1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
/*
SCREENFillPoly.c
AUTHORS:
Allen.Ingling@nyu.edu awi
mario.kleiner@tuebingen.mpg.de mk
PLATFORMS:
All.
HISTORY:
07/23/04 awi Created.
10/12/04 awi In useString: moved commas to inside [].
01/12/05 mk Added a slow-path that draws concave and self-intersecting polygons correctly.
02/25/05 awi Added call to PsychUpdateAlphaBlendingFactorLazily(). Drawing now obeys settings by Screen('BlendFunction').
11/01/08 mk Improved speed of slow-path. Still pretty slow -> Most time spent inside gluTesselator(), nothing we could do.
TO DO:
NOTES:
It would be faster to use one call to glVertex2Dv instead of looping over glVertex2D except that we would have to reshape the matrix.
We have to reshape the matrix because glVertex assumes that values are stored in memory pairwise but MATLAB packs elements columnwise
and FillPolly assumes that a vertex is a row. We could migrate to the new order except that 2x2 would be ambiguous. If speed ever
becomes an issue then we could supply a preference to specify vertex columns instead of vertex rows and use glVertex2D.
*/
#include "Screen.h"
#if PSYCH_SYSTEM == PSYCH_LINUX
#define GLUTESSCBCASTER (_GLUfuncptr)
#else
#define GLUTESSCBCASTER
#endif
// Our pointer to the used GLUtesselator object:
static GLUtesselator *tess = NULL;
// Cache datastructures to reduce or avoid many memory allocation/deallocations:
static GLdouble *combinerCache = NULL;
static unsigned int combinerCacheSize = 0;
static unsigned int combinerCacheSlot = 0;
static double* tempv = NULL;
static int tempvsize = 0;
// Callback-Routines for the GLU-Tesselator functions used on the FillPoly - Slow - path:
void APIENTRY PsychtcbBegin(GLenum prim)
{
PsychGLBegin(NULL, prim);
}
void APIENTRY PsychtcbVertex(void *data)
{
GLdouble *v = (GLdouble*) data;
PsychGLVertex4f(NULL, (float) v[0], (float) v[1], (float) v[2], (float) 1);
}
void APIENTRY PsychtcbEnd(void)
{
PsychGLEnd(NULL);
}
void APIENTRY PsychtcbCombine(GLdouble c[3], void *d[4], GLfloat w[4], void **out)
{
GLdouble *nv;
(void) d, (void) w;
// Free slots available?
if (combinerCacheSlot >= combinerCacheSize) {
// Nope. Need to alloc another cache for up to another 1000 elements:
combinerCacheSize = 1000;
combinerCacheSlot = 0;
combinerCache = (GLdouble *) PsychMallocTemp(sizeof(GLdouble) * 3 * combinerCacheSize);
if (NULL == combinerCache) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");
}
nv = (GLdouble *) &(combinerCache[combinerCacheSlot * 3]);
nv[0] = c[0];
nv[1] = c[1];
nv[2] = c[2];
*out = nv;
combinerCacheSlot++;
}
// Cleanup routine for our tesselators and other data structures. Called from
// ScreenExit.c at Screen shutdown. May be called without OpenGL active! Don't
// use any GL calls here, just plain C-level operations!!
void PsychCleanupSCREENFillPoly(void)
{
// Release tesselator object and associated data structures, if any:
if (tess) {
gluDeleteTess(tess);
tess=NULL;
}
if (tempv) {
free(tempv);
tempv = NULL;
tempvsize = 0;
}
return;
}
// If you change useString then also change the corresponding synopsis string in ScreenSynopsis.c
static char useString[] = "Screen('FillPoly', windowPtr [,color], pointList [, isConvex]);";
// 1 2 3 4
static char synopsisString[] =
"Fill polygon. \"color\" is the clut index (scalar or [r g b] or [r g b a] vector) that you "
"want to poke into each pixel; default produces white. \"pointList\" is a matrix: each row specifies the (x,y) "
"coordinates of a vertex.\n"
"The optional flag 'isConvex' allows you to tell the routine if the polygon is convex, (value of 1) "
"or if it is concave (value of 0), allowing the routine to skip the test for convexity, thereby "
"saving a bit of computation time in timing sensitive scripts.\n"
"Drawing filled polygons is a rather compute intense and slow operation. In general, drawing "
"convex polygons is pretty fast, drawing concave, but not self-intersecting polygons is much "
"slower (> 30x slower), and drawing concave self-intersecting polygons is extremely slow, "
"e.g. > 2000 times slower. If you have to draw very irregular polygons with may points, "
"it might be a good idea to preprocess them in some way and maybe break them up into "
"a sequence of more convex/regular polygons before submitting them to 'FillPoly'. Or "
"you may want to use some custom written drawing function for your purpose which is "
"optimized for drawing your type of polygons. ";
static char seeAlsoString[] = "FramePoly";
PsychError SCREENFillPoly(void)
{
PsychColorType color;
PsychWindowRecordType *windowRecord;
double whiteValue;
int i, mSize, nSize, pSize;
psych_bool isArgThere;
double *pointList;
double isConvex;
int j,k;
int flag;
double z;
combinerCacheSlot = 0;
combinerCacheSize = 0;
combinerCache = NULL;
//all sub functions should have these two lines
PsychPushHelp(useString, synopsisString,seeAlsoString);
if(PsychIsGiveHelp()){PsychGiveHelp();return(PsychError_none);};
//check for superfluous arguments
PsychErrorExit(PsychCapNumInputArgs(4)); //The maximum number of inputs
PsychErrorExit(PsychCapNumOutputArgs(0)); //The maximum number of outputs
//get the window record from the window record argument and get info from the window record
PsychAllocInWindowRecordArg(1, kPsychArgRequired, &windowRecord);
//Get the color argument or use the default, then coerce to the form determened by the window depth.
isArgThere=PsychCopyInColorArg(2, FALSE, &color);
if(!isArgThere){
whiteValue=PsychGetWhiteValueFromWindow(windowRecord);
PsychLoadColorStruct(&color, kPsychIndexColor, whiteValue ); //index mode will coerce to any other.
