments
//___________________________________________________________________________________________


//functions which query the number and nature of supplied arguments

/*
 *    PsychGetNumInputArgs()
 *
 *    -The count excludes the command argument and includes ALL arguments supplied, including
 *    default arguments.
 *
 *    -For the time being, the only way to check if all required arguments are supplied in the
 *    general case of mixed required and optional arguments is to check each individually. Probably
 *    the best way to to fix this is to employ a description of which are required and which optional
 *    and compare that against what was passed to the subfunction.
 */
int PsychGetNumInputArgs(void)
{
    if (PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]) //this should probably be just baseFunctionInvoked[recLevel] wo PsychSubfunctionEnabled.
        return(nrhsGLUE[recLevel]-1);
    else
        return(nrhsGLUE[recLevel]);
}


// Careful! Here's a catch: I don't know of a straightforward way to actually
// find out how many return arguments (output args) the calling Python runtime
// expects from us. Apparently that's already a major problem in the Python
// language itself for native Python scripting code.
int PsychGetNumOutputArgs(void)
{
    return((nlhsGLUE[recLevel] <= 0) ? ((nlhsGLUE[recLevel] == 0) ? 1 : MAX_OUTPUT_ARGS) : nlhsGLUE[recLevel]);
}


int PsychGetNumNamedOutputArgs(void)
{
    return(nlhsGLUE[recLevel]);
}


PsychError PsychCapNumOutputArgs(int maxNamedOutputs)
{
    // Number of output args already known?
    if ((PsychGetNumNamedOutputArgs() < 0) && (maxNamedOutputs < MAX_OUTPUT_ARGS)) {
        // No. We use the maxNamedOutputs passed in here as the clue to what the
        // correct value is, given that at least the Python 2 api may be incapable
        // of easily telling us this magic value:
        // TODO FIXME Don't use this as hint, always detect true number at function exit, always succeed: nlhsGLUE[recLevel] = maxNamedOutputs;
        return(PsychError_none);
    }

    // Maximum number of expected outputs known, so enforce them:
    if (PsychGetNumNamedOutputArgs() > maxNamedOutputs)
        return(PsychError_extraOutputArg);
    else
        return(PsychError_none);
}


/*
 *    The argument is not present if a default m*n=0 matrix was supplied, '' or []
 */
psych_bool PsychIsArgPresent(PsychArgDirectionType direction, int position)
{
    int numArgs;

    if (direction==PsychArgOut) {
        return((psych_bool)(PsychGetNumOutputArgs()>=position));
    } else {
        if ((numArgs=PsychGetNumInputArgs())>=position)
            return(!(PsychIsDefaultMat((PyObject*) PsychGetInArgPyPtr(position)))); //check if its default
        else
            return(FALSE);
    }
}


PsychArgFormatType PsychGetArgType(int position) //this is for inputs because outputs are unspecified by the calling environment.
{
    if (!(PsychIsArgReallyPresent(PsychArgIn, position)))
        return(PsychArgType_none);

    return(PsychGetTypeFromPyPtr((PyObject*) PsychGetInArgPyPtr(position)));
}


size_t PsychGetArgM(int position)
{
    if (!(PsychIsArgPresent(PsychArgIn, position)))
        PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
    return( mxGetM((PyObject*) PsychGetInArgPyPtr(position)));
}


size_t PsychGetArgN(int position)
{
    if (!(PsychIsArgPresent(PsychArgIn, position)))
        PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
    return( mxGetNOnly((PyObject*) PsychGetInArgPyPtr(position)));
}


size_t PsychGetArgP(int position)
{
    if (!(PsychIsArgPresent(PsychArgIn, position)))
        PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
    return( mxGetP((PyObject*) PsychGetInArgPyPtr(position)));
}


/*functions which output arguments.
 * ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 * ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 * -Naming scheme:
 *    -Outputing return arguments:
 *        - "PsychAllocOut*Arg" : allocate and set a pointer to volatile memory to be filled with returned information by the caller.
 *        - "PsychCopyOut*Arg : accept a pointer to ouput values and fill in the return matrix memory with the values.
 *    -Reading input arguments:
 *        - "PsychAllocIn*Arg" : set a pointer to volatile memory allocated by "PsychAllocIn*Arg" and holding the input value.
 *        - "PsychCopyIn*Arg" : accept a pointer to memory and fill in that memory with the input argument values.
 *
 * -These all supply their own dynamic memory now, even functions which return arguments, and, in the case of
 * Put functions,  even when those arguments are not present !  If you don't want the function to go allocating
 * memory for an unsupplied return argument, detect the presense of that argument from within your script and
 * conditionally invoke PsychPut*Arg.  This is a feature which allows you to ignore the presense of a return
 * argument in the case where memory which holds a return argument serves other purposes.
 *
 * -All dynamic memory provided by these functions is volatile, that is, it is lost when the mex module exits and
 * returns control to the scripting environemnt.  To make it non volatile, call Psych??? on it.
 *
 * ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 */

psych_bool PsychCopyOutDoubleArg(int position, PsychArgRequirementType isRequired, double value)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double,  isRequired, 1, 1, 1, 1, 0, 0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = PyFloat_FromDouble(value);
    }
    return(putOut);
}

psych_bool PsychAllocOutDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1, 1, 1, 1, 0, 0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateDoubleMatrix3D(1, 1, 0);
        *value = mxGetData(*mxpp);
    } else {
        *value = (double *) mxMalloc(sizeof(double));
    }

    return(putOut);
}


/*
 * PsychAllocOutDoubleMatArg()
 *
 * A)return argument mandatory:
 *    1)return argument not present:     exit with an error.
 *    2)return argument present:         allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
 * B)return argument optional:
 *    1)return argument not present:     return FALSE to indicate absent return argument.  Create an array.   Set *array to the new array.
 *    2)return argument present:         allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix.  Return TRUE.
 */
psych_bool PsychAllocOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double **array)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateDoubleMatrix3D(m, n, p);
        *array = (double*) mxGetData(*mxpp);
    } else
        *array = (double*) mxMalloc(sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));

