1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
|
/*
* PsychSourceGL/Source/Common/Base/PythonGlue/PsychScriptingGluePython.c
*
* AUTHORS:
*
* mario.kleiner.de@gmail.com mk
*
* PLATFORMS: All -- Glue layer for CPython runtime environment.
*
* HISTORY:
*
* 19-June-2018 mk Derived from PsychScriptingGlueMatlab.c
*
* DESCRIPTION:
*
* PsychScriptingGluePython defines abstracted functions to pass values
* between the calling Python environment and the PsychToolbox CPython modules.
*
* Copyright (c) 2018 Mario Kleiner.
*
* MIT license:
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to permit
* persons to whom the Software is furnished to do so, subject to the
* following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
* NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
// During inclusion of Psych.h, we define the special flag PTBINSCRIPTINGGLUE. This
// will cause some of the system headers in Psych.h not to be included during build
// of PsychScriptingGluePython.c:
#define PTBINSCRIPTINGGLUE 1
#include "Psych.h"
#undef PTBINSCRIPTINGGLUE
#if PSYCH_LANGUAGE == PSYCH_PYTHON
// Import NumPy array handling functions: Require at least NumPy v 1.13.0, released
// in June 2017:
#define NPY_NO_DEPRECATED_API NPY_1_13_API_VERSION
#include <numpy/arrayobject.h>
#if defined(Py_LIMITED_API) && defined(__GNUC__) && (__GNUC__ < 10) && !defined(__clang__)
#error \
"This version of gcc has a bug and cannot compile this code \
with Py_LIMITED_API enabled. Either build without Py_LIMITED_API \
or upgrade gcc to a version >= 10.1 and try again. Ubuntu 20.04, \
e.g., ships a suitable compiler package named gcc-10. \
See https://github.com/numpy/numpy/issues/16970 for details."
#endif
// Define this to 1 if you want lots of debug-output for the Python-Scripting glue.
#define DEBUG_PTBPYTHONGLUE 0
// Special hacks to allow Psychtoolbox to build on Python, stubbing out Mex Api replacements.
#include <string.h>
#include <setjmp.h>
////Static functions local to ScriptingGluePython.c.
// _____________________________________________________________________________________
#define MAX_CMD_NAME_LENGTH 100
//Static variables local to ScriptingGluePython.c. The convention is to append a abbreviation in all
//caps of the C file name to the variable name.
// nameFirstGLUE, baseFunctionInvoked, nlhsGLUE, nrhsGLUE, plhsGLUE, prhsGLUE
// are state which has to be maintained for each invocation of a mex module.
// If a modules calls itself recursively, this state has to be maintained for
// each recursive call level. We implement a little homemade stack for those
// variables. Maximum stack depth and therefore maximum recursion level for
// reentrant recursive calls is MAX_RECURSIONLEVEL. The variable recLevel
// keeps track of the current call recursion level and acts as a "stack pointer".
// It gets incremented by each entry to mexFunction() and decremented by each
// regular exit from mexFunction(). On error abort or modules reload it needs
// to get reset to initial -1 state:
#define MAX_RECURSIONLEVEL 5
#define MAX_INPUT_ARGS 100
#define MAX_OUTPUT_ARGS 100
static psych_bool nameFirstGLUE[MAX_RECURSIONLEVEL];
static psych_bool baseFunctionInvoked[MAX_RECURSIONLEVEL];
static psych_bool use_C_memory_layout[MAX_RECURSIONLEVEL];
static int nlhsGLUE[MAX_RECURSIONLEVEL]; // Number of requested return arguments.
static int nrhsGLUE[MAX_RECURSIONLEVEL]; // Number of provided call arguments.
static PyObject* plhsGLUE[MAX_RECURSIONLEVEL][MAX_OUTPUT_ARGS]; // An array of pointers to the Python return arguments.
static PyObject* prhsGLUE[MAX_RECURSIONLEVEL][MAX_INPUT_ARGS]; // An array of pointers to the Python call arguments.
static psych_bool prhsNeedsConversion[MAX_RECURSIONLEVEL][MAX_INPUT_ARGS]; // prhsGLUE needs one-time conversion to NumPy array?
static int recLevel = -1;
static psych_bool psych_recursion_debug = FALSE;
static int psych_refcount_debug = 0;
// Our own module object:
static PyObject *module = NULL;
// Full filesystem path/name to the library (DLL/dylib/libso) that defines this module:
static char modulefilename[FILENAME_MAX];
// MODULE INITIALIZATION FOR PYTHON:
// =================================
#define PPYINIT(...) _PPYINIT(__VA_ARGS__)
#define _PPYNAME(n) #n
#define PPYNAME(...) _PPYNAME(__VA_ARGS__)
static PyMethodDef GlobalPythonMethodsTable[] = {
{PPYNAME(PTBMODULENAME), PsychScriptingGluePythonDispatch, METH_VARARGS, NULL},
{NULL, NULL, 0, NULL}
};
// Python 3 init code:
#define _PPYINIT(n) PyMODINIT_FUNC PyInit_ ## n(void)
// Defined in PsychScriptingGluePython.c
PsychError PsychExitPythonGlue(void);
/* PythonModuleCleanup() - Call Python specific cleanup function.
*
* This cleanup function is only called on Python 3, and as far as i
* understand only at interpreter shutdown time, ie. when calling quit()
* or pressing CTRL+D. reload()ing of extension modules seems to be not
* possible in Python 2 and 3, as described in PEP 0498:
* https://www.python.org/dev/peps/pep-0489/#id29
*
* For this reason, this function is of limited value, but implemented
* anyway for completeness and future reference.
*
*/
void PythonModuleCleanup(void* userptr)
{
(void) userptr;
(void) PsychExitPythonGlue();
}
static struct PyModuleDef module_definition = {
PyModuleDef_HEAD_INIT, // Base instance.
PPYNAME(PTBMODULENAME), // Module name.
"The " PPYNAME(PTBMODULENAME) " Psychtoolbox module for Python 3.\n" // Help text.
"Copyright (c) 2018-2023 Mario Kleiner.\n"
"Copyright (c) 2022-2023 Alex Forrence.\n"
"Licensed under the MIT license.",
-1, // -1 = No sub-interpreter support: https://docs.python.org/3/c-api/module.html#c.PyModuleDef
GlobalPythonMethodsTable, // Function dispatch table, shared with Python 2.
NULL, // m_slots
NULL, // m_traverse
NULL, // m_clear
PythonModuleCleanup // m_free = PythonModuleCleanup, cleanup at module destruction.
};
// This is the entry point - module init function, called at module import:
// PTBMODULENAME is -DPTBMODULENAME myname defined by the build script to the
// name of the module, e.g., GetSecs.
PPYINIT(PTBMODULENAME)
{
modulefilename[0] = 0;
// Add a help string with module synopsis to 1st function - our main dispatch function:
GlobalPythonMethodsTable[0].ml_doc = PsychBuildSynopsisString(PPYNAME(PTBMODULENAME));
// Initialize module:
module = PyModule_Create(&module_definition);
return(module);
}
// END OF MODULE INITIALIZATION FOR PYTHON:
// Return filename of the module definition file - the shared library:
const char* PsychGetPyModuleFilename(void)
{
// Get full filesystem path/name of the module definition file, ie. the library:
if (module && !modulefilename[0]) {
PyObject *fname = PyModule_GetFilenameObject(module);
if (fname)
mxGetString(fname, modulefilename, sizeof(modulefilename) - 1);
else
sprintf(modulefilename, "%s", PyModule_GetFilename(module));
Py_XDECREF(fname);
}
return(&modulefilename[0]);
}
// This jump-buffer stores CPU- and stackstate at the position
// where our octFunction() dispatcher actually starts executing
// the functions or subfunctions code. That is the point where
// a PsychErrorExit() or PsychErrorExitMsg() will return control...
jmp_buf jmpbuffer[MAX_RECURSIONLEVEL];
// Error exit handler:
// Prints the error-string with CPythons printing facilities, and then longjmp's
// to the cleanup routine at the end of our PsychScriptingGluePythonDispatch()
// dispatcher.
void mexErrMsgTxt(const char* s) {
if (s && strlen(s) > 0)
printf("%s:%s: %s\n", PsychGetModuleName(), PsychGetFunctionName(), s);
else
printf("%s:%s\n", PsychGetModuleName(), PsychGetFunctionName());
// Use the jump-buffer to unwind the stack...
longjmp(jmpbuffer[recLevel], 1);
}
// Interface to printf... TODO Used anywhere?
void mexPrintf(const char* fmt, ...)
{
va_list args;
va_start (args, fmt);
vfprintf(stderr, fmt, args);
vfprintf(stdout, fmt, args);
va_end(args);
}
void* mxMalloc(int size)
{
return(PsychMallocTemp((unsigned long) size));
}
void* mxCalloc(int size, int numelements)
{
return(PsychCallocTemp((unsigned long) size, (unsigned long) numelements));
}
void mxFree(void* p)
{
PsychFreeTemp(p);
}
double mxGetNaN(void)
{
/* TODO FIXME Stop-gap? Better solution in Python? */
return(nan(""));
}
int mxIsLogical(const PyObject* a)
{
return(PyBool_Check(a) || PyArray_ISBOOL((const PyArrayObject*) a));
}
int mxIsCell(const PyObject* a)
{
return(PyTuple_Check(a));
}
int mxIsStruct(const PyObject* a)
{
return((PyList_Check(a) && (PyList_Size((PyObject*) a) > 0) && PyDict_Check(PyList_GetItem((PyObject*) a, 0))) ||
PyDict_Check(a));
}
int mxIsNumeric(const PyObject* a)
{
return(PyFloat_Check(a) || PyLong_Check(a));
}
int mxIsChar(const PyObject* a)
{
return(PyUnicode_Check(a) || PyBytes_Check(a));
}
int mxIsSingle(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_FLOAT);
}
int mxIsDouble(const PyObject* a)
{
//return(PyArray_ISFLOAT((const PyArrayObject*) a));
return(PyArray_TYPE((PyArrayObject*) a) == NPY_DOUBLE);
}
int mxIsUint8(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT8);
}
int mxIsUint16(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT16);
}
int mxIsUint32(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT32);
}
int mxIsUint64(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_UINT64);
}
int mxIsInt8(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT8);
}
int mxIsInt16(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT16);
}
int mxIsInt32(const PyObject* a)
{
// return(PyArray_ISINTEGER((PyArrayObject*) a));
return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT32);
}
int mxIsInt64(const PyObject* a)
{
return(PyArray_TYPE((PyArrayObject*) a) == NPY_INT64);
}
int PsychGetNumTypeFromArgType(PsychArgFormatType type)
{
switch(type) {
case PsychArgType_uint8:
return(NPY_UINT8);
case PsychArgType_uint16:
return(NPY_UINT16);
case PsychArgType_uint32:
return(NPY_UINT32);
case PsychArgType_uint64:
return(NPY_UINT64);
case PsychArgType_int8:
return(NPY_INT8);
case PsychArgType_int16:
return(NPY_INT16);
case PsychArgType_int32:
return(NPY_INT32);
case PsychArgType_int64:
return(NPY_INT64);
case PsychArgType_single:
return(NPY_FLOAT);
case PsychArgType_double:
return(NPY_DOUBLE);
case PsychArgType_boolean:
return(NPY_BOOL); // 1-Byte
case PsychArgType_char:
return(NPY_STRING);
case PsychArgType_cellArray:
return(NPY_OBJECT);
case PsychArgType_structArray:
return(NPY_OBJECT);
default:
printf("PTB-CRITICAL: Can not map PsychArgFormatType %i to NumPy type!\n", type);
PsychErrorExitMsg(PsychError_invalidArg_type, "Unknown PsychArgFormatType encountered. Don't know how to map it to NumPy.");
return(NPY_NOTYPE);
}
}
PyObject* mxCreateNumericArray(int numDims, ptbSize dimArray[], PsychArgFormatType arraytype)
{
int typenum = PsychGetNumTypeFromArgType(arraytype);
// Create empty/uninitialized array in (0) C contiguous style if use_C_memory_layout,
// else create in (1) Fortran contiguous style:
return(PyArray_EMPTY(numDims, (npy_intp*) dimArray, typenum, (use_C_memory_layout[recLevel]) ? 0 : 1));
}
PyObject* mxCreateDoubleMatrix(ptbSize rows, ptbSize cols)
{
ptbSize dims[2];
dims[0] = rows;
dims[1] = cols;
return(mxCreateNumericArray(2, dims, PsychArgType_double));
}
PyObject* mxCreateLogicalMatrix(ptbSize rows, ptbSize cols)
{
ptbSize dims[2];
dims[0] = rows;
dims[1] = cols;
return(mxCreateNumericArray(2, dims, PsychArgType_boolean));
}
PyObject* mxCreateString(const char* instring)
{
PyObject* ret;
if (!instring)
return(PyUnicode_FromString("NULL"));
// Try decoding from UTF-8:
ret = PyUnicode_FromString(instring);
PyErr_Clear();
// On Windows, some low-level ANSI api's, e.g., input device enumeration in
// PsychHID, return strings encoded in Windows codepage CP_ACP, the system
// active code page. See the following Microsoft documentation for details:
//
// https://docs.microsoft.com/en-us/windows/desktop/Intl/conventions-for-function-prototypes
//
// PyUnicode_DecodeMBCS() decodes such multibyte character strings encoded in
// the CP_ACP current system code page into Unicode. Therefore this is our
// 1st fallback if UTF-8 decoding fails on Windows:
// Thanks to Hiroyuki Sogo for finding this solution!
