1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
|
function data = MeasureLuminancePrecision(meterType)
% data=MeasureLuminancePrecision([meterType=7])
%
% 'meterType' selects type of photometer. Defaults to 7 for CRS ColorCal2, see
% 'help CMCheckInit' for other supported devices.
%
% INSTRUCTIONS: Plug your photometer into your computer, carefully
% place your photometer stably against your computer's screen, set
% PARAMETERS (below), then run. The results (including the best-fitting
% n-bit-precision model) will be displayed as a graph in a figure window,
% and also saved in three files (in the same folder as this file) with
% filename extensions: png, fig, and mat. The filename describes the
% testing conditions, e.g.
% DenissMacBookPro5K-Dithering61696-o.use10Bits-LoadIdentityCLUT-Luminances8.fig
%
% EXPLANATION: Using Psychtoolbox SCREEN imaging, measures how precisely we
% can control display luminance. Loads identity into the Color Lookup Table
% (CLUT) and measures the luminance produced by each value loaded into a
% large identical patch of image pixels. (This program varies only the
% luminance, not hue, always varying the three RGB channels together, but
% the conclusion about bits of precision per channel almost certainly
% applies to general-purpose presentation of arbitrary RGB colors.) The
% attained precision will be achieved mostly by the digital-to-analog
% converter and, perhaps, partly through dither by the video driver. Since
% the 1980's most digital computer displays allocate 8 bits per color
% channel (R, G, B). In the past few years, some displays now accept 10 or
% more bits for each channel and pass that through from the pixel in memory
% through the color lookup table (CLUT) to the digital to analog converter
% that controls light output. In 2016-2017, Mario Kleiner enhanced The
% Psychtoolbox SCREEN function to allow specification of each color
% component (R G B) as a floating point number, where 0 is black and 1 is
% maximum output, so that your software, without change, will drive any
% display and benefit from as much precision as the display hardware and
% driver provide.
%
% Typically you'll run MeasureLuminancePrecision from the command line. It
% will make all the requested measurements and plot the results, including
% the best-fitting n-bit-precision model. Each figure is saved as both a
% FIG and PNG file, and the data are saved as a MAT file. The data are also
% returned as the output argument. It has luminance out "data.L" vs
% floating point color value "data.v".
%
% To use this program to measure the precision of your computer display you
% need three things:
% 1. MATLAB or Octave. http://mathworks.com , https://www.gnu.org/software/octave
% 2. The Psychtoolbox, free from http://psychtoolbox.org.
% 3. A photometer or colorimeter supported by CMCheckInit(), e.g., the CRS ColorCal2
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/
% It's plug and play, taking power through its USB cable.
%
% As of April 2017, Apple documents (below) indicate that two currently
% available macOS computers attain 10-bit precision from pixel to display
% (in each of the three RGB channels): the Mac Pro and the iMac 27" retina
% desktop. From my testing, I add the Apple's high-end MacBook Pro laptop
% (Retina, 15-inch, Mid 2015). I tested my MacBook Pro (Retina, 15-inch,
% Mid 2015) and iMac (Retina 5K, 27-inch, Late 2014). Both use AMD drivers.
% Using MeasureLuminancePrecision, I have documented 11-bit luminance
% precision on both of these displays, enabling both o.use10Bits and
% o.useDithering,
% https://www.macrumors.com/2015/10/30/4k-5k-imacs-10-bit-color-depth-osx-el-capitan/
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://developer.apple.com/library/content/samplecode/DeepImageDisplayWithOpenGL/Introduction/Intro.html#//apple_ref/doc/uid/TP40016622
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html
% My Hewlett-Packard Z Book laptop running Linux also attains 10-bit
% luminance precision. I have not yet succeeded in getting dither to work
% on the Z Book. Thanks to my former student, H�rmet Yiltiz, for setting up
% the Z Book and getting 10-bit imaging to work, with help from Mario
% Kleiner.