    return(putOut);
}


/*
 * PsychAllocOutFloatMatArg()
 *
 * This function allocates out a matrix of single precision floating point type,
 * that is C data type 32-bit float.
 *
 * A)return argument mandatory:
 *    1)return argument not present:         exit with an error.
 *    2)return argument present:         allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
 * B)return argument optional:
 *    1)return argument not present:      return FALSE to indicate absent return argument.  Create an array.   Set *array to the new array.
 *    2)return argument present:         allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix.  Return TRUE.
 */
psych_bool PsychAllocOutFloatMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, float **array)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_single, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateFloatMatrix3D((size_t) m, (size_t) n, (size_t) p);
        *array = (float*) mxGetData(*mxpp);
    } else
        *array = (float*) mxMalloc(sizeof(float) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));

    return(putOut);
}


/*
 *    PsychCopyOutBooleanArg()
 */
psych_bool PsychCopyOutBooleanArg(int position, PsychArgRequirementType isRequired, PsychNativeBooleanType value)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, 1, 1, 1, 1, 0, 0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = PyBool_FromLong((long) value);
    }

    return(putOut);
}


/*
 *    PsychAllocOutBooleanMatArg()
 *
 *    A)return argument mandatory:
 *    1)return argument not present:         exit with an error.
 *    2)return argument present:         allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
 *    B)return argument optional:
 *    1)return argument not present:      return FALSE to indicate absent return argument.  Create an array.   Set *array to the new array.
 *    2)return argument present:         allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix.  Return TRUE.
 */
psych_bool PsychAllocOutBooleanMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, PsychNativeBooleanType **array)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateNativeBooleanMatrix3D((size_t) m, (size_t) n, (size_t) p);
        *array = (PsychNativeBooleanType *) mxGetLogicals(*mxpp);
    } else {
        *array = (PsychNativeBooleanType *) mxMalloc(sizeof(PsychNativeBooleanType) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
    }

    return(putOut);
}


/*
 *    PsychAllocOutUnsignedByteMatArg()
 *
 *    Like PsychAllocOutDoubleMatArg() execept for unsigned bytes instead of doubles.
 */
psych_bool PsychAllocOutUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint8 **array)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint8, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateByteMatrix3D((size_t) m, (size_t) n, (size_t) p);
        *array = (psych_uint8 *) mxGetData(*mxpp);
    } else {
        *array = (psych_uint8 *) mxMalloc(sizeof(psych_uint8) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
    }

    return(putOut);
}


/*
 *    PsychAllocOutUnsignedInt16MatArg()
 *
 *    Like PsychAllocOutDoubleMatArg() execept for unsigned shorts instead of doubles.
 */
psych_bool PsychAllocOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 **array)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;
    ptbSize         dimArray[3];
    int             numDims;

    // Compute output array dimensions:
    if (m <= 0 || n <= 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;  //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p == 0 || p == 1) ? 2 : 3;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint16);
        *array = (psych_uint16 *) mxGetData(*mxpp);
    } else {
        *array = (psych_uint16 *) mxMalloc(sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
    }

    return(putOut);
}


psych_bool PsychCopyOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double *fromArray)
{
    PyObject    **mxpp;
    double      *toArray;
    PsychError  matchError;
    psych_bool  putOut;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateDoubleMatrix3D(m, n, p);
        toArray = mxGetData(*mxpp);
        //copy the input array to the output array now
        memcpy(toArray, fromArray, sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
    }

    return(putOut);
}


psych_bool PsychCopyOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 *fromArray)
{
    PyObject        **mxpp;
    psych_uint16    *toArray;
    PsychError      matchError;
    psych_bool      putOut;
    ptbSize         dimArray[3];
    int             numDims;

    // Compute output array dimensions:
    if (m <= 0 || n <= 0) {
        dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0;    //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
    } else {
        PsychCheckSizeLimits(m, n, p);
        dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
    }

    numDims = (p == 0 || p == 1) ? 2 : 3;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m, m, n, n, p, p);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint16);
        toArray = (psych_uint16*) mxGetData(*mxpp);

        //copy the input array to the output array now
        memcpy(toArray, fromArray, sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
    }

    return(putOut);
}


/*
 *    PsychCopyOutCharArg()
 *
 *    Accept a null terminated string and return it in the specified position.
 *
 */
psych_bool PsychCopyOutCharArg(int position, PsychArgRequirementType isRequired, const char *str)
{
    PyObject    **mxpp;
    PsychError  matchError;
    psych_bool  putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_char, isRequired, 0, strlen(str), 0, strlen(str), 0, 0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = mxCreateString(str);
    }

    return(putOut);
}


/*functions with input arguments.
 * ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 * ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
 */

/*
 * A)input argument mandatory:
 *
 *    1)input argument not present:         exit with error.
 *    2)input argument present:             set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
 * B)input argument optional:
 *
 *    1)input argument not present:         return FALSE
 *    2)input argument present:             set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
 *
 */
psych_bool PsychAllocInDoubleMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, double **array)
{
    psych_int64 mb, nb, pb;
    psych_bool rc = PsychAllocInDoubleMatArg64(position, isRequired, &mb, &nb, &pb, array);
    *m = (int) mb;
    *n = (int) nb;
    *p = (int) pb;
    return(rc);
}


/* Alloc-in double matrix, but allow for 64-bit dimension specs. */
psych_bool PsychAllocInDoubleMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, double **array)
{
    const PyObject    *ppyPtr;
    PsychError        matchError;
    psych_bool        acceptArg;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, -1, 1, -1, 0, -1);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        *m = (psych_int64) mxGetM(ppyPtr);
        *n = (psych_int64) mxGetNOnly(ppyPtr);
        *p = (psych_int64) mxGetP(ppyPtr);
        *array = mxGetData(ppyPtr);
    }
    return(acceptArg);
}


/* Like PsychAllocInFloatMatArg64, but with 32-Bit int type size return-arguments. */
psych_bool PsychAllocInFloatMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, float **array)
{
    psych_int64 mb, nb, pb;
    psych_bool rc = PsychAllocInFloatMatArg64(position, isRequired, &mb, &nb, &pb, array);
    *m = (int) mb;
    *n = (int) nb;
    *p = (int) pb;
    return(rc);
}


