1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
|
/*
*
* cvEyeTracker is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* cvEyeTracker is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with cvEyeTracker; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* cvEyeTracker - Version 1.2.5
* Part of the openEyes ToolKit -- http://hcvl.hci.iastate.edu/openEyes
* Release Date:
* Authors : Dongheng Li <dhli@iastate.edu>
* Derrick Parkhurst <derrick.parkhurst@hcvl.hci.iastate.edu>
* Jason Babcock <babcock@nyu.edu>
* David Winfield <dwinfiel@iastate.edu>
* Copyright (c) 2004-2006
* All Rights Reserved.
*
*/
#ifdef PSYCHCV_USE_OPENCV
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "ransac_ellipse.h"
#include "svd.h"
// Includes from PTB:
//
// It is important that these are included *last*, so remapping of some functions,
// e.g., printf() -> mexFunction() works correctly!
#include <Psych.h>
#include <PsychCV.h>
stuDPoint start_point = {-1, -1};
int inliers_num;
int angle_step = 20; //20 degrees
int pupil_edge_thres = 20;
double pupil_param[5] = {0, 0, 0, 0, 0};
vector <stuDPoint*> edge_point;
vector <int> edge_intensity_diff;
//------------ Starburst pupil edge detection -----------//
// Input
// pupile_image: input image
// width, height: size of the input image
// cx,cy: central start point of the feature detection process
// pupil_edge_threshold: best guess for the pupil contour threshold
// N: number of rays
// minimum_candidate_features: must return this many features or error
void starburst_pupil_contour_detection(UINT8* pupil_image, int width, int height, int edge_thresh, int N, int minimum_cadidate_features, double initial_angle_spread,
double fanoutangle1, double fanoutangle2, int bouncerays, int features_per_ray, double min_feature_dist, double max_feature_dist)
{
int dis = 7;
double angle_spread = 100*PI/180;
int loop_count = 0;
double angle_step = 2*PI / N;
double initial_angle_step = initial_angle_spread / N;
double new_angle_step;
stuDPoint *edge, edge_mean;
double angle_normal;
double cx = start_point.x;
double cy = start_point.y;
int first_ep_num;
while (edge_thresh > 5 && loop_count <= 10) {
edge_intensity_diff.clear();
destroy_edge_point();
while (edge_point.size() < minimum_cadidate_features && edge_thresh > 5) {
edge_intensity_diff.clear();
destroy_edge_point();
// MK: Original...
// locate_edge_points(pupil_image, width, height, cx, cy, dis, angle_step, 0, 2*PI, edge_thresh);
// New:
if (initial_angle_spread > 1.9*PI) {
// Single, full initial scan of 360 degrees:
locate_edge_points(pupil_image, width, height, cx, cy, dis, initial_angle_step, 0, initial_angle_spread, edge_thresh, features_per_ray, min_feature_dist, max_feature_dist);
}
else {
// Two partial scans of +/-initial_angle_spread/2 around 0 deg. and 180 deg.
locate_edge_points(pupil_image, width, height, cx, cy, dis, initial_angle_step, fanoutangle1, initial_angle_spread, edge_thresh, features_per_ray, min_feature_dist, max_feature_dist);
locate_edge_points(pupil_image, width, height, cx, cy, dis, initial_angle_step, fanoutangle2, initial_angle_spread, edge_thresh, features_per_ray, min_feature_dist, max_feature_dist);
}
if (edge_point.size() < minimum_cadidate_features) {
edge_thresh -= 1;
}
}
if (edge_thresh <= 5) {
break;
}
first_ep_num = edge_point.size();
if (bouncerays & 0x1) {
for (int i = 0; i < first_ep_num; i++) {
edge = edge_point.at(i);
angle_normal = atan2(cy-edge->y, cx-edge->x);
new_angle_step = angle_step*(edge_thresh*1.0/edge_intensity_diff.at(i));
locate_edge_points(pupil_image, width, height, edge->x, edge->y, dis, new_angle_step, angle_normal, angle_spread, edge_thresh, features_per_ray, min_feature_dist, max_feature_dist);
}
}
loop_count += 1;
edge_mean = get_edge_mean();
if (fabs(edge_mean.x-cx) + fabs(edge_mean.y-cy) < 10)
break;
cx = edge_mean.x;
cy = edge_mean.y;
}
if (loop_count > 10) {
destroy_edge_point();
printf("Error! edge points did not converge in %d iterations!\n", loop_count);
return;
}
if (edge_thresh <= 5) {
destroy_edge_point();
printf("Error! Adaptive threshold is too low!\n");
return;
}
}
void locate_edge_points(UINT8* image, int width, int height, double cx, double cy, int dis, double angle_step, double angle_normal, double angle_spread, int edge_thresh, int features_per_ray,
double min_feature_dist, double max_feature_dist)
{
double angle;
stuDPoint p, *edge;
double dis_cos, dis_sin;
int pixel_value1, pixel_value2;
int features_added_for_this_ray;
double distance;
// Transform distance constraint to squared distance, to save sqrt() computations:
min_feature_dist = min_feature_dist * min_feature_dist;
max_feature_dist = max_feature_dist * max_feature_dist;
for (angle = angle_normal-angle_spread/2+0.0001; angle < angle_normal+angle_spread/2; angle += angle_step) {
//printf("Thresh = %i Beamnormal: %lf -- Scanning %lf ... ", edge_thresh, angle_normal/2.0/PI*360.0, angle/2.0/PI*360.0);
dis_cos = dis * cos(angle);
dis_sin = dis * -1 * sin(angle); // MK Changed sign!!