%
% MacBook Pro driving NEC PA244UHD 4K display
% https://macperformanceguide.com/blog/2016/20161127_1422-Apple2016MacBookPro-10-bit-color.html
%
% PARAMETERS:
% o.luminances = number of luminances to measure, 3 s each.
% o.reciprocalOfFraction = list desired values, e.g. 1, 64, 128, 256.
% o.usePhotometer = 1 use supported photometer; 0 simulate 8-bit rendering.
% See SET PARAMETERS below.
%
%
% Denis Pelli, April 24, 2017
%
%
% History:
% 24-Apr-2017 dgp Wrote original version.
% ??-???-2019 mk Hacked it, improved it somewhere somewhat.
% 14-Feb-2021 mk Included into Psychtoolbox as baseline for cleanup.
% 07-Oct-2021 mk Refined.
%
%% DITHERING NOTES
% (FROM MARIO) FOR HP Z Book "Sea Islands" GPU:
% 10 bpc panel dither setup code for the zBooks "Sea Islands" (CIK) gpu:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cik.c#L8814
% The constants which are or'ed / added together in that code are defined
% here:
% http://lxr.free-electrons.com/source/drivers/gpu/drm/radeon/cikd.h#L989
% I simply or'ed the proper constants to get the numbers i told you, so PTB
% replicates the Linux display drivers behaviour. As you can see there are
% many parameters one could tweak for any given display. E.g., add/drop
% FMT_FRAME_RANDOM_ENABLE, FMT_HIGHPASS_RANDOM_ENABLE, or
% FMT_RGB_RANDOM_ENABLE for extra entertainment value. It's somewhat of a
% black art. The gpu also has various temporal dithering modes with even
% more parameters, or combined spatio-temporal modes. Most of these are
% never used or even validated by gpu hardware vendors to do the right
% thing. All the variations will have different effects on different types
% of display panels, at different refresh rates and pixel densities, for
% different types of still images or animations, so a panel with a true
% native high bit depths is still a more deterministic thing that simulated
% high bit depths. I would use dithering only for high level stimuli with
% low spatial frequencies for that reason.
%% SET PARAMETERS
% o.luminances = how many luminances are measured to produce your
% final graph. 32 is typically enough. The CRS photometer takes 3
% s/point.
% o.reciprocalOfFraction = reciprocal of the fraction of the full luminance
% range you want to explore. Setting it to 1 will explore the whole range.
% To demonstrate 10-bit precision over the whole range you'd need to test
% 2^10=1024 luminances, which will take a long time, 3,000 s, nearly an
% hour. Setting o.reciprocalOfFraction=256 will test only 1/256 of the range,
% which is enough to reveal whether there are any steps finer than one step
% at 8-bit precision. You can request several ranges by listing them, e.g.
% [1 128]. You'll get a graph for each. Each graph will use the specified
% number of luminances.
% o.loadIdentityCLUT = whether to load an identity into CLUT.
%o.luminances=128; % Photometer takes 3 s/luminance. 128 luminances is enough for a pretty graph.
o.luminances=512; % Photometer takes 3 s/luminance. 512 luminances for a prettier graph.
o.reciprocalOfFraction= 32; % List one or more, e.g. 1, 128, 256.
o.vBase=.5;
o.nBits=10; % Enable this to get 10-bit, 10.7-bit, 11-bit or 16-bit performance.
o.useShuffle=0; % Randomize order of luminances to prevent systematic effect of changing background.
o.loadIdentityCLUT=1; % 1 is fine. This nullifies the CLUT.
o.useFractionOfScreen=0; % For debugging, reduce our window to expose Command Window.
o.useVulkan=0; % Force use of Vulkan display backend.