/*
 *
 * Alloc-In a single precision floating point matrix, i.e. a matrix of
 * C data type 32 bit float.
 * This function allows to alloc in matrices with more than 2^32 elements
 * per matrix dimension on 64 bit systems. Therefore the returned size
 * descriptors must be psych_int64 variables, not int variables or bad things
 * will happen.
 *
 * If the function receives a double() precision input matrix instead of the
 * expected single() precision matrix, it will automatically create a temporary
 * copy, with all values copied/converted from double to single data type, aka
 * double -> float cast. This is transparent to the caller, so it can always
 * operate on a returned float matrix -- at a performance penalty for the extra
 * copy of course.
 *
 * A)input argument mandatory:
 *
 *    1)input argument not present:         exit with error.
 *    2)input argument present:             set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
 * B)input argument optional:
 *
 *    1)input argument not present:         return FALSE
 *    2)input argument present:             set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
 *
 */
psych_bool PsychAllocInFloatMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, float **array)
{
    const PyObject  *ppyPtr;
    PsychError      matchError;
    psych_bool      acceptArg;
    double*         arrayD;
    float*          arrayF;
    psych_int64     i;

    PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_single, isRequired, 1, -1, 1, -1, 0, -1);
    matchError = PsychMatchDescriptors();

    // Argument provided, but not of required float type?
    if (matchError == PsychError_invalidArg_type) {
        // If the input type is double precision floating point, then we convert
        // it here into single precision floating point via a temporary buffer.
        // This is used for functions which absolutely need float input, e.g.,
        // OpenGL-ES rendering code, but should accept double input from usercode
        // so usercode doesn not need to be specifically ported for OpenGL-ES platforms.
        // Performance may suffer somwehat though...
        PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, -1, 1, -1, 0, -1);
        matchError = PsychMatchDescriptors();
        acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
        if (acceptArg) {
            ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
            *m = (psych_int64) mxGetM(ppyPtr);
            *n = (psych_int64) mxGetNOnly(ppyPtr);
            *p = (psych_int64) mxGetP(ppyPtr);

            // Get a double pointer to the double input data matrix:
            arrayD = (double*) mxGetData(ppyPtr);

            // Allocate temporary float input matrix. It will get deallocated
            // automatically at return to runtime:
            *array = (float*) PsychMallocTemp(sizeof(float) * (*m) * (*n) * (*p));
            arrayF = *array;

            // Copy/Convert loop:
            for (i = (*m) * (*n) * (*p); i > 0; i--) *(arrayF++) = (float) *(arrayD++);
        }

        return(acceptArg);
    }

    // Regular path: Matching float (aka single()) matrix/vector provided:
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        *m = (psych_int64) mxGetM(ppyPtr);
        *n = (psych_int64) mxGetNOnly(ppyPtr);
        *p = (psych_int64) mxGetP(ppyPtr);
        *array = (float*) mxGetData(ppyPtr);
    }
    return(acceptArg);
}


/*
 *    PsychAllocInIntegerListArg()
 *
 *    In a scriptiong language such as Python where numbers are almost always stored as doubles, this function is useful to check
 *    that the value input is an integer value stored within a double type.
 *
 *    Otherwise it just here to imitate the version written for other scripting languages.
 */
psych_bool PsychAllocInIntegerListArg(int position, PsychArgRequirementType isRequired, int *numElements, int **array)
{
    int                 m, n, p, i;
    double              *doubleMatrix;
    psych_int64         *int64Matrix;
    psych_bool          isThere;
    const PyObject      *ppyPtr;
    PsychError          matchError;
    psych_bool          acceptArg;

    // Try to get native integer matrix of int32:
    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_int32, isRequired, 1, -1, 1, -1, 0, -1);
    matchError = PsychMatchDescriptors();
    if (matchError == PsychError_none) {
        acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
        if (acceptArg) {
            ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
            m = (int) mxGetM(ppyPtr);
            n = (int) mxGetNOnly(ppyPtr);
            p = (int) mxGetP(ppyPtr);
            p = (p == 0) ? 1 : p;

            if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
                printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
                return(FALSE);
            }

            *numElements = m * n * p;
            *array = (int*) mxGetData(ppyPtr);
        }
        return(acceptArg);
    }

    // Retry to get native integer matrix of int64:
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_int64, isRequired, 1, -1, 1, -1, 0, -1);
    matchError = PsychMatchDescriptors();
    if (matchError == PsychError_none) {
        acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
        if (acceptArg) {
            ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
            m = (int) mxGetM(ppyPtr);
            n = (int) mxGetNOnly(ppyPtr);
            p = (int) mxGetP(ppyPtr);
            p = (p == 0) ? 1 : p;

            if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
                printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
                return(FALSE);
            }

            *numElements = m * n * p;
            int64Matrix = (psych_int64 *) mxGetData(ppyPtr);
            *array = (int*) mxMalloc((size_t) *numElements * sizeof(int));
            for (i = 0; i < *numElements; i++) {
                (*array)[i] = (int) int64Matrix[i];
            }
        }
        return(acceptArg);
    }

    // Nope. Try falling back to double matrix and convert to integers:
    isThere = PsychAllocInDoubleMatArg(position, isRequired, &m, &n, &p, &doubleMatrix);
    if (!isThere)
        return(FALSE);

    p = (p == 0) ? 1 : p;

    if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
        printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
        return(FALSE);
    }

    *numElements = m * n * p;
    *array = (int*) mxMalloc((size_t) *numElements * sizeof(int));
    for (i = 0; i < *numElements; i++) {
        if (!PsychIsIntegerInDouble(doubleMatrix + i))
            PsychErrorExit(PsychError_invalidIntegerArg);

        (*array)[i] = (int) doubleMatrix[i];
    }

    return(TRUE);
}


/*
 *    PsychAllocInByteMatArg()
 *
 *    Like PsychAllocInDoubleMatArg() except it returns an array of unsigned bytes.
 */
psych_bool PsychAllocInUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, unsigned char **array)
{
    const PyObject    *ppyPtr;
    PsychError        matchError;
    psych_bool        acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_uint8, isRequired, 1, -1, 1, -1, 0, -1);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        *m = (int) mxGetM(ppyPtr);
        *n = (int) mxGetNOnly(ppyPtr);
        *p = (int) mxGetP(ppyPtr);
        *array = (unsigned char *) mxGetData(ppyPtr);
    }
    return(acceptArg);
}