}
PsychCoerceColorMode( &color);
//get the list of pairs and validate.
PsychAllocInDoubleMatArg(3, kPsychArgRequired, &mSize, &nSize, &pSize, &pointList);
if(nSize!=2) PsychErrorExitMsg(PsychError_user, "Width of pointList must be 2");
if(mSize<3) PsychErrorExitMsg(PsychError_user, "Polygons must consist of at least 3 points; M dimension of pointList was < 3!");
if(pSize>1) PsychErrorExitMsg(PsychError_user, "pointList must be a 2D matrix, not a 3D matrix!");
isConvex = -1;
PsychCopyInDoubleArg(4, kPsychArgOptional, &isConvex);
// On non-OpenGL1/2 we always force isConvex to zero, so the GLU tesselator is
// always used. This because the tesselator only emits GL_TRIANGLES and GL_TRIANGLE_STRIP
// and GL_TRIANGLE_FANS primitives which are supported on all current OpenGL API's, whereas
// or "classic" fast-path needs GL_POLYGONS, which are only supported on classic OpenGL1/2:
if (!PsychIsGLClassic(windowRecord)) isConvex = 0;
// Enable this windowRecords framebuffer as current drawingtarget:
PsychSetDrawingTarget(windowRecord);
// Set default drawshader:
PsychSetShader(windowRecord, -1);
PsychUpdateAlphaBlendingFactorLazily(windowRecord);
PsychSetGLColor(&color, windowRecord);
///////// Test for convexity ////////
// This algorithm checks, if the polygon is definitely convex, or not.
// We take the slow-path, if polygon is non-convex or if we can't prove
// that it is convex.
//
// Algorithm adapted from: http://astronomy.swin.edu.au/~pbourke/geometry/clockwise/
// Which was written by Paul Bourke, 1998.
//
// -> This webpage explains the mathematical principle behind the test and provides
// a C-Source file which has been adapted for use here.
//
if (isConvex == -1) {
flag = 0;
for (i=0; i < mSize; i++) {
j = (i + 1) % mSize;
k = (i + 2) % mSize;
z = (pointList[j] - pointList[i]) * (pointList[k+mSize] - pointList[j+mSize]);
z -= (pointList[j+mSize] - pointList[i+mSize]) * (pointList[k] - pointList[j]);
if (z < 0) {
flag |= 1;
}
else if (z > 0) {
flag |= 2;
}
if (flag == 3) {
// This is definitely a CONCAVE polygon --> not Convex --> Take slow but safe path.
break;
}
}
if (flag!=0 && flag!=3) {
// This is a convex polygon --> Take fast path.
isConvex = 1;
}
else {
// This is a complex polygon --> can't determine if it is convex or not --> Take slow but safe path.
isConvex = 0;
}
}
////// Switch between fast path and slow path, depending on convexity of polygon:
if (isConvex > 0) {
// Convex, non-self-intersecting polygon - Take the fast-path:
glBegin(GL_POLYGON);
for(i=0;i<mSize;i++) glVertex2d((GLdouble)pointList[i], (GLdouble)pointList[i+mSize]);
glEnd();
}
else {
// Possibly concave and/or self-intersecting polygon - At least we couldn't prove it is convex.
// Take the slow, but safe, path using GLU-Tesselators to break it up into a couple of convex, simple
// polygons:
// Create and initialize a new GLU-Tesselator object, if needed:
if (NULL == tess) {
// Create tesselator:
tess = gluNewTess();
if (NULL == tess) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");
// Assign our callback-functions:
gluTessCallback(tess, GLU_TESS_BEGIN, GLUTESSCBCASTER PsychtcbBegin);
gluTessCallback(tess, GLU_TESS_VERTEX, GLUTESSCBCASTER PsychtcbVertex);
gluTessCallback(tess, GLU_TESS_END, GLUTESSCBCASTER PsychtcbEnd);
gluTessCallback(tess, GLU_TESS_COMBINE, GLUTESSCBCASTER PsychtcbCombine);
// Define all tesselated polygons to lie in the x-y plane:
gluTessNormal(tess, 0, 0, 1);
}
// We need to hold the values in a temporary array:
if (tempvsize < mSize) {
tempvsize = ((mSize / 1000) + 1) * 1000;
tempv = (double*) realloc((void*) tempv, sizeof(double) * 3 * tempvsize);
if (NULL == tempv) PsychErrorExitMsg(PsychError_outofMemory, "Out of memory condition in Screen('FillPoly')! Not enough space.");
}
// Now submit our Polygon for tesselation:
gluTessBeginPolygon(tess, NULL);
gluTessBeginContour(tess);
for(i=0; i < mSize; i++) {
tempv[i*3]=(GLdouble) pointList[i];
tempv[i*3+1]=(GLdouble) pointList[i+mSize];
tempv[i*3+2]=0;
gluTessVertex(tess, (GLdouble*) &(tempv[i*3]), (void*) &(tempv[i*3]));
}
// Process, finalize and render it by calling our callback-functions:
gluTessEndContour(tess);
gluTessEndPolygon (tess);
// Done with drawing the filled polygon. (Slow-Path)
}
// Mark end of drawing op. This is needed for single buffered drawing:
PsychFlushGL(windowRecord);
// printf("CombinerCalls %i out of %i allocated.\n", combinerCacheSlot, combinerCacheSize);
return(PsychError_none);
}
|