if IsOctave
pkg load statistics;
end
if ~exist('regress') %#ok<EXIST>
error('Required regress() function from Statistics toolbox missing!');
end
KbReleaseWait;
%% BEGIN
BackupCluts;
aborted = 0;
% Default to ColorCal2 - meterType 7:
if nargin < 1 || isempty(meterType)
meterType = 7;
end
if meterType > 0
% Open the colorimeter, or abort if not possible:
CMCheckInit(meterType);
o.usePhotometer = 1;
else
o.usePhotometer = 0; % Simulate 8-bit rendering.
end
try
%% OPEN WINDOW
screen = max(Screen('Screens'));
screenBufferRect = Screen('Rect',screen);
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask','General','UseRetinaResolution');
PsychImaging('AddTask','General','NormalizedHighresColorRange',1);
switch o.nBits
case 8
% Do nothing, this is the default.
case 10
PsychImaging('AddTask','General','EnableNative10BitFramebuffer');
case 10.7
PsychImaging('AddTask','General','EnableNative11BitFramebuffer');
case 11
PsychImaging('AddTask','General','EnableNative16BitFloatingPointFramebuffer');
if ~IsOSX
% Linux and Windows generally only provide fp16 under Vulkan:
o.useVulkan = 1;
end
case 16
PsychImaging('AddTask','General','EnableNative16BitFramebuffer');
end
if o.useVulkan
PsychImaging('AddTask','General','UseVulkanDisplay');
end
if ~o.useFractionOfScreen
window = PsychImaging('OpenWindow',screen,[1 1 1]);
else
window = PsychImaging('OpenWindow',screen,[1 1 1],round(o.useFractionOfScreen*screenBufferRect));
end
HideCursor(window);
windowInfo=Screen('GetWindowInfo',window);
switch(windowInfo.DisplayCoreId)
case 'AMD'
displayEngineVersion=windowInfo.GPUMinorType/10;
switch(round(displayEngineVersion))
case 4
displayGPUFamily='Evergreen';
% Examples:
% AMD Radeon HD-5770 used in MacPro 2010.
case 5
displayGPUFamily='Northern Islands';
case 6
displayGPUFamily='Southern Islands';
% Examples:
% AMD Radeon R9 M290X used in MacBook Pro (Retina, 15-inch, Mid 2015)
% AMD Radeon R9 M370X used in iMac (Retina 5K, 27-inch, Late 2014)
case 8
displayGPUFamily='Sea Islands';
case 10
displayGPUFamily='Volcanic Islands';
case 11
displayGPUFamily='Polaris';
case 12
displayGPUFamily='Vega';
otherwise
displayGPUFamily='Unknown';
end
fprintf('Display driver: %s version %.1f, "%s"\n',...
windowInfo.DisplayCoreId,displayEngineVersion,displayGPUFamily);
end
% Compare default CLUT with identity.
gammaRead=Screen('ReadNormalizedGammaTable',window);
maxEntry=size(gammaRead,1)-1;
gamma=repmat(((0:maxEntry)/maxEntry)',1,3);
delta=gammaRead(:,2)-gamma(:,2);
fprintf('Difference between identity and read-back of default CLUT: mean %.9f, sd %.9f\n',mean(delta),std(delta));
% Load identity hw lut once, as it can interfere with some precision modes
% if done each flip, at least if PTB high precision hacks are used on the
% AMD DC display driver:
if o.loadIdentityCLUT
Screen('LoadNormalizedGammaTable',window,gamma);
Screen('Flip',window);
end
%% MEASURE LUMINANCE AT EACH VALUE
% Each measurement takes several seconds.
clear data d
t=GetSecs;
nData=length(o.reciprocalOfFraction);
for iData=1:nData
d.fraction=1/o.reciprocalOfFraction(iData);
v=max(0,o.vBase);
if v+d.fraction>=1
v=1-d.fraction;
end
newOrder=1:o.luminances;
if o.useShuffle
% Random order to prevent systematic effect of changing background.
newOrder=Shuffle(newOrder);
end
% Repeat first measurement at end to estimate background drift.