/*
 *    PsychCopyInDoubleArg()
 *
 *    For 1x1 double.
 *
 *    Return in *value a double passed in the specified position, or signal an error if there is no
 *    double there and the argument is required, or don't change "value" if the argument is optional
 *    and none is supplied.
 *
 *    Note that if the argument is optional and ommitted PsychGetDoubleArg won't overwrite *value, allowing
 *    for specification of default values within project files without checking for their
 *    presense and conditinally filing in values.
 */
psych_bool PsychCopyInDoubleArg(int position, PsychArgRequirementType isRequired, double *value)
{
    PyObject        *ppyPtr;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1,1,1,1,1,1);
    matchError = PsychMatchDescriptors();

    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        *value = PyFloat_AsDouble(ppyPtr);

        if (PyErr_Occurred())
            PsychErrorExit(PsychError_invalidArg_type);
    }

    return(acceptArg);
}


/*
 *    Like PsychCopyInDoubleArg() with the additional restriction that the passed value must
 *    not have a fractional component and that it fits within the bounds of a C integer.
 *
 */
psych_bool PsychCopyInIntegerArg(int position, PsychArgRequirementType isRequired, int *value)
{
    PyObject        *ppyPtr;
    double          tempDouble;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1,1,1,1,1,1);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);

        if (PyLong_Check(ppyPtr)) {
            *value = (int) PyLong_AsLong(ppyPtr);
            if (PyErr_Occurred())
                PsychErrorExit(PsychError_invalidIntegerArg);
        }
        else {
            tempDouble = PyFloat_AsDouble(ppyPtr);
            if (PyErr_Occurred() || !PsychIsIntegerInDouble(&tempDouble))
                PsychErrorExit(PsychError_invalidIntegerArg);
            *value = (int) tempDouble;
        }
    }

    return(acceptArg);
}


psych_bool PsychCopyInIntegerArg64(int position,  PsychArgRequirementType isRequired, psych_int64 *value)
{
    PyObject        *ppyPtr;
    double          tempDouble;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1, 1, 1, 1, 1, 1);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);

        if (PyLong_Check(ppyPtr)) {
            *value = (psych_int64) PyLong_AsLongLong(ppyPtr);
            if (PyErr_Occurred())
                PsychErrorExit(PsychError_invalidIntegerArg);
        }
        else {
            tempDouble = PyFloat_AsDouble(ppyPtr);
            if (PyErr_Occurred() || !PsychIsInteger64InDouble(&tempDouble))
                PsychErrorExit(PsychError_invalidIntegerArg);
            *value = (psych_int64) tempDouble;
        }
    }

    return(acceptArg);
}


/*
 *    PsychAllocInDoubleArg()
 */
psych_bool PsychAllocInDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
    int             m, n, p;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, 1, 1, 1, 1, 1);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg)
        acceptArg = PsychAllocInDoubleMatArg(position, isRequired, &m, &n, &p, value);

    return(acceptArg);
}


/*
 *    PsychAllocInCharArg()
 *
 *    Reads in a string and sets *str to point to the string.
 *
 *    This function violates the rule for AllocIn fuctions that if the argument is optional and absent we allocate
 *    space. That turns out to be an unuseful feature anyway, so we should probably get ride of it.
 *
 *    The second argument has been modified to passively accept, without error, an argument in the specified position of non-character type.
 *
 *        0    kPsychArgOptional  Permit either an argument of the specified type or no argument.  An argument of any a different type is an error.
 *        1    kPsychArgRequired  Permit only an argument of the specifed type.  If no argument is present, exit with error.
 *        2    kPsychArgAnything  Permit any argument type without error, but only read the specified type.
 *
 */
psych_bool PsychAllocInCharArg(int position, PsychArgRequirementType isRequired, char **str)
{
    PyObject        *ppyPtr;
    int             status;
    psych_uint64    strLen;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_char, isRequired, 0, kPsychUnboundedArraySize ,0, kPsychUnboundedArraySize, 0 , 1);
    matchError=PsychMatchDescriptors();
    acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        if (PyUnicode_Check(ppyPtr))
            strLen = (psych_uint64) PyUnicode_GetLength(ppyPtr) + 1;
        else
            strLen = (psych_uint64) PyBytes_Size(ppyPtr) + 1;

        if (strLen >= INT_MAX)
            PsychErrorExitMsg(PsychError_user, "Tried to pass in a string with more than 2^31 - 1 characters. Unsupported!");

        *str = (char *) PsychCallocTemp((size_t) strLen, sizeof(char));
        status = mxGetString(ppyPtr, *str, (ptbSize) strLen);
        if (status != 0)
            PsychErrorExitMsg(PsychError_internal, "mxGetString failed to get the string");
    }
    return(acceptArg);
}


/*
 *    Get a psych_bool flag from the specified argument position. The type can be be psych_bool, uint8, or
 *    char.  If the numerical value is equal to zero or if its empty then the flag is FALSE, otherwise the
 *    flag is TRUE.
 *
 *    PsychGetFlagArg returns TRUE if the argument was present and false otherwise:
 *
 *    A- Argument required
 *        1- Argument is present: load *argVal and return TRUE
 *        2- Argument is absent: exit with an error
 *    B- Argument is optional
 *        1- Argument is present: load *argVal and return TRUE
 *        2- Argument is absent: leave *argVal alone and return FALSE
 *
 *    Note: if we modify PsychGetDoubleArg to accept all types and coerce them, then we could simplify by
 *    calling that instead of doing all of this stuff...
 *
 */
psych_bool PsychAllocInFlagArg(int position,  PsychArgRequirementType isRequired, psych_bool **argVal)
{
    psych_bool      acceptArg;
    psych_bool      value;

    acceptArg = PsychCopyInFlagArg(position, isRequired, &value);
    if (acceptArg) {
        *argVal = (psych_bool *) mxMalloc(sizeof(psych_bool));
        **argVal = value;
    }