#if PSYCH_SYSTEM == PSYCH_WINDOWS
if (!ret) {
ret = PyUnicode_DecodeMBCS(instring, strlen(instring), NULL);
PyErr_Clear();
}
#endif
if (!ret) {
// Try decoding assuming current system locale setting:
ret = PyUnicode_DecodeLocale(instring, "surrogateescape");
PyErr_Clear();
// If Py_LIMITED_API is enabled, it means we're compiling on
// at least Python 3.7. If that's the case, we can skip the
// next two checks, which deal with incompatibilties in earlier
// Python versions
#ifndef Py_LIMITED_API
// Retry with strict error handler, because of backwards incompatible
// change in Python 3.6 -> 3.7 (sigh):
if (!ret) {
ret = PyUnicode_DecodeLocale(instring, "strict");
PyErr_Clear();
}
// Retry with Python startup locale. There were backwards incompatible
// changes in Python 3.0 -> 3.2 -> 3.6, often only on Windows (sigh):
if (!ret) {
ret = PyUnicode_DecodeFSDefault(instring);
PyErr_Clear();
}
#endif
}
if (!ret) {
// Final attempt: Decode as Latin-1, corresponding to the first 256
// Unicode codepoints. According to CPython source, this can essentially
// only fail on system out-of-memory, and either returns a Latin-1
// string if instring was Latin-1, or it will return whatever it is
// crammed into Latin-1, ie. Byte values in range 0-255. Good enough for
// debugging by calling script:
ret = PyUnicode_DecodeLatin1(instring, strlen(instring), NULL);
PyErr_Clear();
}
// Better than crashing:
if (!ret)
ret = PyUnicode_FromString("WARNING: INVALID UNDECODABLE STRING!");
// Clear potential Unicode exceptions set by above:
PyErr_Clear();
return(ret);
}
void* mxGetData(const PyObject* arrayPtr)
{
return(PyArray_DATA((PyArrayObject*) arrayPtr));
}
double* mxGetPr(const PyObject* arrayPtr)
{
return(PyArray_DATA((PyArrayObject*) arrayPtr));
}
double mxGetScalar(const PyObject* arrayPtr)
{
return(PyFloat_AsDouble((PyObject*) arrayPtr));
}
PsychNativeBooleanType* mxGetLogicals(const PyObject* arrayPtr)
{
// PsychNativeBooleanType == psych_bool == unsigned char == 1 Byte on
// Python with NumPy:
return((PsychNativeBooleanType*) mxGetData(arrayPtr));
}
ptbSize mxGetNumberOfDimensions(const PyObject* arrayPtr)
{
if (!PyArray_Check(arrayPtr))
return(0);
return((ptbSize) PyArray_NDIM((const PyArrayObject*) arrayPtr));
}
ptbSize mxGetM(const PyObject* arrayPtr)
{
if (mxGetNumberOfDimensions(arrayPtr) < 1)
return(1);
return((ptbSize) PyArray_DIM((const PyArrayObject*) arrayPtr, 0));
}
ptbSize mxGetN(const PyObject* arrayPtr)
{
if (mxGetNumberOfDimensions(arrayPtr) < 2)
return(1);
return((ptbSize) PyArray_DIM((const PyArrayObject*) arrayPtr, 1));
}
/*
* Get the 2nd array dimension.
*
* The Mex API's mxGetN is sometimes undersirable because it returns the product of all dimensions above 1. Our mxGetNOnly only returns N, for when you need that.
*
* The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
*/
static ptbSize mxGetNOnly(const PyObject *arrayPtr)
{
return(mxGetN(arrayPtr));
}
/*
* Get the third array dimension which we call "P". mxGetP should act just like mxGetM and mxGetN.
*
* The abstracted Psychtoolbox API supports matrices with up to 3 dimensions.
*/
static ptbSize mxGetP(const PyObject *arrayPtr)
{
if (mxGetNumberOfDimensions(arrayPtr) < 3) {
//printf("P %i\n", 1);
return(1);
}
return((ptbSize) PyArray_DIM((const PyArrayObject*) arrayPtr, 2));
}
int mxGetString(PyObject* arrayPtr, char* outstring, int outstringsize)
{
if (!mxIsChar(arrayPtr))
PsychErrorExitMsg(PsychError_internal, "FATAL Error: Tried to convert a non-string into a string!");
// Python 3: No PyObject_Unicode(), distinguish unicode input vs. bytes 8-bit legacy string input:
if (PyUnicode_Check(arrayPtr))
// Provide it as Latin1 8-bit "bytes" string from unicode, giving a new reference:
arrayPtr = PyUnicode_AsLatin1String(arrayPtr);
else
// Is already a 8-bit "bytes" string. Increment refcount, to counteract decref below:
Py_INCREF(arrayPtr);
// Got a 8-bit "bytes" string?
if (arrayPtr) {
// Extract as const char* C-style string - copy to return char array:
int rc = ((snprintf(outstring, outstringsize, "%s", PyBytes_AsString(arrayPtr))) >= 0) ? 0 : 1;
Py_DECREF(arrayPtr);
return(rc);
}
else
return(1);
}
void mxDestroyArray(PyObject *arrayPtr)
{
// Destroy a PyObject:
if (arrayPtr == NULL) return;
fprintf(stderr, "WARN WARN UNIMPLEMENTED: mxDestroyArray()\n");
return;
}
PyObject* mxCreateStructArray(int numDims, ptbSize* ArrayDims, int numFields, const char** fieldNames)
{
int i, j, n;
PyObject* retval = NULL;
if (numDims != 1)
PsychErrorExitMsg(PsychError_unimplemented, "Error: mxCreateStructArray: Anything else than 1D Struct-Array is not supported!");
if (numFields < 1)
PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: numFields < 1 ?!?");
n = (int) ArrayDims[0];
if (n < -1)
PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: Negative number of array elements requested?!?");
// Create a list of objects - the struct array - with each object being a
// dictionary that contains fieldNames as keys, and PyObjects as the actual
// values -- iow. a single "array of structs":
// Create to-be-returned list that makes up the struct array, except if n == -1,
// in which case we don't return a list (~ array), but just the single dict (~ struct):
if (n != -1)
retval = PyList_New((Py_ssize_t) n);
// Create one dictionary for each slot:
for (i = 0; i < abs(n); i++) {
PyObject* slotdict = PyDict_New();
// Create all fields for all fieldNames for this slots dictionary:
for (j = 0; j < numFields; j++) {
// Init value with Py_None:
Py_INCREF(Py_None);
if (PyDict_SetItemString(slotdict, fieldNames[j], Py_None))
PsychErrorExitMsg(PsychError_internal, "Error: mxCreateStructArray: Failed to init struct-Array slot with item!");
}
// For n >= 0, assign to i'th slot of returned list retval.
// For n == -1, directly return our one and only slotdict as retval:
if (n > -1)
PyList_SetItem(retval, i, slotdict);
else
retval = slotdict;
}
return(retval);
}
PyObject* mxGetField(const PyObject* structArray, int index, const char* fieldName)
{
if (!mxIsStruct(structArray))
PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Tried to manipulate something other than a struct-Array!");
// Different code-path for single element structArray aka a dict, vs. multi-element
// structArray aka list of dicts:
if (!PyDict_Check(structArray)) {
if (index >= PyList_Size((PyObject*) structArray))
PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Index exceeds size of struct-Array!");
return(PyDict_GetItemString(PyList_GetItem((PyObject*) structArray, index), fieldName));
}
else {
if (index != 0)
PsychErrorExitMsg(PsychError_internal, "Error: mxGetField: Index exceeds size of struct-Array!");
return(PyDict_GetItemString((PyObject*) structArray, fieldName));
}
}
int mxIsField(PyObject* structArray, const char* fieldName)
{
if (!mxIsStruct(structArray))
PsychErrorExitMsg(PsychError_internal, "Error: mxIsField: Tried to manipulate something other than a struct-Array!");
// Ok, cheating. If the fieldName exists, we always returns a field number of 1,
// otherwise we return -1, so this function can only check if a fieldName is valid.
// But then, that's all that this function is used for inside our implementation,
// so we should be fine.
if (mxGetField(structArray, 0, fieldName))
return(1);
// No such field :(
return(-1);
}
// The mxSetField() function unconditionally steals the reference to
// pStructInner from our caller. In general mxSetField() is only called by
// the PsychSetStructArrayXXXXXElement() functions, and these generate a new
// reference to whatever they assign, so now the reference in this slot+field is
// the only existing one, and pStructInner will get deleted, once pStructOuter
// has fulfilled its purpose inside the Python script and goes out of scope/gets
// deleted there:
void mxSetField(PyObject* pStructOuter, int index, const char* fieldName, PyObject* pStructInner)
{
if (psych_refcount_debug && pStructInner)
printf("PTB-DEBUG: In mxSetField: refcount of external object %p at enter is %li. %s\n",
pStructInner, Py_REFCNT(pStructInner),
(Py_REFCNT(pStructInner) > 1) ? "MIGHT leak if caller does not take care." : "");
if (!mxIsStruct(pStructOuter)) {
Py_XDECREF(pStructInner);
PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: Tried to manipulate something other than a struct-Array!");
}
PyObject *arraySlot;
// Different code-path for single element structArray aka a dict, vs. multi-element
// structArray aka list of dicts:
if (PyList_Check(pStructOuter)) {
if (index >= PyList_Size(pStructOuter)) {
Py_XDECREF(pStructInner);
PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: Index exceeds size of struct-Array!");
}
// Get dictionary for slot 'index':
arraySlot = PyList_GetItem(pStructOuter, index);
}
else {
// Single-slot array: pStructOuter is already the single struct aka dict:
arraySlot = pStructOuter;
}
// Assign pStructInner as new value of field fieldName in slot index:
// This will drop the refcount of the previous value in that slot+field,
// and increase the refcount of pStructInner by one, iow. it doesn't steal
// a reference, but get our own one:
if (PyDict_SetItemString(arraySlot, fieldName, pStructInner)) {
Py_XDECREF(pStructInner);
PsychErrorExitMsg(PsychError_internal, "Error: mxSetField: PyDict_SetItemString() failed!");
}
// The mxSetField() function unconditionally steals the reference to
// pStructInner from our caller. In general mxSetField() is only called by
// the PsychSetStructArrayXXXXXElement() functions, and these generate a new
// reference to whatever they assign, so now the reference in this slot+field is
// the only existing one, and pStructInner will get deleted, once pStructOuter
// has fulfilled its purpose inside the Python script and goes out of scope/gets
// deleted there:
Py_XDECREF(pStructInner);
}
/* UNUSED, but here for reference */
PyObject* mxCreateCellArray(int numDims, ptbSize* ArrayDims)
{
PyObject* retval;
if (numDims > 1)
PsychErrorExitMsg(PsychError_unimplemented, "Error: mxCreateCellArray: 2D Cell Arrays are not supported on Python build!");
// Allocate our PyObject-Struct:
retval = PyTuple_New((Py_ssize_t) ArrayDims[0]);
// Done.
return(retval);
}
/* UNUSED, but here for reference */
void mxSetCell(PsychGenericScriptType *cellVector, ptbIndex index, PyObject* mxFieldValue)
{
if (!mxIsCell(cellVector))
PsychErrorExitMsg(PsychError_internal, "Error: mxSetCell: Tried to manipulate something other than a cell-vector!");
if (index >= (ptbIndex) PyTuple_Size(cellVector))
PsychErrorExitMsg(PsychError_internal, "Error: mxSetCell: index tried to index beyond lenght of cell-vector!");
PyTuple_SetItem(cellVector, index, mxFieldValue);
return;
}
void mxSetLogical(PyObject* dummy)
{
// This is a no-op, because it is not needed anywhere...
return;
}
//local function declarations
static psych_bool PsychIsDefaultMat(const PyObject *mat);
static ptbSize mxGetP(const PyObject *array_ptr);
static ptbSize mxGetNOnly(const PyObject *arrayPtr);
static PyObject *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p);
// firstTime: This flag defines if this is the first invocation of the module
// since it was (re-)loaded:
static psych_bool firstTime = TRUE;
PsychError PsychExitPythonGlue(void);
void ScreenCloseAllWindows(void);
void* init_numpy(void)
{
import_array();
return(NULL);
}
void PsychExitRecursion(void)
{
if (recLevel < 0) {
printf("PTB-CRITICAL: Recursion stack underflow in module %s! Brace for impact!\n", PsychGetModuleName());
return;
}
if (psych_recursion_debug) printf("PTB-DEBUG: Module %s leaving recursive call level %i.\n", PsychGetModuleName(), recLevel);
// Done with this call recursion level:
recLevel--;
}
/* PsychUseCMemoryLayoutIfOptimal() - Opt in to data exchange memory layout optimizations.
*
* Tell scripting glue to use/assume a C programming language memory layout for exchanging
* multi-dimensional (== 2D, 3D, n-D) matrices with the scripting environment if that layout
* promises higher efficiency and performance in data exchange. This is an opt-in, requesting
* C-layout if 'tryEnableCMemoryLayout' = TRUE, otherwise standard Fortran layout is assumed.
* The default is Fortran layout if this function does not get called, and it resets to Fortran
* layout at each return of control to the calling scripting environment. Iow. it is a per-
* module subfunction-call opt-in.
* The function returns TRUE if C memory layout is engaged, otherwise FALSE is returned.
* The caller may have to adjust its own data processing according to the returned value,
* unless the function is called with tryEnableCMemoryLayout = FALSE or not called at all, in
* which case Fortran layout is the thing.
*
* tryEnableCMemoryLayout = FALSE (default) Fortran classic style, TRUE = C-style.
*
* Returns: TRUE if C-style is to be used, FALSE (default) if Fortran classic is to be used.