newOrder(end+1)=newOrder(1); %#ok<*AGROW>
for ii=1:length(newOrder)
i=newOrder(ii);
g=v+d.fraction*(i-1)/(o.luminances-1);
assert(g<=1+eps)
d.v(i)=g;
CLUTMapSize = 256;
gamma=repmat(((0:CLUTMapSize-1)/(CLUTMapSize-1))',1,3);
Screen('FillRect',window, [g, g, g]);
Screen('TextSize',window, 30);
msg1=sprintf('Series %d of %d.\n',iData,nData);
msg2=sprintf('%d luminances spanning 1/%.0f of digital range at %.2f.\n',o.luminances,1/d.fraction,d.v(1));
msg3=sprintf('Luminance %d of %d.\n',ii,length(newOrder));
msg4='Now measuring luminances. Will then analyze and plot the results.\n';
DrawFormattedText(window, [msg1 msg2 msg3 msg4], 10, 30);
Screen('Flip',window);
if o.usePhotometer
if ii==1
% Give the photometer time to react to new luminance.
WaitSecs(8);
else
if o.useShuffle
WaitSecs(8);
else
WaitSecs(2);
end
end
L = GetLuminance(meterType); % Read photometer
else
% No photometer. Simulate 8-bit performance.
L=200*round(g*255)/255;
L=L-20*ii/512; % Simulate background drift.
end
if ii<length(newOrder)
d.L(i)=L;
else
% Last iteration: Estimate and remove background drift.
d.deltaL=L-d.L(newOrder(1));
nn=newOrder(1:o.luminances);
d.L(nn)=d.L(nn)-d.deltaL*(0:o.luminances-1)/o.luminances;
fprintf('Corrected for luminance drift of %.2f%% during measurement.\n',100*d.deltaL/d.L(1));
end
if KbCheck
aborted = 1;
break;
end
end
data(iData)=d;
if KbCheck
aborted = 1;
break;
end
end
t=(GetSecs-t)/length(data)/o.luminances;
catch
if meterType > 0
% Close the colorimeter:
CMClose(meterType);
end
sca;
psychrethrow(psychlasterror);
end
if meterType > 0
% Close the colorimeter:
CMClose(meterType);
end
sca;
close all;
if aborted
fprintf('\n\nMeasurement script aborted. Bye!\n\n');
return;
end
%% ANALYZE RESULTS
% We compare our data with the prediction for n-bit precision, and choose
% the best fit.
clear sd
for iData=1:length(data)
d=data(iData);
nMin=log2(1/d.fraction);
vShift=-1:0.01:1;
sd=ones(16,length(vShift))*nan;
for bits=nMin:16
for j=1:length(vShift)
white=2^bits-1;
v=d.v+vShift(j)*2^-bits;
q=floor(v*white)/white;
x=[ones(size(d.v))' q'];
[~, ~, ~, ~, stats]=regress(d.L',x);
sd(bits,j)=sqrt(stats(4));
end
fprintf('Modelbits= %d, minsd = %f\n', bits, min(sd(bits,:)))
end
minsd=min(min(sd));
[bits, jShift]=find(sd==minsd,1);
j=round((length(vShift)+1)/2);
fprintf('Best fit: min sd %.3f at %d bits %.4f shift.\n', minsd, bits, vShift(jShift));
data(iData).model.bits=bits;
data(iData).model.vShift=vShift(jShift);
data(iData).model.sd=sd(bits,jShift);
white=2^bits-1;
v=d.v+vShift(jShift)*2^-bits;
q=floor(v*white)/white;
x=[ones(size(d.v')) q'];
b=regress(d.L',x);
data(iData).model.b=b;
data(iData).model.v=linspace(d.v(1),d.v(end),1000);
v=data(iData).model.v+vShift(jShift)*2^-bits;
q=floor(v*white)/white;
data(iData).model.L=b(1)+b(2)*q;
end
%% PLOT RESULTS
o.luminances=length(data(1).L);
if exist('t','var')