p.x = cx + dis_cos;
p.y = cy + dis_sin;
// MK: Allow adding up to features_per_ray features per ray:
features_added_for_this_ray = 0;
pixel_value1 = image[(int)(p.y)*width+(int)(p.x)];
while (1) {
p.x += dis_cos;
p.y += dis_sin;
if (p.x < 0 || p.x >= width || p.y < 0 || p.y >= height)
break;
pixel_value2 = image[(int)(p.y)*width+(int)(p.x)];
if (0) image[(int)(p.y)*width+(int)(p.x)] = 255 - image[(int)(p.y)*width+(int)(p.x)];
//MK if (pixel_value2 - pixel_value1 > pupil_edge_thres) {
if (pixel_value2 - pixel_value1 > edge_thresh) {
// MK: Calculate distance from start point:
distance = ((p.x - cx) * (p.x - cx)) + ((p.y - cy) * (p.y - cy));
//printf("....Candidate with dist %lf ...", distance);
// Apply additional distance filter:
if (distance >= min_feature_dist && distance <= max_feature_dist) {
edge = (stuDPoint*)malloc(sizeof(stuDPoint));
edge->x = p.x - dis_cos/2;
edge->y = p.y - dis_sin/2;
edge_point.push_back(edge);
edge_intensity_diff.push_back(pixel_value2 - pixel_value1);
// MK: Allow adding up to features_per_ray features per ray:
//printf("...added feature, count now: %i", features_added_for_this_ray + 1);
features_added_for_this_ray++;
if (features_added_for_this_ray >= features_per_ray) break;
}
}
pixel_value1 = pixel_value2;
}
//printf("\n");
}
}
stuDPoint get_edge_mean()
{
stuDPoint *edge;
int i;
double sumx=0, sumy=0;
stuDPoint edge_mean;
for (i = 0; i < edge_point.size(); i++) {
edge = edge_point.at(i);
sumx += edge->x;
sumy += edge->y;
}
if (edge_point.size() != 0) {
edge_mean.x = sumx / edge_point.size();
edge_mean.y = sumy / edge_point.size();
} else {
edge_mean.x = -1;
edge_mean.y = -1;
}
return edge_mean;
}
void destroy_edge_point()
{
vector <stuDPoint*>::iterator iter;
if (edge_point.size() != 0) {
for (iter = edge_point.begin(); iter != edge_point.end( ) ; iter++ ) {
free(*iter);
}
edge_point.clear();
}
}
//------------ Ransac ellipse fitting -----------//
// Randomly select 5 indeics
void get_5_random_num(int max_num, int* rand_num)
{
int rand_index = 0;
int r;
int i;
bool is_new = 1;
if (max_num == 4) {
for (i = 0; i < 5; i++) {
rand_num[i] = i;
}
return;
}
while (rand_index < 5) {
is_new = 1;
r = (int)((rand()*1.0/RAND_MAX) * max_num);
for (i = 0; i < rand_index; i++) {
if (r == rand_num[i]) {
is_new = 0;
break;
}
}
if (is_new) {
rand_num[rand_index] = r;
rand_index++;
}
}
}
// solve_ellipse
// conic_param[6] is the parameters of a conic {a, b, c, d, e, f}; conic equation: ax^2 + bxy + cy^2 + dx + ey + f = 0;
// ellipse_param[5] is the parameters of an ellipse {ellipse_a, ellipse_b, cx, cy, theta}; a & b is the major or minor axis;
// cx & cy is the ellipse center; theta is the ellipse orientation
bool solve_ellipse(double* conic_param, double* ellipse_param)
{
double a = conic_param[0];
double b = conic_param[1];
double c = conic_param[2];
double d = conic_param[3];
double e = conic_param[4];
double f = conic_param[5];
//get ellipse orientation
double theta = atan2(b, a-c)/2;
//get scaled major/minor axes
double ct = cos(theta);
double st = sin(theta);
double ap = a*ct*ct + b*ct*st + c*st*st;
double cp = a*st*st - b*ct*st + c*ct*ct;
//get translations
double cx = (2*c*d - b*e) / (b*b - 4*a*c);
double cy = (2*a*e - b*d) / (b*b - 4*a*c);