*
*/
psych_bool PsychUseCMemoryLayoutIfOptimal(psych_bool tryEnableCMemoryLayout)
{
// Python - more specifically NumPy - uses C programming language memory layout for
// its n-D matrices and arrays. Using Fortran classic style requires memory layout
// conversion when exchanging >= 2D data with Python/NumPy, which can increase
// required memory bandwith, memory consumption, lead to cache trashing and therefore
// reduced performance in input/output argument passing. Skipping that is beneficial
// at least for large n-D arrays, so we always choose C-memory layout if caller does
// opt-in to allow us to do it:
use_C_memory_layout[recLevel] = tryEnableCMemoryLayout;
if (DEBUG_PTBPYTHONGLUE)
printf("PTB-DEBUG:%s:%s: %s C-Memory layout for NumPy based data exchange.\n",
PsychGetModuleName(), PsychGetFunctionName(),
(tryEnableCMemoryLayout) ? "Enabling" : "Disabling");
return(tryEnableCMemoryLayout);
}
/*
*
* Main entry point for Python runtime. Serves as a dispatch and handles
* first time initialization.
*
* The subfunction dispatcher can operate in either of two modes depending
* on whether the module has registed subfunctions, or only a single "base"
* function.
*
* subfunction mode:
* The examines the first and second
* arguments for a string naming a module subfunction. If it finds in either of those
* two arguments a string naming a module subfunctoin, then it looks up the approproate
* function pointer and invokes that function. Before invoking the function the dispatcher
* removes the function name argument form the list of argumnets which was passed to the
* module.
*
* base mode: The dispatcher always invokes the same one subfunction and without
* alterinng the list of arguments.
*
* Modules should now register in subfunction mode to support the build-in 'version' command.
*
*/
PyObject* PsychScriptingGluePythonDispatch(PyObject* self, PyObject* args)
{
psych_bool isArgThere[2], isArgEmptyMat[2], isArgText[2], isArgFunction[2];
PsychFunctionPtr fArg[2], baseFunction;
char argString[2][MAX_CMD_NAME_LENGTH];
PyObject* tmparg = NULL;
PyObject* plhs = NULL;
int i;
int nrhs = (int) PyTuple_Size(args);
if (!PyTuple_Check(args)) {
printf("FAIL FAIL FAIL!\n");
return(NULL);
}
// Initialization
if (firstTime) {
// Reset call recursion level to startup default:
recLevel = -1;
psych_recursion_debug = FALSE;
psych_refcount_debug = 0;
if (getenv("PSYCH_RECURSION_DEBUG")) psych_recursion_debug = TRUE;
if (getenv("PSYCH_REFCOUNT_DEBUG")) psych_refcount_debug = atoi(getenv("PSYCH_REFCOUNT_DEBUG"));
// Initialize NumPy array extension for use in *this compilation unit* only:
(void) init_numpy();
// Call the Psychtoolbox init function, which inits the Psychtoolbox and calls the project init.
PsychInit();
// Hard to believe, but apparently true: Python does not allow unloading extension modules!
// As a workaround, we register a subfunction "Shutdown" that allows to trigger a manual module
// shutdown, although not a true unload. At least this might allow module state resets if done
// carefully:
PsychRegister("Shutdown", &PsychExitPythonGlue);
// Register hidden helper function: This one dumps all registered subfunctions of
// a module into a struct array of text strings. Needed by our automatic documentation
// generator script to find out about subfunctions of a module:
PsychRegister((char*) "DescribeModuleFunctionsHelper", &PsychDescribeModuleFunctions);
firstTime = FALSE;
}
// Increment call recursion level for this invocation of the module:
recLevel++;
if (recLevel >= MAX_RECURSIONLEVEL) {
// Maximum level exceeded!
printf("PTB-CRITICAL: Maximum recursion level %i for recursive calls into module '%s' exceeded!\n", recLevel, PsychGetModuleName());
printf("PTB-CRITICAL: Aborting call sequence. Check code for recursion bugs!\n");
recLevel--;
return(NULL);
}
if (psych_recursion_debug) printf("PTB-DEBUG: Module %s entering recursive call level %i.\n", PsychGetModuleName(), recLevel);
// Default to not using C memory layout, but classic (backwards compatible) Fortran layout:
use_C_memory_layout[recLevel] = FALSE;
// Save CPU-state and stack at this position in 'jmpbuffer'. If any further code
// calls an error-exit function like PsychErrorExit() or PsychErrorExitMsg() then
// the corresponding longjmp() call in our mexErrMsgTxt() implementation (see top of file)
// will unwind the stack and restore stack-state and CPU state to the saved values in
// jmpbuffer --> We will end up at this setjmp() call again, with a cleaned up stack and
// CPU state, but setjmp will return a non-zero error code, signaling the abnormal abortion.
if (setjmp(jmpbuffer[recLevel]) != 0) {
// PsychErrorExit() or friends called! The CPU and stack are restored to a sane state.
// Call our cleanup-routine to release memory that is PsychMallocTemp()'ed and to other
// error-handling...
goto PythonFunctionCleanup;
}
nrhsGLUE[recLevel] = nrhs;
for (i = 0; i < nrhs; i++) {
tmparg = PyTuple_GetItem(args, i);
prhsGLUE[recLevel][i] = tmparg;
// Empty args, strings and structs are special - handled directly the Python way.
// Everything else goes through NumPy C-Interfaces:
if ((tmparg == NULL) || (tmparg == Py_None) || mxIsChar(tmparg) || mxIsStruct(tmparg)) {
// This object is already in our desired format:
prhsNeedsConversion[recLevel][i] = FALSE;
}
else {
// This object needs to get converted into a NumPy array of a suitable format for us.
// We will do that on first access by client via PsychGetInArgPyPtr(). We can't convert
// here, as we don't know yet if we need to convert into C-Memory layout or Fortran layout,
// so just note down the need for lazy conversion on first "true" access:
prhsNeedsConversion[recLevel][i] = TRUE;
// Bump refcount if the input object is already a NumPy array, as our PythonFunctionCleanup
// would decref it on normal exit or error exit. If it isn't a NumPy array yet, then no
// need to bump, as a lazy conversion later on first access will turn it into a NumPy
// array and then do the bumping. Or the argument may never get evaluated, so it would stay
// a non NumPy array and don't need the bump/unbump treatment:
if (PyArray_Check(prhsGLUE[recLevel][i]))
Py_INCREF(prhsGLUE[recLevel][i]);
}
}
// Set number of output arguments to "unknown" == -1, as we don't know yet:
nlhsGLUE[recLevel] = -1;
// NULL-out our pointer array of return value pointers plhsGLUE[recLevel]:
memset(&plhsGLUE[recLevel][0], 0, sizeof(plhsGLUE[recLevel]));
baseFunctionInvoked[recLevel] = FALSE;
// If no subfunctions have been registered by the project then just invoke the project base function
// If one of those has been registered.
if (!PsychAreSubfunctionsEnabled()) {
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel] = TRUE;
(*baseFunction)(); //invoke the unnamed function
} else
PsychErrorExitMsg(PsychError_internal, "Project base function invoked but no base function registered");
} else { // Subfunctions are enabled so pull out the function name string and invoke it.
// Assess the nature of first and second arguments for finding the name of the sub function.
for (i = 0; i < 2; i++) {
isArgThere[i] = (nrhs > i) && (prhsGLUE[recLevel][i]);
if (isArgThere[i]) {
tmparg = prhsGLUE[recLevel][i];
} else {
tmparg = NULL;
}
isArgEmptyMat[i] = isArgThere[i] ? PsychIsDefaultMat(tmparg) : FALSE;
isArgText[i] = isArgThere[i] ? mxIsChar(tmparg) : FALSE;
if (isArgText[i]) {
if (mxGetString(tmparg, argString[i], sizeof(argString[i])))
PsychErrorExitMsg(PsychError_user, "Invalid subcommand argument passed in. Not a command name!");
// Empty subfunction command strings map to "empty matrix", for Mex/Matlab/Octave compatibility:
if (strlen(argString[i]) == 0)
isArgEmptyMat[i] = TRUE;
// Only consider 2nd arg as subfunction if 1st arg isn't already a subfunction:
if ((i == 0) || (!isArgFunction[0])) {
fArg[i] = PsychGetProjectFunction(argString[i]);
}
else fArg[i] = NULL; // 1st arg is subfunction, so 2nd arg can't be as well.
}
isArgFunction[i] = isArgText[i] ? fArg[i] != NULL : FALSE;
}
// Figure out which of the two arguments might be the function name and either invoke it or exit with error
// if we can't find one.
if (!isArgThere[0] && !isArgThere[1]) { //no arguments passed so execute the base function
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
} else
PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
}
else if (isArgEmptyMat[0] && !isArgThere[1]) {
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state A)");
}
else if (isArgEmptyMat[0] && isArgEmptyMat[1]) {
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state B)");
}
else if (isArgEmptyMat[0] && isArgText[1]) {
if (isArgFunction[1]) {
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
}
else
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state C)");
}
else if (isArgEmptyMat[0] && !isArgText[1]) {
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state D)");
}
else if (isArgText[0] && !isArgThere[1]) {
if (isArgFunction[0]) {
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
} else {
// When we receive a first argument which is a string and it is not recognized as a function name then call the default function
// first to hopefully print a synopsis on a subfunctions-enabled module, then abort with "Unknown subfunction name".
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state E)");
} else
PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
}
}
else if (isArgText[0] && isArgEmptyMat[1]) {
if (isArgFunction[0]) {
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state F)");
}
else if (isArgText[0] && isArgText[1]) {
if (isArgFunction[0] && !isArgFunction[1]) { //the first argument is the function name
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else if (!isArgFunction[0] && isArgFunction[1]) { //the second argument is the function name
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
}
else if (!isArgFunction[0] && !isArgFunction[1]) { //neither argument is a function name
//PrintfExit("Invalid command (error state G)");
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)();
} else
PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
}
else if (isArgFunction[0] && isArgFunction[1]) //both arguments are function names
PsychErrorExitMsg(PsychError_user, "Passed two function names");
}
else if (isArgText[0] && !isArgText[1]) {
if (isArgFunction[0]) {
nameFirstGLUE[recLevel] = TRUE;
(*(fArg[0]))();
}
else
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state H)");
}
else if (!isArgText[0] && !isArgThere[1]) { //this was modified for MODULEVersion with WaitSecs.
//PrintfExit("Invalid command (error state H)");
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)(); //invoke the unnamed function
} else
PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
}
else if (!isArgText[0] && isArgEmptyMat[1]) {
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state I)");
}
else if (!isArgText[0] && isArgText[1]) {
if (isArgFunction[1]) {
nameFirstGLUE[recLevel] = FALSE;
(*(fArg[1]))();
} else
PsychErrorExitMsg(PsychError_user, "Unknown or invalid subfunction name - Typo? Check spelling of the function name. (error state J)");
}
else if (!isArgText[0] && !isArgText[1]) { //this was modified for Priority.
//PrintfExit("Invalid command (error state K)");
baseFunction = PsychGetProjectFunction(NULL);
if (baseFunction != NULL) {
baseFunctionInvoked[recLevel]=TRUE;
(*baseFunction)(); //invoke the unnamed function
} else
PsychErrorExitMsg(PsychError_unimplemented, "Project base function invoked but no base function registered");
}
} //close else
// If we reach this point of execution, then we're successfully done with function execution
// and just need to return return arguments and clean up:
if (psych_refcount_debug) {
for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
if (plhsGLUE[recLevel][i] && (Py_REFCNT(plhsGLUE[recLevel][i]) >= psych_refcount_debug))
printf("PTB-DEBUG: At non-error exit of PsychScriptingGluePythonDispatch: Refcount of plhsGLUE[recLevel %i][arg %i] = %li.\n",
recLevel, i, Py_REFCNT(plhsGLUE[recLevel][i]));
}
}
// Find the true number of arguments to return in the return tuple:
if (nlhsGLUE[recLevel] < 0) {
for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
if (plhsGLUE[recLevel][i])
nlhsGLUE[recLevel] = i + 1;
}
}
// Multi-value return?
if (nlhsGLUE[recLevel] > 1) {
// Create an output tuple of suitable size:
plhs = PyTuple_New((Py_ssize_t) nlhsGLUE[recLevel]);
if (NULL == plhs)
PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: Failed to create output arg return tuple!!\n");
// "Copy" our return values into the output tuple: If nlhs should be
// zero (Python-Script does not expect any return arguments), but our
// subfunction has assigned a return argument in slot 0 anyway, then
// we return that argument and release our own temp-memory. This
// provides "Matlab"-semantic, where a first unsolicited return argument
// is printed anyway to the console for diagnostic purpose:
for (i = 0; (i == 0 && plhsGLUE[recLevel][0] != NULL) || (i < nlhsGLUE[recLevel]); i++) {
if (plhsGLUE[recLevel][i]) {
// Assign return argument to proper slot of tuple:
if (PyTuple_SetItem(plhs, (Py_ssize_t) i, plhsGLUE[recLevel][i])) {
printf("PTB-CRITICAL: Could not insert return argument for slot %i of output tuple!\n", i);
PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: PyTuple_SetItem() failed.\n");
}
// NULL-out the array slot, only the output plhs tuple has a reference to
// the output PyObject argument in slot i:
plhsGLUE[recLevel][i] = NULL;
}
else {
printf("PTB-DEBUG: Return argument for slot %i of output tuple not defined!\n", i);
// Ref and assign empty return argument to proper slot of tuple:
Py_INCREF(Py_None);
if (PyTuple_SetItem(plhs, (Py_ssize_t) i, Py_None)) {
printf("PTB-CRITICAL: Could not insert return argument for slot %i of output tuple!\n", i);
PsychErrorExitMsg(PsychError_internal, "PTB-CRITICAL: PyTuple_SetItem() failed.\n");
}
}
}
}
else if ((nlhsGLUE[recLevel] == 1) && (plhsGLUE[recLevel][0] != NULL)) {
// Single return argument:
plhs = plhsGLUE[recLevel][0];
plhsGLUE[recLevel][0] = NULL;
}
else {
// No return value at all:
Py_INCREF(Py_None);
plhs = Py_None;
}
PythonFunctionCleanup:
// The following code is executed both at end of normal execution, and also
// during an error return. It has to do the common cleanup work:
// Release references to NumPy PyArrays, as the PyObject -> PyArray code always
// returns a new reference which we should get rid off, now that we don't need
// it anymore:
for (i = 0; i < nrhs; i++) {
if (PyArray_Check(prhsGLUE[recLevel][i]))
Py_XDECREF(prhsGLUE[recLevel][i]);
prhsGLUE[recLevel][i] = NULL;
}
// Release "orphaned" output arguments that haven't been returned to the interpreter,
// e.g., because of a PythonFunctionCleanup - error return:
for (i = 0; i < MAX_OUTPUT_ARGS; i++) {
if (psych_refcount_debug && plhsGLUE[recLevel][i] && (Py_REFCNT(plhsGLUE[recLevel][i]) >= psych_refcount_debug))
printf("PTB-DEBUG: Orphaned output argument at cleanup: Refcount of plhsGLUE[recLevel %i][arg %i] = %li --> unref --> %li.\n",
recLevel, i, Py_REFCNT(plhsGLUE[recLevel][i]), Py_REFCNT(plhsGLUE[recLevel][i]) - 1);
Py_XDECREF(plhsGLUE[recLevel][i]);
plhsGLUE[recLevel][i] = NULL;
}
// Release all memory allocated via PsychMallocTemp():
PsychFreeAllTempMemory();
// Reset to not using C memory layout, but classic (backwards compatible) Fortran layout:
use_C_memory_layout[recLevel] = FALSE;
// Done with this call recursion level:
PsychExitRecursion();
// Return PyObject tuple with all return arguments:
return(plhs);
}
/* Call PsychExitGlue():
* Needed to safely reset modules in Python.