    return(acceptArg);
}


/*
 *    PsychCopyInFlagArg()
 */
psych_bool PsychCopyInFlagArg(int position, PsychArgRequirementType isRequired, psych_bool *argVal)
{
    PyObject        *ppyPtr;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64 | PsychArgType_boolean,
                                   isRequired, 1, 1, 1, 1, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        if (PyBool_Check(ppyPtr)) {
            *argVal = (psych_bool) (ppyPtr == Py_True);
        }
        else if (PyArray_ISBOOL((const PyArrayObject*) ppyPtr)) {
            if (mxGetLogicals(ppyPtr)[0])
                *argVal = (psych_bool) 1;
            else
                *argVal = (psych_bool) 0;
        } else {
            if (mxGetScalar(ppyPtr))
                *argVal = (psych_bool) 1;
            else
                *argVal = (psych_bool) 0;
        }
    }

    return(acceptArg);
}


/* TODO FIXME */
psych_bool PsychAllocInFlagArgVector(int position,  PsychArgRequirementType isRequired, int *numElements, psych_bool **argVal)
{
    PyObject       *ppyPtr;
    PsychError     matchError;
    psych_bool     acceptArg;
    int            i;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType) (PsychArgType_double | PsychArgType_boolean),
                                   isRequired, 1, kPsychUnboundedArraySize, 1, kPsychUnboundedArraySize, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
    matchError = PsychMatchDescriptors();
    acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        if ((psych_uint64) mxGetM(ppyPtr) * (psych_uint64) mxGetN(ppyPtr) >= INT_MAX) {
            printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
            *numElements = 0;
            return(FALSE);
        }

        *numElements = (int) (mxGetM(ppyPtr) * mxGetN(ppyPtr));

        // Unlike other PsychAllocIn* functions, here we allocate new memory and copy the input to it rather than simply returning a pointer into the received array.
        // That's because we want the booleans returned to the caller by PsychAllocInFlagArgVector() to alwyas be psych_bool's, yet we accept as flags either 64-bit
        // doubles or native logical/boolean type.
        *argVal = (psych_bool*) mxMalloc(sizeof(psych_bool) * ((size_t) *numElements));
        for (i = 0; i < *numElements; i++) {
            if (mxIsLogical(ppyPtr)) {
                if (mxGetLogicals(ppyPtr)[i])
                    (*argVal)[i] = (psych_bool) 1;
                else
                    (*argVal)[i] = (psych_bool) 0;
            } else {
                if (((double*) mxGetData(ppyPtr))[i])
                    (*argVal)[i] = (psych_bool) 1;
                else
                    (*argVal)[i] = (psych_bool) 0;
            }
        }
    }
    return(acceptArg);    //the argument was not present (and optional).
}


psych_bool PsychCopyOutFlagArg(int position, PsychArgRequirementType isRequired, psych_bool argVal)
{
    return(PsychCopyOutDoubleArg(position, isRequired, (double) argVal));
}


// functions which allocate native types without assigning them to return arguments.
// this is useful for embedding native structures within each other.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/*
 *    PsychAllocateNativeDoubleMat()
 *
 *    Create an opaque native double matrix.   Return both
 *        - Its handle,  which is specified when nesting the native matrix nesting withing other native types.
 *        - A handle to the C array of doubles enclosed by the native type.
 *
 *    In any case, *cArray will point to the C array of doubles enclosed by the native type in the end.
 *
 */
void PsychAllocateNativeDoubleMat(psych_int64 m, psych_int64 n, psych_int64 p, double **cArray, PsychGenericScriptType **nativeElement)
{
    double *cArrayTemp;

    PsychCheckSizeLimits(m, n, p);
    *nativeElement = mxCreateDoubleMatrix3D(m,n,p);
    cArrayTemp = mxGetData(*nativeElement);
    *cArray = cArrayTemp;
}


/*
 *    PsychAllocateNativeUnsignedByteMat()
 *
 *    Create an opaque native byte matrix.   Return both
 *        - Its handle,  which is specified when nesting the native matrix nesting withing other native types.
 *        - A handle to the C array of psych_uint8's enclosed by the native type.
 *
 *    In any case, *cArray will point to the C array of psych_uint8's enclosed by the native type in the end.
 *
 */
void PsychAllocateNativeUnsignedByteMat(psych_int64 m, psych_int64 n, psych_int64 p, psych_uint8 **cArray, PsychGenericScriptType **nativeElement)
{
    psych_uint8 *cArrayTemp;

    PsychCheckSizeLimits(m, n, p);
    *nativeElement = mxCreateByteMatrix3D(m,n,p);
    cArrayTemp = mxGetData(*nativeElement);
    *cArray = cArrayTemp;
}


double PsychGetNanValue(void)
{
    return(mxGetNaN());
}


/* PsychRuntimeGetPsychtoolboxRoot() TODO FIXME
 *
 * Try to retrieve filesystem path to Psychtoolbox root folder (the result from PsychtoolboxRoot() in Matlab/Octave)
 * or users configuration folder (the result from PsychtoolboxConfigDir() in Matlab/Octave) from runtime. The result,
 * if any, will be cached for later fast lookup.
 *
 * getConfigDir = TRUE => Return PsychtoolboxConfigDir().
 * getConfigDir = FALSE => Return PsychtoolboxRoot().
 *
 * This function may fail to retrieve the path, in which case it returns an empty null-terminated string, i.e., strlen() == 0.
 * On successful recovery of the path, returns a const char* to a readonly string which encodes the path.
 *
 */
const char* PsychRuntimeGetPsychtoolboxRoot(psych_bool getConfigDir)
{
    static char         psychtoolboxRootPath[FILENAME_MAX+1];
    static char         psychtoolboxConfigPath[FILENAME_MAX+1];
/*
    static psych_bool   firstTime = TRUE;
    char*               myPathvarChar = NULL;
    PyObject            *plhs[1]; // Capture the runtime result of PsychtoolboxRoot/ConfigDir

    if (firstTime) {
        // Reset firstTime flag:
        firstTime = FALSE;

        // Init to null-terminated empty strings, so it is well-defined in case of error:
        psychtoolboxRootPath[0] = 0;
        psychtoolboxConfigPath[0] = 0;

        // Call into runtime to get the path to the root folder: This will return 0 on success.
        // A non-zero return value probably means that the script wasn't in the path.
        if (0 == Psych_mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxRoot")) {
            myPathvarChar = mxArrayToString(plhs[0]);
            if (myPathvarChar) {
                strncpy(psychtoolboxRootPath, myPathvarChar, FILENAME_MAX);
                mxFree(myPathvarChar);
            }
        }
        mxDestroyArray(plhs[0]);

        // At this point we did our best and psychtoolboxRootPath is valid: Either a path string,
        // or an empty string signalling failure to get the path.