//get scale factor
double val = a*cx*cx + b*cx*cy + c*cy*cy;
double scale_inv = val - f;
if (scale_inv/ap <= 0 || scale_inv/cp <= 0) {
//printf("Error! ellipse parameters are imaginary a=sqrt(%lf), b=sqrt(%lf)\n", scale_inv/ap, scale_inv/cp);
memset(ellipse_param, 0, sizeof(double)*5);
return 0;
}
ellipse_param[0] = sqrt(scale_inv / ap);
ellipse_param[1] = sqrt(scale_inv / cp);
ellipse_param[2] = cx;
ellipse_param[3] = cy;
ellipse_param[4] = theta;
return 1;
}
stuDPoint* normalize_point_set(stuDPoint* point_set, double &dis_scale, stuDPoint &nor_center, int num)
{
double sumx = 0, sumy = 0;
double sumdis = 0;
stuDPoint *edge = point_set;
int i;
for (i = 0; i < num; i++) {
sumx += edge->x;
sumy += edge->y;
sumdis += sqrt((double)(edge->x*edge->x + edge->y*edge->y));
edge++;
}
dis_scale = sqrt((double)2)*num/sumdis;
nor_center.x = sumx*1.0/num;
nor_center.y = sumy*1.0/num;
stuDPoint *edge_point_nor = (stuDPoint*)malloc(sizeof(stuDPoint)*num);
edge = point_set;
for (i = 0; i < num; i++) {
edge_point_nor[i].x = (edge->x - nor_center.x)*dis_scale;
edge_point_nor[i].y = (edge->y - nor_center.y)*dis_scale;
edge++;
}
return edge_point_nor;
}
stuDPoint* normalize_edge_point(double &dis_scale, stuDPoint &nor_center, int ep_num)
{
double sumx = 0, sumy = 0;
double sumdis = 0;
stuDPoint *edge;
int i;
for (i = 0; i < ep_num; i++) {
edge = edge_point.at(i);
sumx += edge->x;
sumy += edge->y;
sumdis += sqrt((double)(edge->x*edge->x + edge->y*edge->y));
}
dis_scale = sqrt((double)2)*ep_num/sumdis;
nor_center.x = sumx*1.0/ep_num;
nor_center.y = sumy*1.0/ep_num;
stuDPoint *edge_point_nor = (stuDPoint*)malloc(sizeof(stuDPoint)*ep_num);
for (i = 0; i < ep_num; i++) {
edge = edge_point.at(i);
edge_point_nor[i].x = (edge->x - nor_center.x)*dis_scale;
edge_point_nor[i].y = (edge->y - nor_center.y)*dis_scale;
}
return edge_point_nor;
}
void denormalize_ellipse_param(double* par, double* normailized_par, double dis_scale, stuDPoint nor_center)
{
par[0] = normailized_par[0] / dis_scale; //major or minor axis
par[1] = normailized_par[1] / dis_scale;
par[2] = normailized_par[2] / dis_scale + nor_center.x; //ellipse center
par[3] = normailized_par[3] / dis_scale + nor_center.y;
}
int* pupil_fitting_inliers(UINT8* pupil_image, int width, int height, int &return_max_inliers_num, double maxeccentricity, double min_ellipse_area, double max_ellipse_area)
{
int i;
int ep_num = edge_point.size(); //ep stands for edge point
stuDPoint nor_center;
double dis_scale;
int ellipse_point_num = 5; //number of point that needed to fit an ellipse
if (ep_num < ellipse_point_num) {
printf("Error! %d points are not enough to fit ellipse\n", ep_num);
memset(pupil_param, 0, sizeof(pupil_param));
return_max_inliers_num = 0;
return NULL;
}
//Normalization
stuDPoint *edge_point_nor = normalize_edge_point(dis_scale, nor_center, ep_num);
//Ransac
int *inliers_index = (int*)malloc(sizeof(int)*ep_num);
int *max_inliers_index = (int*)malloc(sizeof(int)*ep_num);
int ninliers = 0;
int max_inliers = 0;
int sample_num = 1000; //number of sample
int ransac_count = 0;
double dis_threshold = sqrt(3.84)*dis_scale;
// double dis_threshold = 0.5 * sqrt(3.84)*dis_scale;
double dis_error;
memset(inliers_index, int(0), sizeof(int)*ep_num);