*/
PsychError PsychExitPythonGlue(void)
{
// Debug output:
if (DEBUG_PTBPYTHONGLUE)
printf("PTB-INFO: Jettisoning submodule %s ...\n", PsychGetModuleName());
// Mark ourselves as not yet initialized:
firstTime = TRUE;
// Call our regular exit routines to clean up and release all ressources:
PsychErrorExitMsg(PsychExit(), NULL);
// Done. Return control to Python:
return(PsychError_none);
}
// PsychPyArgGet() helper for PsychGetInArgPyPtr() aka PsychGetInArgPtr():
// Does lazy, on-demand, one-time conversion of numeric data types to
// corresponding NumPy array data types of a suitable memory layout for
// our purpose. Adjusts reference counts of old/new instance of input arg
// accordingly and updates prhsGLUE cached copy. Does Fortran -> C conversion
// as needed.
static PyObject* PsychPyArgGet(int position)
{
PyObject *ret = prhsGLUE[recLevel][position];
if (psych_refcount_debug && (Py_REFCNT(prhsGLUE[recLevel][position]) >= psych_refcount_debug))
printf("PTB-DEBUG:%s:PsychPyArgGet: Before convert: Refcount of prhsGLUE[recLevel %i][arg %i] = %li.\n",
PsychGetFunctionName(), recLevel, position, Py_REFCNT(prhsGLUE[recLevel][position]));
// Does this input argument need conversion to a NumPy array of suitable format?
if (prhsNeedsConversion[recLevel][position]) {
// Yes: Reset "needs conversion" flag and do the one-time conversion:
prhsNeedsConversion[recLevel][position] = FALSE;
// Convert it, either into C memory layout or Fortran memory layout. This
// gives us a *new* reference to a NumPy array in *any* case, even if it was
// an identity assignment because in-ret was already a suitable NumPy
// array - in that case the refcount of original prhsGLUE got bumped by one.
ret = PyArray_FROM_OF(ret, ((use_C_memory_layout[recLevel]) ? NPY_ARRAY_IN_ARRAY : NPY_ARRAY_IN_FARRAY));
// If prhsGLUE was already a NumPy array, then its refcount got bumped in
// the initial assignment code in PsychScriptingGluePythonDispatch(), so
// need to undo the bump here, now that we have a new 'ret' reference,
// before we assign a potentially new ret as the new prhsGLUE:
if (PyArray_Check(prhsGLUE[recLevel][position]))
Py_DECREF(prhsGLUE[recLevel][position]);
if (DEBUG_PTBPYTHONGLUE || psych_refcount_debug)
printf("PTB-DEBUG:%s:PsychPyArgGet: Arg %i: Conversion to NumPy array of %s triggered [refcount now %li]: %s\n",
PsychGetFunctionName(),
position, use_C_memory_layout[recLevel] ? "C layout" : "Fortran layout", Py_REFCNT(ret),
(ret == prhsGLUE[recLevel][position]) ? "No-Op passthrough." : "New object.");
// Now that the new ret is a NumPy array in the wanted final format,
// assign it, so we do not need to repeat the conversion on future access:
prhsGLUE[recLevel][position] = ret;
// At the end of this ballet, if this was a no-op conversion, then the
// reference count of prhsGLUE should be unchanged. If it was a real
// conversion, then only the Python interpreter should hold references
// original prhsGLUE input argument aka the 'args' input tuple argument
// to the PsychScriptingGluePythonDispatch(), and our new updated prhsGLUE,
// aka ret is a new refcount == 1 NumPy array of suitable format and memory
// layout, which we can now use and will dispose of in PythonFunctionCleanup
// by dropping its refcount by one to zero.
}
if (psych_refcount_debug && (Py_REFCNT(prhsGLUE[recLevel][position]) >= psych_refcount_debug))
printf("PTB-DEBUG:%s:PsychPyArgGet: After convert: Refcount of prhsGLUE[recLevel %i][arg %i] = %li.\n",
PsychGetFunctionName(), recLevel, position, Py_REFCNT(prhsGLUE[recLevel][position]));
return(ret);
}
/*
* Return the PyObject pointer to the specified position. Note that we have some special rules for
* numbering the positions:
*
* 0 - This is always the command string or NULL if the project does not register a
* dispatch function and does accept subcommands. If the function does accept sub
* commands, those may be passed in either the first or second position, but
* PsychGetArgPtr() will always return the command as the 0th.
*
* 1 - This is the first argument among the arguments which are not the subfunction name itself.
* It can occur in either the first or second position of the argument list, depending on
* in which of those two positions the function name itself appears.
*
* 2.. These positions are numbered correctly
*
* TO DO:
*
* 2 - this function should be used by the one which gets the function name.
*
*
* Arguments are numbered 0..n.
*
* - The 0th argument is a pointer to the PyObject holding
* the subfunction name string if we are in subfunction mode.
*
* - The 0th argument is undefined if not in subfunction mode.
*
* - The 1st argument is the argument of the 1st and 2nd which is not
* the subfunction name if in subfunction mode.
*
* - The 1st argument is the first argument if not in subfunction mode.
*
* - The 2nd-nth arguments are always the 2nd-nth arguments.
*/
const PyObject *PsychGetInArgPyPtr(int position)
{
if (PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]) { //when in subfunction mode
if (position < nrhsGLUE[recLevel]) { //an argument was passed in the correct position.
if (position == 0) { //caller wants the function name argument.
if (nameFirstGLUE[recLevel])
return(PsychPyArgGet(0));
else
return(PsychPyArgGet(1));
} else if (position == 1) { //they want the "first" argument.
if (nameFirstGLUE[recLevel])
return(PsychPyArgGet(1));
else
return(PsychPyArgGet(0));
} else
return(PsychPyArgGet(position));
} else
return(NULL);
} else { //when not in subfunction mode and the base function is not invoked.
if (position <= nrhsGLUE[recLevel])
return(PsychPyArgGet(position-1));
else
return(NULL);
}
}
PyObject **PsychGetOutArgPyPtr(int position)
{
// Output argument PyObject
if ((position == 1) ||
((position > 0) && ((position <= nlhsGLUE[recLevel]) || (nlhsGLUE[recLevel] == -1)))) {
return(&(plhsGLUE[recLevel][position-1]));
} else {
printf("PTB-CRITICAL: PsychGetOutArgPyPtr() invalid position %i referenced [nlhs=%i], returning NULL!\n", position, nlhsGLUE[recLevel]);
return(NULL);
}
}
const PsychGenericScriptType *PsychGetInArgPtr(int position)
{
return((const PsychGenericScriptType*) PsychGetInArgPyPtr(position));
}
/* PsychCheckSizeLimits(size_t m, size_t n, size_t p)
*
* Makes sure matrix/vector dimensions stay within the limits imposed
* by a specific Psychtoolbox build for a specific 32 bit or 64 bit
* version of Python.
*
* 32 bit builds are always limited to 2^31-1 elements per dimension at
* most. In reality the limit is much lower, this is an upper bound.
*
* 64 bit builds may or may not allow bigger limits, depending if
* the Python runtime supports a 64 bit ptbSize type. Even
* then there are some limits imposed by available system memory and
* processor architecture specific limits, e.g., many cpu's only
* truly support 48 bit of memory, not the true 64 bit.
*
*/
void PsychCheckSizeLimits(psych_int64 m, psych_int64 n, psych_int64 p)
{
// No problem if ptbSize has capacity to contain size_t:
if (sizeof(ptbSize) >= sizeof(size_t)) return;
// Mismatch: ptbSize too small to contain size_t. This means
// ptbSize is only defined as a 32-bit int on a system where
// size_t is a 64 bit unsigned int. As long as the provided
// size_t values are smaller than 2^31 we're good and don't
// screw up when downcasting. Otherwis we'd overflow and
// disaster would happen:
if ((m < INT_MAX) && (n < INT_MAX) && (p < INT_MAX)) return;
// Ok, this is a no-go :( Abort with some hopefully helpful
// error message:
printf("PTB-ERROR: Tried to return a vector or matrix whose size along at least one dimension\n");
printf("PTB-ERROR: exceeds the maximum supported size of 2^31 - 1 elements.\n");
if (sizeof(size_t) == 4) {
printf("PTB-ERROR: This is a limitation of all 32 bit versions of Psychtoolbox.\n");
printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Python on a 64-Bit\n");
printf("PTB-ERROR: operating system to get rid of this limit.\n");
}
else {
printf("PTB-ERROR: This is a limitation of your version of Python.\n");
printf("PTB-ERROR: You'd need to use a Psychtoolbox for 64-bit Python\n");
printf("PTB-ERROR: on a 64-bit operating system to get rid of this limit.\n");
}
PsychErrorExitMsg(PsychError_user, "One of the dimensions of a returned matrix or vector exceeds 2^31-1 elements. This is not supported on your setup!");
}
/*
* mxCreateDoubleMatrix3D()
*
* Create a 2D or 3D matrix of doubles.
*
* Requirements are that m>0, n>0, p>=0.
*/
PyObject *mxCreateDoubleMatrix3D(psych_int64 m, psych_int64 n, psych_int64 p)
{
int numDims;
ptbSize dimArray[3];
if (m == 0 || n == 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p==0 || p==1) ? 2 : 3;
return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_double));
}
/*
* mxCreateFloatMatrix3D()
*
* Create a 2D or 3D matrix of floats.
*
* Requirements are that m>0, n>0, p>=0.
*/
PyObject *mxCreateFloatMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
ptbSize dimArray[3];
if (m == 0 || n == 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p==0 || p==1) ? 2 : 3;
return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_single));
}
/*
* mxCreateNativeBooleanMatrix3D()
*
* Create a 2D or 3D matrix of native psych_bool types.
*
* Requirements are that m>0, n>0, p>=0.
*/
PyObject *mxCreateNativeBooleanMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
ptbSize dimArray[3];
if (m == 0 || n == 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p==0 || p==1) ? 2 : 3;
return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_boolean));
}
/*
* Create a 2D or 3D matrix of ubytes.
*
* Requirements are that m>0, n>0, p>=0.
*/
PyObject *mxCreateByteMatrix3D(size_t m, size_t n, size_t p)
{
int numDims;
ptbSize dimArray[3];
if (m == 0 || n == 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p==0 || p==1) ? 2 : 3;
return(mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint8));
}
static PyObject* PyExc[PsychError_last + 1] = { 0 };
/*
* Python implementation of Python specific error handling.
* Set proper Python exception state.