        // Same game again for PsychtoolboxConfigDir:
        if (0 == Psych_mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxConfigDir")) {
            myPathvarChar = mxArrayToString(plhs[0]);
            if (myPathvarChar) {
                strncpy(psychtoolboxConfigPath, myPathvarChar, FILENAME_MAX);
                mxFree(myPathvarChar);
            }
        }
        mxDestroyArray(plhs[0]);
    }
*/
    // Return whatever we've got:
    return((getConfigDir) ? &psychtoolboxConfigPath[0] : &psychtoolboxRootPath[0]);
}


/* PsychCopyInPointerArg() - Copy in a void* memory pointer. */
psych_bool PsychCopyInPointerArg(int position, PsychArgRequirementType isRequired, void **ptr)
{
    PyObject        *ppyPtr;
    PsychError      matchError;
    psych_bool      acceptArg;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
    PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_unclassified, isRequired, 1,1,1,1,1,1);
    matchError = PsychMatchDescriptors();
    acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
    if (acceptArg) {
        ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
        *ptr = (void*) PyLong_AsVoidPtr(ppyPtr);
    }

    return(acceptArg);
}


/* PsychCopyOutPointerArg() - Copy out a void* memory pointer. */
psych_bool PsychCopyOutPointerArg(int position, PsychArgRequirementType isRequired, void* ptr)
{
    PyObject        **mxpp;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_unclassified, isRequired, 1,1,1,1,0,0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    if (putOut) {
        mxpp = PsychGetOutArgPyPtr(position);
        *mxpp = PyLong_FromVoidPtr(ptr);
    }

    return(putOut);
}


/* PsychRuntimePutVariable()
 *
 * Copy a given native variable of type PsychGenericScriptType, e.g., as created by PsychAllocateNativeDoubleMat()
 * in case of a double matrix, as a new variable into a specified workspace.
 *
 * 'workspace'   Namestring of workspace: "base" assign to base workspace. "caller" assign to calling functions workspace,
 *               "global" assign to global variable with given name.
 *
 *               CAUTION: * Python only handles "global" and "caller" atm., "base" is treated like "caller".
 *
 *                        * The calling Python *code* can only directly access "global" variables created via PsychRuntimePutVariable().
 *                          It can access "caller" local variables only via the dict accessor locals()['variable'], and the locals() may
 *                          be behaviour not to be relied on, according to some docs, as it is an implementation detail subject to change.
 *
 *                          The reason for this weirdness is that Python code is compiled into bytecode at function load time, and the
 *                          set of available local variable names is fixed at compile time, so dynamically injected "caller" variables from
 *                          us would be invisible to the compiled bytecode.
 *
 *                        * Python code executed from *within* our module via PsychRuntimeEvaluateString() can access both
 *                          "caller" local, and "global" global variables though, due to the way we implement PsychRuntimeEvaluateString().
 *
 *                        * In fact, the safest choice may be to use "caller" for calling Python code from *within* our module.
 *
 * 'variable'    Name of the new variable.
 *
 * 'pcontent'    The actual content that should be copied into the variable.
 *
 *
 * Example: You want to create a double matrix with (m,n,p) rows/cols/layers as a variable 'myvar' in the global
 *          workspace and initialize it with content from the double array mycontent:
 *
 *          PsychGenericScriptType* newvar = NULL;
 *          double* newvarcontent = mycontent; // mycontent is double* onto existing data.
 *          PsychAllocateNativeDoubleMat(m, n, p, &newvarcontent, &newvar);
 *          At this point, newvar contains the content of 'mycontent' and 'newvarcontent' points to
 *          the copy. You could alter mycontent now without affecting the content of newvarcontent or newvar.
 *
 *          Create the corresponding variable 'myvar' in the global workspace:
 *          PsychRuntimePutVariable("global", "myvar", newvar);
 *
 *          The calling M-File etc. can access the content newvarcontent under the variable name 'myvar'.
 *
 *          As usual, the double matrix newvarcontent will be auto-destroyed when returning to the runtime,
 *          but the variable 'myvar' will remain valid until it goes out of scope.
 *
 *          This function steals a reference to pcontent, regardless of success or failure.
 *
 * Returns zero on success, non-zero on failure.
 */
int PsychRuntimePutVariable(const char* workspace, const char* variable, PsychGenericScriptType* pcontent)
{
    int rc = 1;

    // Get a borrowed reference to the dicts with global and local variables for the calling frame:
    PyObject *dict = strcmp(workspace, "global") ? PyEval_GetLocals() : PyEval_GetGlobals();
    if (dict && PyDict_Check(dict)) {
        // Try to add our new or updated variable, which will increment its refcount:
        rc = PyDict_SetItemString(dict, variable, pcontent);
    }

    if (psych_refcount_debug && pcontent)
        printf("PTB-DEBUG: In mxSetField: refcount of external object %p at enter is %li. %s\n",
               pcontent, Py_REFCNT(pcontent),
               (Py_REFCNT(pcontent) > 1) ? "MIGHT leak if caller does not take care." : "");

    // Drop one reference, so the function steals a reference to pcontent and the
    // calling client is no longer responsible for managing it, regardless of success
    // or failure:
    Py_XDECREF(pcontent);

    return(rc);
}


/* PsychRuntimeGetVariablePtr()
 *
 * Retrieve a *read-only* pointer to a given native variable of type PsychGenericScriptType in the specified workspace.
 * The variable is not copied, just referenced, so you *must not modify/write to the location* only perform read access!
 *
 * 'workspace'   Namestring of workspace: "base" get from base workspace. "caller" get from calling functions workspace,
 *               "global" get global variable with given name.
 *
 *               CAUTION: Python only handles "global" and "caller" atm., "base" is treated like "caller".
 *                        In fact, the safest choice may be to use "caller".
 *
 * 'variable'    Name of the variable to get a reference.
 *
 * 'pcontent'    Pointer to a PsychGenericScriptType* where the location of the variables content should be stored.
 *               The pointed-to pointer will be set to NULL on failure.
 *
 * Returns TRUE on success, FALSE on failure.
 */
psych_bool PsychRuntimeGetVariablePtr(const char* workspace, const char* variable, PsychGenericScriptType** pcontent)
{
    // Init to empty default:
    *pcontent = NULL;