memset(max_inliers_index, int(0), sizeof(int)*ep_num);
int rand_index[5];
double A[6][6];
int M = 6, N = 6; //M is row; N is column
for (i = 0; i < N; i++) {
A[i][5] = 1;
A[5][i] = 0;
}
double **ppa = (double**)malloc(sizeof(double*)*M);
double **ppu = (double**)malloc(sizeof(double*)*M);
double **ppv = (double**)malloc(sizeof(double*)*N);
for (i = 0; i < M; i++) {
ppa[i] = A[i];
ppu[i] = (double*)malloc(sizeof(double)*N);
}
for (i = 0; i < N; i++) {
ppv[i] = (double*)malloc(sizeof(double)*N);
}
double pd[6];
int min_d_index;
double conic_par[6] = {0};
double ellipse_par[5] = {0};
double best_ellipse_par[5] = {0};
double ratio;
double maxaxis;
while (sample_num > ransac_count) {
get_5_random_num((ep_num-1), rand_index);
//svd decomposition to solve the ellipse parameter
for (i = 0; i < 5; i++) {
A[i][0] = edge_point_nor[rand_index[i]].x * edge_point_nor[rand_index[i]].x;
A[i][1] = edge_point_nor[rand_index[i]].x * edge_point_nor[rand_index[i]].y;
A[i][2] = edge_point_nor[rand_index[i]].y * edge_point_nor[rand_index[i]].y;
A[i][3] = edge_point_nor[rand_index[i]].x;
A[i][4] = edge_point_nor[rand_index[i]].y;
}
svd(M, N, ppa, ppu, pd, ppv);
min_d_index = 0;
for (i = 1; i < N; i++) {
if (pd[i] < pd[min_d_index])
min_d_index = i;
}
for (i = 0; i < N; i++)
conic_par[i] = ppv[i][min_d_index]; //the column of v that corresponds to the smallest singular value,
//which is the solution of the equations
ninliers = 0;
memset(inliers_index, 0, sizeof(int)*ep_num);
for (i = 0; i < ep_num; i++) {
dis_error = conic_par[0]*edge_point_nor[i].x*edge_point_nor[i].x +
conic_par[1]*edge_point_nor[i].x*edge_point_nor[i].y +
conic_par[2]*edge_point_nor[i].y*edge_point_nor[i].y +
conic_par[3]*edge_point_nor[i].x + conic_par[4]*edge_point_nor[i].y + conic_par[5];
if (fabs(dis_error) < dis_threshold) {
inliers_index[ninliers] = i;
ninliers++;
}
}
if (ninliers > max_inliers) {
if (solve_ellipse(conic_par, ellipse_par)) {
denormalize_ellipse_param(ellipse_par, ellipse_par, dis_scale, nor_center);
ratio = ellipse_par[0] / ellipse_par[1];
maxaxis = (ellipse_par[0] > ellipse_par[1]) ? ellipse_par[0] : ellipse_par[1];
if (ellipse_par[2] > 0 && ellipse_par[2] <= width-1 && ellipse_par[3] > 0 && ellipse_par[3] <= height-1 &&
ratio > (1/maxeccentricity) && ratio < maxeccentricity && maxaxis >= min_ellipse_area && maxaxis <= max_ellipse_area) {
memcpy(max_inliers_index, inliers_index, sizeof(int)*ep_num);
for (i = 0; i < 5; i++) {
best_ellipse_par[i] = ellipse_par[i];
}
max_inliers = ninliers;
sample_num = (int)(log((double)(1-0.99))/log(1.0-pow(ninliers*1.0/ep_num, 5)));
}
}
}
ransac_count++;
if (ransac_count > 1500) {
printf("Error! ransac_count exceed! ransac break! sample_num=%d, ransac_count=%d\n", sample_num, ransac_count);
break;
}
}
//INFO("ransc end\n");
if (best_ellipse_par[0] > 0 && best_ellipse_par[1] > 0) {
for (i = 0; i < 5; i++) {
pupil_param[i] = best_ellipse_par[i];
}
} else {
memset(pupil_param, 0, sizeof(pupil_param));
max_inliers = 0;
free(max_inliers_index);
max_inliers_index = NULL;
}
for (i = 0; i < M; i++) {
free(ppu[i]);
free(ppv[i]);
}
free(ppu);
free(ppv);
free(ppa);
free(edge_point_nor);
free(inliers_index);
return_max_inliers_num = max_inliers;
return max_inliers_index;
}
#endif
|