*/
void PsychProcessErrorInScripting(PsychError error, const char* message)
{
PyObject *exception;
if (PyExc[PsychError_invalidArg_absent] == NULL) {
PyExc[PsychError_none] = NULL;
PyExc[PsychError_invalidArg_absent] = PyExc_SyntaxError;
PyExc[PsychError_invalidArg_extra] = PyExc_SyntaxError;
PyExc[PsychError_invalidArg_type] = PyExc_TypeError;
PyExc[PsychError_invalidArg_size] = PyExc_ValueError;
PyExc[PsychError_extraInputArg] = PyExc_SyntaxError;
PyExc[PsychError_missingInputArg] = PyExc_SyntaxError;
PyExc[PsychError_extraOutputArg] = PyExc_SyntaxError;
PyExc[PsychError_missingOutputArg] = PyExc_SyntaxError;
PyExc[PsychError_toomanyWin] = PyExc_MemoryError;
PyExc[PsychError_outofMemory] = PyExc_MemoryError;
PyExc[PsychError_scumberNotWindex] = PyExc_ValueError;
PyExc[PsychError_windexNotScumber] = PyExc_ValueError;
PyExc[PsychError_invalidWindex] = PyExc_IndexError;
PyExc[PsychError_invalidIntegerArg] = PyExc_ValueError;
PyExc[PsychError_invalidScumber] = PyExc_IndexError;
PyExc[PsychError_invalidNumdex] = PyExc_IndexError;
PyExc[PsychError_invalidColorArg] = PyExc_ValueError;
PyExc[PsychError_invalidDepthArg] = PyExc_ValueError;
PyExc[PsychError_invalidRectArg] = PyExc_ValueError;
PyExc[PsychError_invalidNumberBuffersArg] = PyExc_ValueError;
PyExc[PsychError_nullWinRecPntr] = PyExc_RuntimeError;
PyExc[PsychError_registerLimit] = PyExc_MemoryError;
PyExc[PsychError_registered] = PyExc_RuntimeError;
PyExc[PsychError_longString] = PyExc_ValueError;
PyExc[PsychError_longStringPassed] = PyExc_ValueError;
PyExc[PsychError_unimplemented] = PyExc_NotImplementedError;
PyExc[PsychError_internal] = PyExc_RuntimeError;
PyExc[PsychError_invalidArgRef] = PyExc_ValueError;
PyExc[PsychError_OpenGL] = PyExc_EnvironmentError;
PyExc[PsychError_system] = PyExc_EnvironmentError;
PyExc[PsychError_InvalidWindowRecord] = PyExc_ValueError;
PyExc[PsychError_unsupportedVideoMode] = PyExc_ValueError;
PyExc[PsychError_user] = PyExc_Exception;
PyExc[PsychError_unrecognizedPreferenceName] = PyExc_NameError;
PyExc[PsychError_unsupportedOS9Preference] = PyExc_NameError;
PyExc[PsychError_inputMatrixIllegalDimensionSize] = PyExc_ValueError;
PyExc[PsychError_stringOverrun] = PyExc_BufferError;
PyExc[PsychErorr_argumentValueOutOfRange] = PyExc_ValueError;
};
// No error? Clear exception/error state:
if (error == PsychError_none) {
PyErr_Clear();
return;
}
// Trust that the Python C-API or our own code has already set
// a proper exception and error state if any error state is set:
if (PyErr_Occurred())
return;
if (error == PsychError_system) {
if (errno) {
PyErr_SetFromErrno(PyExc_OSError);
errno = 0;
return;
}
else {
#if PSYCH_SYSTEM == PSYCH_WINDOWS
PyErr_SetFromWindowsErr(0);
return;
#endif
}
// Otherwise fall through to generic handling...
}
// Map to half-way suitable exception type and return with or without
// additional error message:
exception = PyExc[error];
if (message != NULL)
PyErr_SetString(exception, message);
else
PyErr_SetNone(exception);
return;
}
/*
* Print string s and return return control to the calling environment.
*/
void PsychErrMsgTxt(char *s)
{
PsychGenericScriptType *pcontent = NULL;
// Is this the Screen() module?
if (strcmp(PsychGetModuleName(), "Screen") == 0) {
// Yes. We directly call our close and cleanup routine:
#ifdef PTBMODULE_Screen
ScreenCloseAllWindows();
#endif
} else {
// Nope. This is a module other than Screen. Try to call Screen('Close')
// via scripting environemnt:
if (PsychRuntimeGetVariablePtr("global", "Screen", &pcontent)) {
// Is it a function wrapper? Then call it Octave-style:
if (!strcmp(PyEval_GetFuncName(pcontent), "Screen") && !strcmp(PyEval_GetFuncDesc(pcontent), "()"))
PsychRuntimeEvaluateString("Screen('CloseAll');");
else // Nope. Is it a module? Then call it module-style:
if (!strcmp(PyEval_GetFuncName(pcontent), "module"))
PsychRuntimeEvaluateString("Screen.Screen('CloseAll');");
else
printf("PsychErrMsgTxt: Failed to call Screen('CloseAll') - Weird signature, not the Screen module?!?\n");
}
}
// Call the error printing and error handling facilities:
mexErrMsgTxt((s && (strlen(s) > 0)) ? s : "See error message printed above.");
}
/*
* classify the PyObject element format using Pyschtoolbox argument type names
*
*/
static PsychArgFormatType PsychGetTypeFromPyPtr(const PyObject *ppyPtr)
{
PsychArgFormatType format;
// First check for "empty" default argument:
if (PsychIsDefaultMat(ppyPtr))
format = PsychArgType_default;
// then for string, as we use Python strings here, not NumPy array strings.
else if (mxIsChar(ppyPtr))
format = PsychArgType_char;
// then for struct, as we use Python structs here, not NumPy array strings.
else if (mxIsStruct(ppyPtr))
format = PsychArgType_structArray;
// then everything else, safely assuming it is a NumPy array object:
else if (mxIsUint8(ppyPtr))
format = PsychArgType_uint8;
else if (mxIsUint16(ppyPtr))
format = PsychArgType_uint16;
else if (mxIsUint32(ppyPtr))
format = PsychArgType_uint32;
else if (mxIsUint64(ppyPtr))
format = PsychArgType_uint64;
else if (mxIsInt8(ppyPtr))
format = PsychArgType_int8;
else if (mxIsInt16(ppyPtr))
format = PsychArgType_int16;
else if (mxIsInt32(ppyPtr))
format = PsychArgType_int32;
else if (mxIsInt64(ppyPtr))
format = PsychArgType_int64;
else if (mxIsDouble(ppyPtr))
format = PsychArgType_double;
else if (mxIsSingle(ppyPtr))
format = PsychArgType_single;
else if (mxIsCell(ppyPtr))
format = PsychArgType_cellArray;
else if (mxIsLogical(ppyPtr))
format = PsychArgType_boolean;
else
format = PsychArgType_unclassified;
return format;
}
/*
* PsychSetReceivedArgDescriptor()
*
* Accept an argument number and direction value (input or output). Examine the specified argument and fill in an argument
* descriptor struture. Ask a retainer function to store the descriptor.
*
*/
PsychError PsychSetReceivedArgDescriptor(int argNum, psych_bool allow64BitSizes, PsychArgDirectionType direction)
{
PsychArgDescriptorType d;
int numNamedOutputs, numOutputs;
const PyObject *ppyPtr;
d.position = argNum;
d.direction = direction;
if (direction == PsychArgIn) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(argNum);
d.isThere = (ppyPtr && !PsychIsDefaultMat(ppyPtr)) ? kPsychArgPresent : kPsychArgAbsent;
if (d.isThere == kPsychArgPresent) { //the argument is there so fill in the rest of the description
d.numDims = (int) mxGetNumberOfDimensions(ppyPtr);
// If the calling function doesn't allow 64 bit sized input argument dimensions, then we check if
// the input has a size within the positive signed integer range, i.e., at most INT_MAX elements
// per dimension. Functions which can handle bigger inputs need to declare this explicitely by
// setting allow64BitSizes == TRUE:
if ((!allow64BitSizes) && ((mxGetM(ppyPtr) >= INT_MAX) || (mxGetNOnly(ppyPtr) >= INT_MAX) || (mxGetP(ppyPtr) >= INT_MAX))) {
printf("PTB-ERROR: %i. Input argument exceeds allowable maximum size of 2^31 - 1 elements\n", argNum);
printf("PTB-ERROR: in at least one dimension. Psychtoolbox can't handle such huge matrices or vectors.\n");
PsychErrorExitMsg(PsychError_user, "Input argument exceeds maximum supported count of 2^31 - 1 elements!");
}
d.mDimMin = d.mDimMax = (psych_int64) mxGetM(ppyPtr);
d.nDimMin = d.nDimMax = (psych_int64) mxGetNOnly(ppyPtr);
d.pDimMin = d.pDimMax = (psych_int64) mxGetP(ppyPtr);
d.type = PsychGetTypeFromPyPtr(ppyPtr);
}
}
else { //(direction == PsychArgOut)
numNamedOutputs = PsychGetNumNamedOutputArgs();
numOutputs = PsychGetNumOutputArgs();
if (numNamedOutputs >=argNum)
d.isThere = kPsychArgPresent;
else if (numOutputs >=argNum)
d.isThere = kPsychArgFixed;
else
d.isThere = kPsychArgAbsent;
}
PsychStoreArgDescriptor(NULL,&d);
return(PsychError_none);
}
//local function definitions for ScriptingGluePython.c
//___________________________________________________________________________________________
psych_bool PsychIsDefaultMat(const PyObject *mat)
{
return ((mat == Py_None) ||
(PyList_Check(mat) && (PyList_Size((PyObject *) mat) == 0)) ||
(PyArray_Check(mat) && ((PyArray_SIZE((PyArrayObject*) mat) == 0) || (PyArray_IsZeroDim(mat) && !PyArray_CheckScalar(mat)))));
}
//functions for project access to module call arguments
//___________________________________________________________________________________________
//functions which query the number and nature of supplied arguments
/*
* PsychGetNumInputArgs()
*
* -The count excludes the command argument and includes ALL arguments supplied, including
* default arguments.
*
* -For the time being, the only way to check if all required arguments are supplied in the
* general case of mixed required and optional arguments is to check each individually. Probably
* the best way to to fix this is to employ a description of which are required and which optional
* and compare that against what was passed to the subfunction.
*/
int PsychGetNumInputArgs(void)
{
if (PsychAreSubfunctionsEnabled() && !baseFunctionInvoked[recLevel]) //this should probably be just baseFunctionInvoked[recLevel] wo PsychSubfunctionEnabled.
return(nrhsGLUE[recLevel]-1);
else
return(nrhsGLUE[recLevel]);
}
// Careful! Here's a catch: I don't know of a straightforward way to actually
// find out how many return arguments (output args) the calling Python runtime
// expects from us. Apparently that's already a major problem in the Python
// language itself for native Python scripting code.
int PsychGetNumOutputArgs(void)
{
return((nlhsGLUE[recLevel] <= 0) ? ((nlhsGLUE[recLevel] == 0) ? 1 : MAX_OUTPUT_ARGS) : nlhsGLUE[recLevel]);
}
int PsychGetNumNamedOutputArgs(void)
{
return(nlhsGLUE[recLevel]);
}
PsychError PsychCapNumOutputArgs(int maxNamedOutputs)
{
// Number of output args already known?
if ((PsychGetNumNamedOutputArgs() < 0) && (maxNamedOutputs < MAX_OUTPUT_ARGS)) {
// No. We use the maxNamedOutputs passed in here as the clue to what the
// correct value is, given that at least the Python 2 api may be incapable
// of easily telling us this magic value:
// TODO FIXME Don't use this as hint, always detect true number at function exit, always succeed: nlhsGLUE[recLevel] = maxNamedOutputs;
return(PsychError_none);
}
// Maximum number of expected outputs known, so enforce them:
if (PsychGetNumNamedOutputArgs() > maxNamedOutputs)
return(PsychError_extraOutputArg);
else
return(PsychError_none);
}
/*
* The argument is not present if a default m*n=0 matrix was supplied, '' or []
*/
psych_bool PsychIsArgPresent(PsychArgDirectionType direction, int position)
{
int numArgs;
if (direction==PsychArgOut) {
return((psych_bool)(PsychGetNumOutputArgs()>=position));
} else {
if ((numArgs=PsychGetNumInputArgs())>=position)
return(!(PsychIsDefaultMat((PyObject*) PsychGetInArgPyPtr(position)))); //check if its default
else
return(FALSE);
}
}
PsychArgFormatType PsychGetArgType(int position) //this is for inputs because outputs are unspecified by the calling environment.
{
if (!(PsychIsArgReallyPresent(PsychArgIn, position)))
return(PsychArgType_none);
return(PsychGetTypeFromPyPtr((PyObject*) PsychGetInArgPyPtr(position)));
}
size_t PsychGetArgM(int position)
{
if (!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetM((PyObject*) PsychGetInArgPyPtr(position)));
}
size_t PsychGetArgN(int position)
{
if (!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetNOnly((PyObject*) PsychGetInArgPyPtr(position)));
}
size_t PsychGetArgP(int position)
{
if (!(PsychIsArgPresent(PsychArgIn, position)))
PsychErrorExitMsg(PsychError_invalidArgRef,NULL);
return( mxGetP((PyObject*) PsychGetInArgPyPtr(position)));
}
/*functions which output arguments.
* ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
* ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
* -Naming scheme:
* -Outputing return arguments:
* - "PsychAllocOut*Arg" : allocate and set a pointer to volatile memory to be filled with returned information by the caller.
* - "PsychCopyOut*Arg : accept a pointer to ouput values and fill in the return matrix memory with the values.
* -Reading input arguments:
* - "PsychAllocIn*Arg" : set a pointer to volatile memory allocated by "PsychAllocIn*Arg" and holding the input value.
* - "PsychCopyIn*Arg" : accept a pointer to memory and fill in that memory with the input argument values.
*
* -These all supply their own dynamic memory now, even functions which return arguments, and, in the case of
* Put functions, even when those arguments are not present ! If you don't want the function to go allocating
* memory for an unsupplied return argument, detect the presense of that argument from within your script and
* conditionally invoke PsychPut*Arg. This is a feature which allows you to ignore the presense of a return
* argument in the case where memory which holds a return argument serves other purposes.
*
* -All dynamic memory provided by these functions is volatile, that is, it is lost when the mex module exits and
* returns control to the scripting environemnt. To make it non volatile, call Psych??? on it.
*
* ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
*/
psych_bool PsychCopyOutDoubleArg(int position, PsychArgRequirementType isRequired, double value)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1, 1, 1, 1, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = PyFloat_FromDouble(value);
}
return(putOut);
}
psych_bool PsychAllocOutDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, 1, 1, 1, 1, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateDoubleMatrix3D(1, 1, 0);
*value = mxGetData(*mxpp);
} else {
*value = (double *) mxMalloc(sizeof(double));
}
return(putOut);
}
/*
* PsychAllocOutDoubleMatArg()
*
* A)return argument mandatory:
* 1)return argument not present: exit with an error.