    // Get a borrowed reference to the dicts with global and local variables for the calling frame:
    PyObject *dict = strcmp(workspace, "global") ? PyEval_GetLocals() : PyEval_GetGlobals();
    if (dict && PyDict_Check(dict)) {
        // Get borrowed reference to variable:
        *pcontent = (PsychGenericScriptType*) PyDict_GetItemString(dict, variable);
    }

    // Return true on success, false on failure:
    return((*pcontent) ? TRUE : FALSE);
}

/* PsychRuntimeEvaluateString()
 *
 * Simple function evaluation by the Python scripting environment.
 * This asks the runtime environment to execute/evaluate the given string 'cmdstring',
 * passing no return arguments back, except an error code.
 */
int PsychRuntimeEvaluateString(const char* cmdstring)
{
    PyObject* code = Py_CompileString(cmdstring, "PTB", Py_file_input);
    if (code) {
        PyObject* res = PyEval_EvalCode(code, PyEval_GetGlobals(), PyEval_GetLocals());
        Py_DECREF(code);
        if (res) {
            Py_DECREF(res);
            return(0);
        }
    }
    // Failed:
    return(-1);
}

// functions for outputting structs
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/*
    PsychAllocOutStructArray()

    -If argument is optional we allocate the structure even if the argument is not present.  If this bothers you,
    then check within the subfunction for the presense of a return argument before creating the struct array.  We
    allocate space regardless of whether the argument is present because this is consistant with other "PsychAllocOut*"
    functions which behave this way because in some situations subfunctions might derive returned results from values
    stored in an optional argument.

    -If position is -1 then don't attempt to return the created structure to the calling environment.  Instead just
    allocate the structure and return it in pStruct.  This is how to create a structure which is embeded within another
    structure using PsychSetStructArrayStructArray().  Note that we use -1 as the flag and not NULL because NULL is 0 and
    0 is reserved for future use as a reference to the subfunction name, of if none then the function name.

    The special value numElements == -1 means to return a single struct, instead of a struct array.

*/
psych_bool PsychAllocOutStructArray(int position,
                                    PsychArgRequirementType isRequired,
                                    int numElements,
                                    int numFields,
                                    const char **fieldNames,
                                    PsychGenericScriptType **pStruct)
{
    PyObject        **mxArrayOut;
    ptbSize         structArrayNumDims = 1;
    ptbSize         structArrayDims[1];
    PsychError      matchError;
    psych_bool      putOut;

    structArrayDims[0] = numElements;

    // Handle special case numElements == -1 which is ~ == 1 for validation:
    numElements = abs(numElements);

    if (position != kPsychNoArgReturn) {
        // Return the result to both the C caller and the scripting environment.
        PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
        PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_structArray, isRequired, 1, 1, numElements, numElements, 0, 0);
        matchError = PsychMatchDescriptors();
        putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);

        *pStruct = mxCreateStructArray(structArrayNumDims, structArrayDims, numFields, fieldNames);

        if (putOut) {
            mxArrayOut = PsychGetOutArgPyPtr(position);
            *mxArrayOut = *pStruct;
        }

        return(putOut);
    } else{
        // Return the result only to the C caller. Ignore "required".
        *pStruct = mxCreateStructArray(structArrayNumDims, structArrayDims, numFields, fieldNames);
        return(TRUE);
    }
}


/*
    PsychAssignOutStructArray()

    Accept a pointer to a struct array and assign the struct array to be the
    designated return variable.
 */
psych_bool PsychAssignOutStructArray(int position,
                                     PsychArgRequirementType isRequired,
                                     PsychGenericScriptType *pStruct)
{
    PyObject        **mxArrayOut;
    PsychError      matchError;
    psych_bool      putOut;

    PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
    PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_structArray, isRequired, 1, 1, 0, kPsychUnboundedArraySize, 0, 0);
    matchError = PsychMatchDescriptors();
    putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
    // putOut is always true in Python implementation, so no leakage, as interpreter will own
    // the only reference:
    if (putOut) {
        mxArrayOut = PsychGetOutArgPyPtr(position);
        *mxArrayOut = pStruct;
    }

    return(putOut);
}

// functions for filling in struct elements by type
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

/*
    PsychSetStructArrayStringElement()
    The variable "index", the index of the element within the struct array, is zero-indexed.
*/
void PsychSetStructArrayStringElement(const char *fieldName,
                                      int index,
                                      char *text,
                                      PsychGenericScriptType *pStruct)
{
    int         fieldNumber;
    psych_bool  isStruct;
    PyObject    *mxFieldValue;
    char        errmsg[256];

    isStruct = mxIsStruct(pStruct);
    if (!isStruct)
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");

    fieldNumber = mxIsField(pStruct, fieldName);
    if (fieldNumber == -1) {
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    mxFieldValue = mxCreateString(text);

    // mxSetField steals the only reference to mxFieldValue, so we are done with it:
    mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}


/*
    PsychSetStructArrayDoubleElement()
    Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayDoubleElement(const char *fieldName,
                                      int index,
                                      double value,
                                      PsychGenericScriptType *pStruct)
{
    int         fieldNumber;
    psych_bool  isStruct;
    PyObject    *mxFieldValue;
    char        errmsg[256];

    isStruct = mxIsStruct(pStruct);
    if (!isStruct)
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");

    fieldNumber = mxIsField(pStruct, fieldName);
    if (fieldNumber == -1) {
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    mxFieldValue = PyFloat_FromDouble(value);

    // mxSetField steals the only reference to mxFieldValue, so we are done with it:
    mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}


/*
    PsychSetStructArrayUnsignedInt64Element()
    Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayUnsignedInt64Element(const char *fieldName,
                                             int index,
                                             psych_uint64 value,
                                             PsychGenericScriptType *pStruct)
{
    int         fieldNumber;
    psych_bool  isStruct;
    PyObject    *mxFieldValue;
    char        errmsg[256];

    isStruct = mxIsStruct(pStruct);
    if (!isStruct)
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");

    fieldNumber = mxIsField(pStruct, fieldName);
    if (fieldNumber == -1) {
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    mxFieldValue = PyLong_FromUnsignedLongLong(value);