fprintf('Photometer took %.1f s/luminance.\n',t);
end
figure;
set(gcf,'PaperPositionMode','auto');
set(gcf,'Position',[0 300 320*length(data) 320]);
for iData=1:length(data)
d=data(iData);
subplot(1,length(data),iData)
plot(d.v,d.L);
hold on
plot(d.model.v,d.model.L,'g');
legend('data',sprintf('%.0f-bit model',d.model.bits));
legend('boxoff');
hold off
ha=gca;
if IsOctave
set(ha, 'ticklength', [0.02, 0.025]);
else
ha.TickLength(1)=0.02;
end
title(sprintf('%.0f luminances spanning 1/%.0f of digital range',o.luminances,1/d.fraction));
xlabel('Pixel value');
ylabel('Luminance (cd/m^2)');
pbaspect([1 1 1]);
computer=Screen('Computer');
name=[computer.machineName ','];
yLim=ylim;
dy=-0.06*diff(yLim);
y=yLim(2)+dy;
xLim=xlim;
x=xLim(1)+0.03*diff(xLim);
text(x,y,name);
name='';
name=sprintf('%suse%iBits, ',name,o.nBits);
y=y+dy;
text(x,y,name);
name='';
if o.loadIdentityCLUT
name=[name 'loadIdentityCLUT, '];
end
if ~o.usePhotometer
name=[name 'simulating 8 bits, '];
end
name=sprintf('%sshift %.2f, ',name,d.model.vShift);
name=sprintf('%smodel sd %.2f%%, ',name,100*d.model.sd/d.L(1));
y=y+dy;
text(x,y,name);
name='';
name=sprintf('%s%d luminances span a %.0f-bit prec. step at %.3f',name,o.luminances,log2(1/d.fraction),d.v(1));
y=y+dy;
text(x,y,name);
end
folder=fileparts(mfilename('fullpath'));
cd(folder);
name=computer.machineName;
name=sprintf('%s-Use%iBits',name,o.nBits);
if ~o.usePhotometer
name=[name '-Simulating8Bits'];
end
if o.useShuffle
name=[name '-Shuffled'];
end
name=sprintf('%s-Luminances%d',name,o.luminances);
name=sprintf('%s-Span%.0fBitStep',name,log2(1/d.fraction));
name=sprintf('%s-At%.3f',name,d.v(1));
name=sprintf('%s-modelBits%.0f',name,d.model.bits);
name=strrep(name,'''',''); % Remove quote marks.
name=strrep(name,' ',''); % Remove spaces.
save([name '.mat'],'data'); % Save data as MAT file.
print(gcf,'-dpng',[name,'.png']); % Save figure as png file.
if IsOctave
hgsave(gcf,[name,'.fig'],'-v7'); % Save figure as fig file.
else
savefig(gcf,[name,'.fig'],'compact'); % Save figure as fig file.
end
end
%% GET LUMINANCE
function L = GetLuminance(meterType)
% L = GetLuminance(o.usePhotometer)
% Measure luminance (cd/m^2).
if 0
% Old code from Denis:
% Cambridge Research Systems ColorCAL II XYZ Colorimeter.
% http://www.crsltd.com/tools-for-vision-science/light-measurement-display-calibation/colorcal-mkii-colorimeter/nest/product-support
persistent CORRMAT
if isempty(CORRMAT)
% Get ColorCAL II XYZ correction matrix (CRT=1; WLED LCD=2; OLED=3):
CORRMAT=ColorCal2('ReadColorMatrix');
end
s = ColorCal2('MeasureXYZ');
XYZ = CORRMAT(4:6,:) * [s.x s.y s.z]';
else
% New code: Uses selectable measurement device. In case of ColorCal2, uses
% 2nd correction matrix rows 1:3 instead of Denis rows 4:6! My ColorCal2
% does not contain a meaningful matrix in rows 4:6.
XYZ = MeasXYZ(meterType);
end
L = XYZ(2);
end
|