* 2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
* B)return argument optional:
* 1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
* 2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double **array)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateDoubleMatrix3D(m, n, p);
*array = (double*) mxGetData(*mxpp);
} else
*array = (double*) mxMalloc(sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
return(putOut);
}
/*
* PsychAllocOutFloatMatArg()
*
* This function allocates out a matrix of single precision floating point type,
* that is C data type 32-bit float.
*
* A)return argument mandatory:
* 1)return argument not present: exit with an error.
* 2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
* B)return argument optional:
* 1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
* 2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutFloatMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, float **array)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_single, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateFloatMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (float*) mxGetData(*mxpp);
} else
*array = (float*) mxMalloc(sizeof(float) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
return(putOut);
}
/*
* PsychCopyOutBooleanArg()
*/
psych_bool PsychCopyOutBooleanArg(int position, PsychArgRequirementType isRequired, PsychNativeBooleanType value)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, 1, 1, 1, 1, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = PyBool_FromLong((long) value);
}
return(putOut);
}
/*
* PsychAllocOutBooleanMatArg()
*
* A)return argument mandatory:
* 1)return argument not present: exit with an error.
* 2)return argument present: allocate an output matrix and set return arg pointer. Set *array to the array within the new matrix. Return TRUE.
* B)return argument optional:
* 1)return argument not present: return FALSE to indicate absent return argument. Create an array. Set *array to the new array.
* 2)return argument present: allocate an output matrix and set return arg. pointer. Set *array to the array within the new matrix. Return TRUE.
*/
psych_bool PsychAllocOutBooleanMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, PsychNativeBooleanType **array)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_boolean, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateNativeBooleanMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (PsychNativeBooleanType *) mxGetLogicals(*mxpp);
} else {
*array = (PsychNativeBooleanType *) mxMalloc(sizeof(PsychNativeBooleanType) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
* PsychAllocOutUnsignedByteMatArg()
*
* Like PsychAllocOutDoubleMatArg() execept for unsigned bytes instead of doubles.
*/
psych_bool PsychAllocOutUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint8 **array)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint8, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateByteMatrix3D((size_t) m, (size_t) n, (size_t) p);
*array = (psych_uint8 *) mxGetData(*mxpp);
} else {
*array = (psych_uint8 *) mxMalloc(sizeof(psych_uint8) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
* PsychAllocOutUnsignedInt16MatArg()
*
* Like PsychAllocOutDoubleMatArg() execept for unsigned shorts instead of doubles.
*/
psych_bool PsychAllocOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 **array)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
ptbSize dimArray[3];
int numDims;
// Compute output array dimensions:
if (m <= 0 || n <= 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p == 0 || p == 1) ? 2 : 3;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint16);
*array = (psych_uint16 *) mxGetData(*mxpp);
} else {
*array = (psych_uint16 *) mxMalloc(sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
psych_bool PsychCopyOutDoubleMatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, double *fromArray)
{
PyObject **mxpp;
double *toArray;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_double, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateDoubleMatrix3D(m, n, p);
toArray = mxGetData(*mxpp);
//copy the input array to the output array now
memcpy(toArray, fromArray, sizeof(double) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
psych_bool PsychCopyOutUnsignedInt16MatArg(int position, PsychArgRequirementType isRequired, psych_int64 m, psych_int64 n, psych_int64 p, psych_uint16 *fromArray)
{
PyObject **mxpp;
psych_uint16 *toArray;
PsychError matchError;
psych_bool putOut;
ptbSize dimArray[3];
int numDims;
// Compute output array dimensions:
if (m <= 0 || n <= 0) {
dimArray[0] = 0; dimArray[1] = 0; dimArray[2] = 0; //this prevents a 0x1 or 1x0 empty matrix, we want 0x0 for empty matrices.
} else {
PsychCheckSizeLimits(m, n, p);
dimArray[0] = (ptbSize) m; dimArray[1] = (ptbSize) n; dimArray[2] = (ptbSize) p;
}
numDims = (p == 0 || p == 1) ? 2 : 3;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_uint16, isRequired, m, m, n, n, p, p);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateNumericArray(numDims, (ptbSize*) dimArray, PsychArgType_uint16);
toArray = (psych_uint16*) mxGetData(*mxpp);
//copy the input array to the output array now
memcpy(toArray, fromArray, sizeof(psych_uint16) * (size_t) m * (size_t) n * (size_t) maxInt(1,p));
}
return(putOut);
}
/*
* PsychCopyOutCharArg()
*
* Accept a null terminated string and return it in the specified position.
*
*/
psych_bool PsychCopyOutCharArg(int position, PsychArgRequirementType isRequired, const char *str)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_char, isRequired, 0, strlen(str), 0, strlen(str), 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = mxCreateString(str);
}
return(putOut);
}
/*functions with input arguments.
* ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
* ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
*/
/*
* A)input argument mandatory:
*
* 1)input argument not present: exit with error.
* 2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
* B)input argument optional:
*
* 1)input argument not present: return FALSE
* 2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
*
*/
psych_bool PsychAllocInDoubleMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, double **array)
{
psych_int64 mb, nb, pb;
psych_bool rc = PsychAllocInDoubleMatArg64(position, isRequired, &mb, &nb, &pb, array);
*m = (int) mb;
*n = (int) nb;
*p = (int) pb;
return(rc);
}
/* Alloc-in double matrix, but allow for 64-bit dimension specs. */
psych_bool PsychAllocInDoubleMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, double **array)
{
const PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*m = (psych_int64) mxGetM(ppyPtr);
*n = (psych_int64) mxGetNOnly(ppyPtr);
*p = (psych_int64) mxGetP(ppyPtr);
*array = mxGetData(ppyPtr);
}
return(acceptArg);
}
/* Like PsychAllocInFloatMatArg64, but with 32-Bit int type size return-arguments. */
psych_bool PsychAllocInFloatMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, float **array)
{
psych_int64 mb, nb, pb;
psych_bool rc = PsychAllocInFloatMatArg64(position, isRequired, &mb, &nb, &pb, array);
*m = (int) mb;
*n = (int) nb;
*p = (int) pb;
return(rc);
}
/*
*
* Alloc-In a single precision floating point matrix, i.e. a matrix of
* C data type 32 bit float.
* This function allows to alloc in matrices with more than 2^32 elements
* per matrix dimension on 64 bit systems. Therefore the returned size
* descriptors must be psych_int64 variables, not int variables or bad things
* will happen.
*
* If the function receives a double() precision input matrix instead of the
* expected single() precision matrix, it will automatically create a temporary
* copy, with all values copied/converted from double to single data type, aka
* double -> float cast. This is transparent to the caller, so it can always
* operate on a returned float matrix -- at a performance penalty for the extra
* copy of course.
*
* A)input argument mandatory:
*
* 1)input argument not present: exit with error.
* 2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
* B)input argument optional:
*
* 1)input argument not present: return FALSE
* 2)input argument present: set *array to the input matrix, *m, *n, and *p to its dimensions, return TRUE.
*
*/
psych_bool PsychAllocInFloatMatArg64(int position, PsychArgRequirementType isRequired, psych_int64 *m, psych_int64 *n, psych_int64 *p, float **array)
{
const PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
double* arrayD;
float* arrayF;
psych_int64 i;
PsychSetReceivedArgDescriptor(position, TRUE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_single, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
// Argument provided, but not of required float type?
if (matchError == PsychError_invalidArg_type) {
// If the input type is double precision floating point, then we convert
// it here into single precision floating point via a temporary buffer.
// This is used for functions which absolutely need float input, e.g.,
// OpenGL-ES rendering code, but should accept double input from usercode
// so usercode doesn not need to be specifically ported for OpenGL-ES platforms.
// Performance may suffer somwehat though...
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*m = (psych_int64) mxGetM(ppyPtr);
*n = (psych_int64) mxGetNOnly(ppyPtr);
*p = (psych_int64) mxGetP(ppyPtr);
// Get a double pointer to the double input data matrix:
arrayD = (double*) mxGetData(ppyPtr);
// Allocate temporary float input matrix. It will get deallocated
// automatically at return to runtime:
*array = (float*) PsychMallocTemp(sizeof(float) * (*m) * (*n) * (*p));
arrayF = *array;
// Copy/Convert loop:
for (i = (*m) * (*n) * (*p); i > 0; i--) *(arrayF++) = (float) *(arrayD++);
}
return(acceptArg);
}
// Regular path: Matching float (aka single()) matrix/vector provided:
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*m = (psych_int64) mxGetM(ppyPtr);
*n = (psych_int64) mxGetNOnly(ppyPtr);
*p = (psych_int64) mxGetP(ppyPtr);
*array = (float*) mxGetData(ppyPtr);
}
return(acceptArg);
}
/*
* PsychAllocInIntegerListArg()
*
* In a scriptiong language such as Python where numbers are almost always stored as doubles, this function is useful to check
* that the value input is an integer value stored within a double type.
*
* Otherwise it just here to imitate the version written for other scripting languages.
*/
psych_bool PsychAllocInIntegerListArg(int position, PsychArgRequirementType isRequired, int *numElements, int **array)
{
int m, n, p, i;
double *doubleMatrix;
psych_int64 *int64Matrix;
psych_bool isThere;
const PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
// Try to get native integer matrix of int32:
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_int32, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
if (matchError == PsychError_none) {
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
m = (int) mxGetM(ppyPtr);
n = (int) mxGetNOnly(ppyPtr);
p = (int) mxGetP(ppyPtr);
p = (p == 0) ? 1 : p;
if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
return(FALSE);
}
*numElements = m * n * p;
*array = (int*) mxGetData(ppyPtr);
}
return(acceptArg);
}
// Retry to get native integer matrix of int64:
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_int64, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
if (matchError == PsychError_none) {
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
m = (int) mxGetM(ppyPtr);
n = (int) mxGetNOnly(ppyPtr);
p = (int) mxGetP(ppyPtr);
p = (p == 0) ? 1 : p;
if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
return(FALSE);
}
*numElements = m * n * p;
int64Matrix = (psych_int64 *) mxGetData(ppyPtr);
*array = (int*) mxMalloc((size_t) *numElements * sizeof(int));
for (i = 0; i < *numElements; i++) {
(*array)[i] = (int) int64Matrix[i];
}
}
return(acceptArg);
}
// Nope. Try falling back to double matrix and convert to integers:
isThere = PsychAllocInDoubleMatArg(position, isRequired, &m, &n, &p, &doubleMatrix);
if (!isThere)
return(FALSE);
p = (p == 0) ? 1 : p;
if ((psych_uint64) m * (psych_uint64) n * (psych_uint64) p >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
return(FALSE);
}
*numElements = m * n * p;
*array = (int*) mxMalloc((size_t) *numElements * sizeof(int));
for (i = 0; i < *numElements; i++) {
if (!PsychIsIntegerInDouble(doubleMatrix + i))
PsychErrorExit(PsychError_invalidIntegerArg);
(*array)[i] = (int) doubleMatrix[i];
}
return(TRUE);
}
/*
* PsychAllocInByteMatArg()
*
* Like PsychAllocInDoubleMatArg() except it returns an array of unsigned bytes.
*/
psych_bool PsychAllocInUnsignedByteMatArg(int position, PsychArgRequirementType isRequired, int *m, int *n, int *p, unsigned char **array)
{
const PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_uint8, isRequired, 1, -1, 1, -1, 0, -1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*m = (int) mxGetM(ppyPtr);
*n = (int) mxGetNOnly(ppyPtr);
*p = (int) mxGetP(ppyPtr);
*array = (unsigned char *) mxGetData(ppyPtr);
}
return(acceptArg);
}
/*
* PsychCopyInDoubleArg()
*
* For 1x1 double.
*
* Return in *value a double passed in the specified position, or signal an error if there is no
* double there and the argument is required, or don't change "value" if the argument is optional
* and none is supplied.
*
* Note that if the argument is optional and ommitted PsychGetDoubleArg won't overwrite *value, allowing
* for specification of default values within project files without checking for their
* presense and conditinally filing in values.
*/
psych_bool PsychCopyInDoubleArg(int position, PsychArgRequirementType isRequired, double *value)
{
PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1,1,1,1,1,1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*value = PyFloat_AsDouble(ppyPtr);
if (PyErr_Occurred())
PsychErrorExit(PsychError_invalidArg_type);
}
return(acceptArg);
}
/*
* Like PsychCopyInDoubleArg() with the additional restriction that the passed value must
* not have a fractional component and that it fits within the bounds of a C integer.
*
*/
psych_bool PsychCopyInIntegerArg(int position, PsychArgRequirementType isRequired, int *value)
{
PyObject *ppyPtr;
double tempDouble;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1,1,1,1,1,1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
if (PyLong_Check(ppyPtr)) {
*value = (int) PyLong_AsLong(ppyPtr);
if (PyErr_Occurred())
PsychErrorExit(PsychError_invalidIntegerArg);
}
else {
tempDouble = PyFloat_AsDouble(ppyPtr);
if (PyErr_Occurred() || !PsychIsIntegerInDouble(&tempDouble))
PsychErrorExit(PsychError_invalidIntegerArg);
*value = (int) tempDouble;
}
}
return(acceptArg);
}
psych_bool PsychCopyInIntegerArg64(int position, PsychArgRequirementType isRequired, psych_int64 *value)
{
PyObject *ppyPtr;
double tempDouble;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64, isRequired, 1, 1, 1, 1, 1, 1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
if (PyLong_Check(ppyPtr)) {
*value = (psych_int64) PyLong_AsLongLong(ppyPtr);
if (PyErr_Occurred())
PsychErrorExit(PsychError_invalidIntegerArg);
}
else {
tempDouble = PyFloat_AsDouble(ppyPtr);
if (PyErr_Occurred() || !PsychIsInteger64InDouble(&tempDouble))
PsychErrorExit(PsychError_invalidIntegerArg);
*value = (psych_int64) tempDouble;
}
}
return(acceptArg);
}
/*
* PsychAllocInDoubleArg()
*/
psych_bool PsychAllocInDoubleArg(int position, PsychArgRequirementType isRequired, double **value)
{
int m, n, p;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double, isRequired, 1, 1, 1, 1, 1, 1);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg)
acceptArg = PsychAllocInDoubleMatArg(position, isRequired, &m, &n, &p, value);
return(acceptArg);
}
/*
* PsychAllocInCharArg()
*
* Reads in a string and sets *str to point to the string.