    // mxSetField steals the only reference to mxFieldValue, so we are done with it:
    mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}


/*
    PsychSetStructArrayBooleanElement()

    Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayBooleanElement(const char *fieldName,
                                       int index,
                                       psych_bool state,
                                       PsychGenericScriptType *pStruct)
{
    int         fieldNumber;
    psych_bool  isStruct;
    PyObject    *mxFieldValue;
    char        errmsg[256];

    isStruct = mxIsStruct(pStruct);
    if (!isStruct)
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");

    fieldNumber = mxIsField(pStruct, fieldName);
    if (fieldNumber == -1) {
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    mxFieldValue = PyBool_FromLong((long) state);

    // mxSetField steals the only reference to mxFieldValue, so we are done with it:
    mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}


/*
 * PsychSetStructArrayStructElement()
 *
 * Assign a struct(-array) another struct(-array)'s field.
 *
 * Irrespective of success or failure, this steals the reference to pStructInner, so caller
 * does not have to take care of releasing pStructInner and should not touch it anymore after
 * calling this function, unless it aquired an own extra reference beforehand.
 *
 */
void PsychSetStructArrayStructElement(const char *fieldName,
                                      int index,
                                      PsychGenericScriptType *pStructInner,
                                      PsychGenericScriptType *pStructOuter)
{
    int         fieldNumber;
    psych_bool  isStruct;
    char        errmsg[256];

    isStruct = mxIsStruct(pStructOuter);
    if (!isStruct) {
        Py_XDECREF(pStructInner);
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
    }

    isStruct = mxIsStruct(pStructInner);
    if (!isStruct) {
        Py_XDECREF(pStructInner);
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a struct field to a non-existent structure.");
    }

    fieldNumber = mxIsField(pStructOuter, fieldName);
    if (fieldNumber == -1) {
        Py_XDECREF(pStructInner);
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    // mxSetField steals the reference to pStructInner, so we are done with it:
    mxSetField(pStructOuter, (ptbIndex) index, fieldName, pStructInner);
}


/*
 * PsychSetStructArrayNativeElement()
 *
 * Assign a native element like a matrix (PsychAllocateNativeDoubleMat/PsychAllocateNativeUnsignedByteMat)
 * to a struct(-array) field.
 *
 * Irrespective of success or failure, this steals the reference to pNativeElement, so caller
 * does not have to take care of releasing pNativeElement and should not touch it anymore after
 * calling this function, unless it aquired an own extra reference beforehand.
 *
 */
void PsychSetStructArrayNativeElement(const char *fieldName,
                                      int index,
                                      PsychGenericScriptType *pNativeElement,
                                      PsychGenericScriptType *pStructArray)
{
    int         fieldNumber;
    psych_bool  isStruct;
    char        errmsg[256];

    isStruct = mxIsStruct(pStructArray);
    if (!isStruct) {
        Py_XDECREF(pNativeElement);
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
    }

    fieldNumber = mxIsField(pStructArray, fieldName);
    if (fieldNumber == -1) {
        Py_XDECREF(pNativeElement);
        sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
        PsychErrorExitMsg(PsychError_internal, errmsg);
    }

    // mxSetField steals the reference to pNativeElement, so we are done with it:
    mxSetField(pStructArray, (ptbIndex) index, fieldName, pNativeElement);
}


/*
 *    PsychAllocOutCellVector()
 *
 *    -If argument is optional we allocate the structure even if the argument is not present.  If this behavior bothers you,
 *    then check within your code for the presense of a return argument before creating the struct array.  We
 *    allocate space regardeless of whether the argument is present because this is consistant with other "PsychAllocOut*"
 *    functions which behave this way because in some situations subfunctions might derive returned results from values
 *    stored in an optional argument.
 *
 *    -If position is -1 then don't attempt to return the created structure to the calling environment.  Instead just
 *    allocate the structure and return it in pStruct.  This is how to create a structure which is embeded within another
 *    structure using PsychSetStructArrayStructArray().  Note that we use -1 as the flag and not NULL because NULL is 0 and
 *    0 is reserved for future use as a reference to the subfunction name, of if none then the function name.
 */
psych_bool PsychAllocOutCellVector(int position,
                                   PsychArgRequirementType isRequired,
                                   int numElements,
                                   PsychGenericScriptType **pCell)
{
    PyObject    **mxArrayOut;
    PsychError  matchError;
    psych_bool  putOut;

    if (position != kPsychNoArgReturn) {
        // Return the result to both the C caller and the scripting environment:
        PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
        PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_cellArray, isRequired, 1, 1, numElements, numElements, 0, 0);
        matchError = PsychMatchDescriptors();
        putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);

        *pCell = PyTuple_New((Py_ssize_t) numElements);

        // putOut is always TRUE under Python, so no leakage, as interpreter will own
        // the only reference:
        if (putOut) {
            mxArrayOut = PsychGetOutArgPyPtr(position);
            *mxArrayOut = *pCell;
        }

        return(putOut);
    } else {
        // Return the result only to the C caller, not to the calling environment. Ignore "required":
        // CAUTION: Could leak if caller doesn't assign it to an output-assignment, e.g., return arg
        // or struct(array):
        *pCell = PyTuple_New((Py_ssize_t) numElements);
        return(TRUE);
    }
}


/*
 *    PsychSetCellVectorStringElement()
 *
 *    The variable "index", the index of the element within the struct array, is zero-indexed.
 */
void PsychSetCellVectorStringElement(int index,
                                     const char *text,
                                     PsychGenericScriptType *cellVector)
{
    PyObject *mxFieldValue;

    // Check for bogus arguments
    if (!PyTuple_Check(cellVector))
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a cell within a non-existent cell array.");

    if ((ptbIndex) index >= (ptbIndex) PyTuple_Size(cellVector))
        PsychErrorExitMsg(PsychError_internal, "Attempt to set a cell array field at an out-of-bounds index");

    // mxFieldValue refcount is 1, PyTuple_SetItem below steals the reference, so
    // now the cellVector (=interpreter on eventual successfull out-assignment) owns the only
    // reference and we don't leak.
    mxFieldValue = mxCreateString(text);
    PyTuple_SetItem(cellVector, index, mxFieldValue);
}

// End of Python only stuff.
#endif