*
* This function violates the rule for AllocIn fuctions that if the argument is optional and absent we allocate
* space. That turns out to be an unuseful feature anyway, so we should probably get ride of it.
*
* The second argument has been modified to passively accept, without error, an argument in the specified position of non-character type.
*
* 0 kPsychArgOptional Permit either an argument of the specified type or no argument. An argument of any a different type is an error.
* 1 kPsychArgRequired Permit only an argument of the specifed type. If no argument is present, exit with error.
* 2 kPsychArgAnything Permit any argument type without error, but only read the specified type.
*
*/
psych_bool PsychAllocInCharArg(int position, PsychArgRequirementType isRequired, char **str)
{
PyObject *ppyPtr;
int status;
psych_uint64 strLen;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_char, isRequired, 0, kPsychUnboundedArraySize ,0, kPsychUnboundedArraySize, 0 , 1);
matchError=PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
if (PyUnicode_Check(ppyPtr))
strLen = (psych_uint64) PyUnicode_GetLength(ppyPtr) + 1;
else
strLen = (psych_uint64) PyBytes_Size(ppyPtr) + 1;
if (strLen >= INT_MAX)
PsychErrorExitMsg(PsychError_user, "Tried to pass in a string with more than 2^31 - 1 characters. Unsupported!");
*str = (char *) PsychCallocTemp((size_t) strLen, sizeof(char));
status = mxGetString(ppyPtr, *str, (ptbSize) strLen);
if (status != 0)
PsychErrorExitMsg(PsychError_internal, "mxGetString failed to get the string");
}
return(acceptArg);
}
/*
* Get a psych_bool flag from the specified argument position. The type can be be psych_bool, uint8, or
* char. If the numerical value is equal to zero or if its empty then the flag is FALSE, otherwise the
* flag is TRUE.
*
* PsychGetFlagArg returns TRUE if the argument was present and false otherwise:
*
* A- Argument required
* 1- Argument is present: load *argVal and return TRUE
* 2- Argument is absent: exit with an error
* B- Argument is optional
* 1- Argument is present: load *argVal and return TRUE
* 2- Argument is absent: leave *argVal alone and return FALSE
*
* Note: if we modify PsychGetDoubleArg to accept all types and coerce them, then we could simplify by
* calling that instead of doing all of this stuff...
*
*/
psych_bool PsychAllocInFlagArg(int position, PsychArgRequirementType isRequired, psych_bool **argVal)
{
psych_bool acceptArg;
psych_bool value;
acceptArg = PsychCopyInFlagArg(position, isRequired, &value);
if (acceptArg) {
*argVal = (psych_bool *) mxMalloc(sizeof(psych_bool));
**argVal = value;
}
return(acceptArg);
}
/*
* PsychCopyInFlagArg()
*/
psych_bool PsychCopyInFlagArg(int position, PsychArgRequirementType isRequired, psych_bool *argVal)
{
PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_double | PsychArgType_int32 | PsychArgType_int64 | PsychArgType_boolean,
isRequired, 1, 1, 1, 1, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
if (PyBool_Check(ppyPtr)) {
*argVal = (psych_bool) (ppyPtr == Py_True);
}
else if (PyArray_ISBOOL((const PyArrayObject*) ppyPtr)) {
if (mxGetLogicals(ppyPtr)[0])
*argVal = (psych_bool) 1;
else
*argVal = (psych_bool) 0;
} else {
if (mxGetScalar(ppyPtr))
*argVal = (psych_bool) 1;
else
*argVal = (psych_bool) 0;
}
}
return(acceptArg);
}
/* TODO FIXME */
psych_bool PsychAllocInFlagArgVector(int position, PsychArgRequirementType isRequired, int *numElements, psych_bool **argVal)
{
PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
int i;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, (PsychArgFormatType) (PsychArgType_double | PsychArgType_boolean),
isRequired, 1, kPsychUnboundedArraySize, 1, kPsychUnboundedArraySize, kPsychUnusedArrayDimension, kPsychUnusedArrayDimension);
matchError = PsychMatchDescriptors();
acceptArg = PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
if ((psych_uint64) mxGetM(ppyPtr) * (psych_uint64) mxGetN(ppyPtr) >= INT_MAX) {
printf("PTB-ERROR: %i th input argument has more than 2^31 - 1 elements! This is not supported.\n", position);
*numElements = 0;
return(FALSE);
}
*numElements = (int) (mxGetM(ppyPtr) * mxGetN(ppyPtr));
// Unlike other PsychAllocIn* functions, here we allocate new memory and copy the input to it rather than simply returning a pointer into the received array.
// That's because we want the booleans returned to the caller by PsychAllocInFlagArgVector() to alwyas be psych_bool's, yet we accept as flags either 64-bit
// doubles or native logical/boolean type.
*argVal = (psych_bool*) mxMalloc(sizeof(psych_bool) * ((size_t) *numElements));
for (i = 0; i < *numElements; i++) {
if (mxIsLogical(ppyPtr)) {
if (mxGetLogicals(ppyPtr)[i])
(*argVal)[i] = (psych_bool) 1;
else
(*argVal)[i] = (psych_bool) 0;
} else {
if (((double*) mxGetData(ppyPtr))[i])
(*argVal)[i] = (psych_bool) 1;
else
(*argVal)[i] = (psych_bool) 0;
}
}
}
return(acceptArg); //the argument was not present (and optional).
}
psych_bool PsychCopyOutFlagArg(int position, PsychArgRequirementType isRequired, psych_bool argVal)
{
return(PsychCopyOutDoubleArg(position, isRequired, (double) argVal));
}
// functions which allocate native types without assigning them to return arguments.
// this is useful for embedding native structures within each other.
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
* PsychAllocateNativeDoubleMat()
*
* Create an opaque native double matrix. Return both
* - Its handle, which is specified when nesting the native matrix nesting withing other native types.
* - A handle to the C array of doubles enclosed by the native type.
*
* In any case, *cArray will point to the C array of doubles enclosed by the native type in the end.
*
*/
void PsychAllocateNativeDoubleMat(psych_int64 m, psych_int64 n, psych_int64 p, double **cArray, PsychGenericScriptType **nativeElement)
{
double *cArrayTemp;
PsychCheckSizeLimits(m, n, p);
*nativeElement = mxCreateDoubleMatrix3D(m,n,p);
cArrayTemp = mxGetData(*nativeElement);
*cArray = cArrayTemp;
}
/*
* PsychAllocateNativeUnsignedByteMat()
*
* Create an opaque native byte matrix. Return both
* - Its handle, which is specified when nesting the native matrix nesting withing other native types.
* - A handle to the C array of psych_uint8's enclosed by the native type.
*
* In any case, *cArray will point to the C array of psych_uint8's enclosed by the native type in the end.
*
*/
void PsychAllocateNativeUnsignedByteMat(psych_int64 m, psych_int64 n, psych_int64 p, psych_uint8 **cArray, PsychGenericScriptType **nativeElement)
{
psych_uint8 *cArrayTemp;
PsychCheckSizeLimits(m, n, p);
*nativeElement = mxCreateByteMatrix3D(m,n,p);
cArrayTemp = mxGetData(*nativeElement);
*cArray = cArrayTemp;
}
double PsychGetNanValue(void)
{
return(mxGetNaN());
}
/* PsychRuntimeGetPsychtoolboxRoot() TODO FIXME
*
* Try to retrieve filesystem path to Psychtoolbox root folder (the result from PsychtoolboxRoot() in Matlab/Octave)
* or users configuration folder (the result from PsychtoolboxConfigDir() in Matlab/Octave) from runtime. The result,
* if any, will be cached for later fast lookup.
*
* getConfigDir = TRUE => Return PsychtoolboxConfigDir().
* getConfigDir = FALSE => Return PsychtoolboxRoot().
*
* This function may fail to retrieve the path, in which case it returns an empty null-terminated string, i.e., strlen() == 0.
* On successful recovery of the path, returns a const char* to a readonly string which encodes the path.
*
*/
const char* PsychRuntimeGetPsychtoolboxRoot(psych_bool getConfigDir)
{
static char psychtoolboxRootPath[FILENAME_MAX+1];
static char psychtoolboxConfigPath[FILENAME_MAX+1];
/*
static psych_bool firstTime = TRUE;
char* myPathvarChar = NULL;
PyObject *plhs[1]; // Capture the runtime result of PsychtoolboxRoot/ConfigDir
if (firstTime) {
// Reset firstTime flag:
firstTime = FALSE;
// Init to null-terminated empty strings, so it is well-defined in case of error:
psychtoolboxRootPath[0] = 0;
psychtoolboxConfigPath[0] = 0;
// Call into runtime to get the path to the root folder: This will return 0 on success.
// A non-zero return value probably means that the script wasn't in the path.
if (0 == Psych_mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxRoot")) {
myPathvarChar = mxArrayToString(plhs[0]);
if (myPathvarChar) {
strncpy(psychtoolboxRootPath, myPathvarChar, FILENAME_MAX);
mxFree(myPathvarChar);
}
}
mxDestroyArray(plhs[0]);
// At this point we did our best and psychtoolboxRootPath is valid: Either a path string,
// or an empty string signalling failure to get the path.
// Same game again for PsychtoolboxConfigDir:
if (0 == Psych_mexCallMATLAB(1, plhs, 0, NULL, "PsychtoolboxConfigDir")) {
myPathvarChar = mxArrayToString(plhs[0]);
if (myPathvarChar) {
strncpy(psychtoolboxConfigPath, myPathvarChar, FILENAME_MAX);
mxFree(myPathvarChar);
}
}
mxDestroyArray(plhs[0]);
}
*/
// Return whatever we've got:
return((getConfigDir) ? &psychtoolboxConfigPath[0] : &psychtoolboxRootPath[0]);
}
/* PsychCopyInPointerArg() - Copy in a void* memory pointer. */
psych_bool PsychCopyInPointerArg(int position, PsychArgRequirementType isRequired, void **ptr)
{
PyObject *ppyPtr;
PsychError matchError;
psych_bool acceptArg;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgIn);
PsychSetSpecifiedArgDescriptor(position, PsychArgIn, PsychArgType_unclassified, isRequired, 1,1,1,1,1,1);
matchError = PsychMatchDescriptors();
acceptArg=PsychAcceptInputArgumentDecider(isRequired, matchError);
if (acceptArg) {
ppyPtr = (PyObject*) PsychGetInArgPyPtr(position);
*ptr = (void*) PyLong_AsVoidPtr(ppyPtr);
}
return(acceptArg);
}
/* PsychCopyOutPointerArg() - Copy out a void* memory pointer. */
psych_bool PsychCopyOutPointerArg(int position, PsychArgRequirementType isRequired, void* ptr)
{
PyObject **mxpp;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_unclassified, isRequired, 1,1,1,1,0,0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
if (putOut) {
mxpp = PsychGetOutArgPyPtr(position);
*mxpp = PyLong_FromVoidPtr(ptr);
}
return(putOut);
}
/* PsychRuntimePutVariable()
*
* Copy a given native variable of type PsychGenericScriptType, e.g., as created by PsychAllocateNativeDoubleMat()
* in case of a double matrix, as a new variable into a specified workspace.
*
* 'workspace' Namestring of workspace: "base" assign to base workspace. "caller" assign to calling functions workspace,
* "global" assign to global variable with given name.
*
* CAUTION: * Python only handles "global" and "caller" atm., "base" is treated like "caller".
*
* * The calling Python *code* can only directly access "global" variables created via PsychRuntimePutVariable().
* It can access "caller" local variables only via the dict accessor locals()['variable'], and the locals() may
* be behaviour not to be relied on, according to some docs, as it is an implementation detail subject to change.
*
* The reason for this weirdness is that Python code is compiled into bytecode at function load time, and the
* set of available local variable names is fixed at compile time, so dynamically injected "caller" variables from
* us would be invisible to the compiled bytecode.
*
* * Python code executed from *within* our module via PsychRuntimeEvaluateString() can access both
* "caller" local, and "global" global variables though, due to the way we implement PsychRuntimeEvaluateString().
*
* * In fact, the safest choice may be to use "caller" for calling Python code from *within* our module.
*
* 'variable' Name of the new variable.
*
* 'pcontent' The actual content that should be copied into the variable.
*
*
* Example: You want to create a double matrix with (m,n,p) rows/cols/layers as a variable 'myvar' in the global
* workspace and initialize it with content from the double array mycontent:
*
* PsychGenericScriptType* newvar = NULL;
* double* newvarcontent = mycontent; // mycontent is double* onto existing data.
* PsychAllocateNativeDoubleMat(m, n, p, &newvarcontent, &newvar);
* At this point, newvar contains the content of 'mycontent' and 'newvarcontent' points to
* the copy. You could alter mycontent now without affecting the content of newvarcontent or newvar.
*
* Create the corresponding variable 'myvar' in the global workspace:
* PsychRuntimePutVariable("global", "myvar", newvar);
*
* The calling M-File etc. can access the content newvarcontent under the variable name 'myvar'.
*
* As usual, the double matrix newvarcontent will be auto-destroyed when returning to the runtime,
* but the variable 'myvar' will remain valid until it goes out of scope.
*
* This function steals a reference to pcontent, regardless of success or failure.
*
* Returns zero on success, non-zero on failure.
*/
int PsychRuntimePutVariable(const char* workspace, const char* variable, PsychGenericScriptType* pcontent)
{
int rc = 1;
// Get a borrowed reference to the dicts with global and local variables for the calling frame:
PyObject *dict = strcmp(workspace, "global") ? PyEval_GetLocals() : PyEval_GetGlobals();
if (dict && PyDict_Check(dict)) {
// Try to add our new or updated variable, which will increment its refcount:
rc = PyDict_SetItemString(dict, variable, pcontent);
}
if (psych_refcount_debug && pcontent)
printf("PTB-DEBUG: In mxSetField: refcount of external object %p at enter is %li. %s\n",
pcontent, Py_REFCNT(pcontent),
(Py_REFCNT(pcontent) > 1) ? "MIGHT leak if caller does not take care." : "");
// Drop one reference, so the function steals a reference to pcontent and the
// calling client is no longer responsible for managing it, regardless of success
// or failure:
Py_XDECREF(pcontent);
return(rc);
}
/* PsychRuntimeGetVariablePtr()
*
* Retrieve a *read-only* pointer to a given native variable of type PsychGenericScriptType in the specified workspace.
* The variable is not copied, just referenced, so you *must not modify/write to the location* only perform read access!
*
* 'workspace' Namestring of workspace: "base" get from base workspace. "caller" get from calling functions workspace,
* "global" get global variable with given name.
*
* CAUTION: Python only handles "global" and "caller" atm., "base" is treated like "caller".
* In fact, the safest choice may be to use "caller".
*
* 'variable' Name of the variable to get a reference.
*
* 'pcontent' Pointer to a PsychGenericScriptType* where the location of the variables content should be stored.
* The pointed-to pointer will be set to NULL on failure.
*
* Returns TRUE on success, FALSE on failure.
*/
psych_bool PsychRuntimeGetVariablePtr(const char* workspace, const char* variable, PsychGenericScriptType** pcontent)
{
// Init to empty default:
*pcontent = NULL;
// Get a borrowed reference to the dicts with global and local variables for the calling frame:
PyObject *dict = strcmp(workspace, "global") ? PyEval_GetLocals() : PyEval_GetGlobals();
if (dict && PyDict_Check(dict)) {
// Get borrowed reference to variable:
*pcontent = (PsychGenericScriptType*) PyDict_GetItemString(dict, variable);
}
// Return true on success, false on failure:
return((*pcontent) ? TRUE : FALSE);
}
/* PsychRuntimeEvaluateString()
*
* Simple function evaluation by the Python scripting environment.
* This asks the runtime environment to execute/evaluate the given string 'cmdstring',
* passing no return arguments back, except an error code.
*/
int PsychRuntimeEvaluateString(const char* cmdstring)
{
PyObject* code = Py_CompileString(cmdstring, "PTB", Py_file_input);
if (code) {
PyObject* res = PyEval_EvalCode(code, PyEval_GetGlobals(), PyEval_GetLocals());
Py_DECREF(code);
if (res) {
Py_DECREF(res);
return(0);
}
}
// Failed:
return(-1);
}
// functions for outputting structs
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
PsychAllocOutStructArray()
-If argument is optional we allocate the structure even if the argument is not present. If this bothers you,
then check within the subfunction for the presense of a return argument before creating the struct array. We
allocate space regardless of whether the argument is present because this is consistant with other "PsychAllocOut*"
functions which behave this way because in some situations subfunctions might derive returned results from values
stored in an optional argument.
-If position is -1 then don't attempt to return the created structure to the calling environment. Instead just
allocate the structure and return it in pStruct. This is how to create a structure which is embeded within another
structure using PsychSetStructArrayStructArray(). Note that we use -1 as the flag and not NULL because NULL is 0 and
0 is reserved for future use as a reference to the subfunction name, of if none then the function name.
The special value numElements == -1 means to return a single struct, instead of a struct array.
*/
psych_bool PsychAllocOutStructArray(int position,
PsychArgRequirementType isRequired,
int numElements,
int numFields,
const char **fieldNames,
PsychGenericScriptType **pStruct)
{
PyObject **mxArrayOut;
ptbSize structArrayNumDims = 1;
ptbSize structArrayDims[1];
PsychError matchError;
psych_bool putOut;
structArrayDims[0] = numElements;
// Handle special case numElements == -1 which is ~ == 1 for validation:
numElements = abs(numElements);
if (position != kPsychNoArgReturn) {
// Return the result to both the C caller and the scripting environment.
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_structArray, isRequired, 1, 1, numElements, numElements, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
*pStruct = mxCreateStructArray(structArrayNumDims, structArrayDims, numFields, fieldNames);
if (putOut) {
mxArrayOut = PsychGetOutArgPyPtr(position);
*mxArrayOut = *pStruct;
}
return(putOut);
} else{
// Return the result only to the C caller. Ignore "required".
*pStruct = mxCreateStructArray(structArrayNumDims, structArrayDims, numFields, fieldNames);
return(TRUE);
}
}
/*
PsychAssignOutStructArray()
Accept a pointer to a struct array and assign the struct array to be the
designated return variable.
*/
psych_bool PsychAssignOutStructArray(int position,
PsychArgRequirementType isRequired,
PsychGenericScriptType *pStruct)
{
PyObject **mxArrayOut;
PsychError matchError;
psych_bool putOut;
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_structArray, isRequired, 1, 1, 0, kPsychUnboundedArraySize, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
// putOut is always true in Python implementation, so no leakage, as interpreter will own
// the only reference:
if (putOut) {
mxArrayOut = PsychGetOutArgPyPtr(position);
*mxArrayOut = pStruct;
}
return(putOut);
}
// functions for filling in struct elements by type
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/*
PsychSetStructArrayStringElement()
The variable "index", the index of the element within the struct array, is zero-indexed.
*/
void PsychSetStructArrayStringElement(const char *fieldName,
int index,
char *text,
PsychGenericScriptType *pStruct)
{
int fieldNumber;
psych_bool isStruct;
PyObject *mxFieldValue;
char errmsg[256];
isStruct = mxIsStruct(pStruct);
if (!isStruct)
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
fieldNumber = mxIsField(pStruct, fieldName);
if (fieldNumber == -1) {
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
mxFieldValue = mxCreateString(text);
// mxSetField steals the only reference to mxFieldValue, so we are done with it:
mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}
/*
PsychSetStructArrayDoubleElement()
Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayDoubleElement(const char *fieldName,
int index,
double value,
PsychGenericScriptType *pStruct)
{
int fieldNumber;
psych_bool isStruct;
PyObject *mxFieldValue;
char errmsg[256];
isStruct = mxIsStruct(pStruct);
if (!isStruct)
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
fieldNumber = mxIsField(pStruct, fieldName);
if (fieldNumber == -1) {
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
mxFieldValue = PyFloat_FromDouble(value);
// mxSetField steals the only reference to mxFieldValue, so we are done with it:
mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}
/*
PsychSetStructArrayUnsignedInt64Element()
Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayUnsignedInt64Element(const char *fieldName,
int index,
psych_uint64 value,
PsychGenericScriptType *pStruct)
{
int fieldNumber;
psych_bool isStruct;
PyObject *mxFieldValue;
char errmsg[256];
isStruct = mxIsStruct(pStruct);
if (!isStruct)
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
fieldNumber = mxIsField(pStruct, fieldName);
if (fieldNumber == -1) {
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
mxFieldValue = PyLong_FromUnsignedLongLong(value);
// mxSetField steals the only reference to mxFieldValue, so we are done with it:
mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}
/*
PsychSetStructArrayBooleanElement()
Note: The variable "index" is zero-indexed.
*/
void PsychSetStructArrayBooleanElement(const char *fieldName,
int index,
psych_bool state,
PsychGenericScriptType *pStruct)
{
int fieldNumber;
psych_bool isStruct;
PyObject *mxFieldValue;
char errmsg[256];
isStruct = mxIsStruct(pStruct);
if (!isStruct)
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
fieldNumber = mxIsField(pStruct, fieldName);
if (fieldNumber == -1) {
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
mxFieldValue = PyBool_FromLong((long) state);
// mxSetField steals the only reference to mxFieldValue, so we are done with it:
mxSetField(pStruct, (ptbIndex) index, fieldName, mxFieldValue);
}
/*
* PsychSetStructArrayStructElement()
*
* Assign a struct(-array) another struct(-array)'s field.
*
* Irrespective of success or failure, this steals the reference to pStructInner, so caller
* does not have to take care of releasing pStructInner and should not touch it anymore after
* calling this function, unless it aquired an own extra reference beforehand.
*
*/
void PsychSetStructArrayStructElement(const char *fieldName,
int index,
PsychGenericScriptType *pStructInner,
PsychGenericScriptType *pStructOuter)
{
int fieldNumber;
psych_bool isStruct;
char errmsg[256];
isStruct = mxIsStruct(pStructOuter);
if (!isStruct) {
Py_XDECREF(pStructInner);
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
}
isStruct = mxIsStruct(pStructInner);
if (!isStruct) {
Py_XDECREF(pStructInner);
PsychErrorExitMsg(PsychError_internal, "Attempt to set a struct field to a non-existent structure.");
}
fieldNumber = mxIsField(pStructOuter, fieldName);
if (fieldNumber == -1) {
Py_XDECREF(pStructInner);
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
// mxSetField steals the reference to pStructInner, so we are done with it:
mxSetField(pStructOuter, (ptbIndex) index, fieldName, pStructInner);
}
/*
* PsychSetStructArrayNativeElement()
*
* Assign a native element like a matrix (PsychAllocateNativeDoubleMat/PsychAllocateNativeUnsignedByteMat)
* to a struct(-array) field.
*
* Irrespective of success or failure, this steals the reference to pNativeElement, so caller
* does not have to take care of releasing pNativeElement and should not touch it anymore after
* calling this function, unless it aquired an own extra reference beforehand.
*
*/
void PsychSetStructArrayNativeElement(const char *fieldName,
int index,
PsychGenericScriptType *pNativeElement,
PsychGenericScriptType *pStructArray)
{
int fieldNumber;
psych_bool isStruct;
char errmsg[256];
isStruct = mxIsStruct(pStructArray);
if (!isStruct) {
Py_XDECREF(pNativeElement);
PsychErrorExitMsg(PsychError_internal, "Attempt to set a field within a non-existent structure.");
}
fieldNumber = mxIsField(pStructArray, fieldName);
if (fieldNumber == -1) {
Py_XDECREF(pNativeElement);
sprintf(errmsg, "Attempt to set a non-existent structure name field: %s", fieldName);
PsychErrorExitMsg(PsychError_internal, errmsg);
}
// mxSetField steals the reference to pNativeElement, so we are done with it:
mxSetField(pStructArray, (ptbIndex) index, fieldName, pNativeElement);
}
/*
* PsychAllocOutCellVector()
*
* -If argument is optional we allocate the structure even if the argument is not present. If this behavior bothers you,
* then check within your code for the presense of a return argument before creating the struct array. We
* allocate space regardeless of whether the argument is present because this is consistant with other "PsychAllocOut*"
* functions which behave this way because in some situations subfunctions might derive returned results from values
* stored in an optional argument.
*
* -If position is -1 then don't attempt to return the created structure to the calling environment. Instead just
* allocate the structure and return it in pStruct. This is how to create a structure which is embeded within another
* structure using PsychSetStructArrayStructArray(). Note that we use -1 as the flag and not NULL because NULL is 0 and
* 0 is reserved for future use as a reference to the subfunction name, of if none then the function name.
*/
psych_bool PsychAllocOutCellVector(int position,
PsychArgRequirementType isRequired,
int numElements,
PsychGenericScriptType **pCell)
{
PyObject **mxArrayOut;
PsychError matchError;
psych_bool putOut;
if (position != kPsychNoArgReturn) {
// Return the result to both the C caller and the scripting environment:
PsychSetReceivedArgDescriptor(position, FALSE, PsychArgOut);
PsychSetSpecifiedArgDescriptor(position, PsychArgOut, PsychArgType_cellArray, isRequired, 1, 1, numElements, numElements, 0, 0);
matchError = PsychMatchDescriptors();
putOut = PsychAcceptOutputArgumentDecider(isRequired, matchError);
*pCell = PyTuple_New((Py_ssize_t) numElements);
// putOut is always TRUE under Python, so no leakage, as interpreter will own
// the only reference:
if (putOut) {
mxArrayOut = PsychGetOutArgPyPtr(position);
*mxArrayOut = *pCell;
}
return(putOut);
} else {
// Return the result only to the C caller, not to the calling environment. Ignore "required":
// CAUTION: Could leak if caller doesn't assign it to an output-assignment, e.g., return arg
// or struct(array):
*pCell = PyTuple_New((Py_ssize_t) numElements);
return(TRUE);
}
}
/*
* PsychSetCellVectorStringElement()
*
* The variable "index", the index of the element within the struct array, is zero-indexed.
*/
void PsychSetCellVectorStringElement(int index,
const char *text,
PsychGenericScriptType *cellVector)
{
PyObject *mxFieldValue;
// Check for bogus arguments
if (!PyTuple_Check(cellVector))
PsychErrorExitMsg(PsychError_internal, "Attempt to set a cell within a non-existent cell array.");
if ((ptbIndex) index >= (ptbIndex) PyTuple_Size(cellVector))
PsychErrorExitMsg(PsychError_internal, "Attempt to set a cell array field at an out-of-bounds index");
// mxFieldValue refcount is 1, PyTuple_SetItem below steals the reference, so
// now the cellVector (=interpreter on eventual successfull out-assignment) owns the only
// reference and we don't leak.
mxFieldValue = mxCreateString(text);
PyTuple_SetItem(cellVector, index, mxFieldValue);
}
// End of Python only stuff.
#endif
|