File: DKLDemo.m

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (210 lines) | stat: -rw-r--r-- 8,942 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
% DKLDemo
%
% Demonstrates the DKL color space routines.
% Produces a picture of the DKL isoluminant plane
% in a figure window.  This picture is not calibrated.
%
% You can chooose the image size and what cone/luminance
% data you want to use to define the space.
%
% 4/9/05	dhb		Wrote it.
% 5/26/11   dhb     Updated to use PTB3TestCal, SetSensorColorSpace
%           dhb     Remove OS9 option.
% 4/13/17   dhb     Switch default cone type to Stockman-Sharpe.
%                   Demonstrate conversion from cone contrast coords to
%                   DKL, code at end.
% 8/21/21   dhb     Added a few more checks and comments.  Made some of the
%                   numbers less generic, on the view that testing is more
%                   robust in such cases.
% 4/13/22   dhb     Fixed unfinished comment, added numerical check of
%                   agreement at end.

%% Clear
clear; close all

%% Define parameters.  Image size should be an odd number.
imageSize = 513;
whichCones = 'StockmanSharpe';

% Load spectral data and set calibration file
switch (whichCones)
	case 'SmithPokorny'
		load T_cones_sp
		load T_xyzJuddVos
		S_cones = S_cones_sp;
		T_cones = T_cones_sp;
		T_Y = 683*T_xyzJuddVos(2,:);
		S_Y = S_xyzJuddVos;
		T_Y = SplineCmf(S_Y,T_Y,S_cones);
	case 'StockmanSharpe'
		load T_cones_ss2
		load T_ss2000_Y2
		S_cones = S_cones_ss2;
		T_cones = T_cones_ss2;
		T_Y = 683*T_ss2000_Y2;
		S_Y = S_ss2000_Y2;
		T_Y = SplineCmf(S_Y,T_Y,S_cones);
    otherwise
        error('Unknown cone fundamentals specified')
end
cal = LoadCalFile('PTB3TestCal');
calLMS = SetSensorColorSpace(cal,T_cones,S_cones);
calLMS = SetGammaMethod(calLMS,1);
calLum = SetSensorColorSpace(cal,T_Y,S_Y);

%% Define background.  Here we just take the
% something near the monitor mid-point.
bgLMS = PrimaryToSensor(calLMS,[0.4 0.5 0.3]');

%% Basic transformation matrices.  ComputeDKL_M() does the work.
%
% Get matrix that transforms between incremental
% cone coordinates and DKL coordinates 
% (Lum, RG, S).
[M_ConeIncToDKL,LMLumWeights] = ComputeDKL_M(bgLMS,T_cones,T_Y);
M_DKLToConeInc = inv(M_ConeIncToDKL);

%% Find incremental cone directions corresponding to DKL  directions.
lumConeInc = M_DKLToConeInc*[1 0 0]';
rgConeInc = M_DKLToConeInc*[0 1 0]';
sConeInc = M_DKLToConeInc*[0 0 1]';

% These directions should (and do last I checked) have unit pooled cone contrast,
% the way that the matrix M is scaled by ComputeDKL_M.
lumPooled = norm(lumConeInc ./ bgLMS);
rgPooled = norm(rgConeInc ./ bgLMS);
sPooled = norm(sConeInc ./ bgLMS);
fprintf('Pooled cone contrast for unit DKL directions with initial scaling: %0.3g %0.3g %0.3g\n', ...
    lumPooled, rgPooled, sPooled);

% The pooled cone contrast scaling convention implemented by ComputeDKL_M
% is fine, but one might also want to scale in some other way, say so that
% a unit step was just within the monitor gamut.  Here we compute such
% scale factors for the rg and s directions.  The work is done by routine
% MaximizeGamutContrast.
bgPrimary = SensorToPrimary(calLMS,bgLMS);
rgPrimaryInc = SensorToPrimary(calLMS,rgConeInc+bgLMS)-bgPrimary;
sPrimaryInc = SensorToPrimary(calLMS,sConeInc+bgLMS)-bgPrimary;
rgScale = MaximizeGamutContrast(rgPrimaryInc,bgPrimary);
sScale = MaximizeGamutContrast(sPrimaryInc,bgPrimary);
rgConeInc = 0.95*rgScale*rgConeInc;
sConeInc = 0.95*sScale*sConeInc;

% If we find the RGB values corresponding to unit excursions
% in rg and s directions, we should find a) that the luminance
% of each is the same and b) that they are all within gamut.
% In gamut means that the primary coordinates are all bounded
% within [0,1].
rgPlusLMS = bgLMS+rgConeInc;
rgMinusLMS = bgLMS-rgConeInc;
sPlusLMS = bgLMS+sConeInc;
sMinusLMS = bgLMS-sConeInc;
rgPlusPrimary = SensorToPrimary(calLMS,rgPlusLMS);
rgMinusPrimary = SensorToPrimary(calLMS,rgMinusLMS);
sPlusPrimary = SensorToPrimary(calLMS,sPlusLMS);
sMinusPrimary = SensorToPrimary(calLMS,sMinusLMS);
if (any([rgPlusPrimary(:) ; rgMinusPrimary(:) ; ...
		sPlusPrimary(:) ; sMinusPrimary(:)] < 0))
	fprintf('Something out of gamut low that shouldn''t be.\n');
end
if (any([rgPlusPrimary(:) ; rgMinusPrimary(:) ; ...
		sPlusPrimary(:) ; sMinusPrimary(:)] > 1))
	fprintf('Something out of gamut high that shouldn''t be.\n');
end
bgLum = PrimaryToSensor(calLum,bgPrimary);
rgPlusLum = PrimaryToSensor(calLum,rgPlusPrimary);
rgMinusLum = PrimaryToSensor(calLum,rgMinusPrimary);
sPlusLum = PrimaryToSensor(calLum,sPlusPrimary);
sMinusLum = PrimaryToSensor(calLum,sMinusPrimary);
lums = sort([bgLum rgPlusLum rgMinusLum sPlusLum sMinusLum]);
fprintf('Luminance range in isoluminant plane is %0.2f to %0.2f\n',...
	lums(1), lums(end));

%% Make a picture
%
% Now we have the coordinates we desire, make a picture of the
% isoluminant plane.
[X,Y] = meshgrid(0:imageSize-1,0:imageSize-1);
X = X-(imageSize-1)/2; Y = Y-(imageSize-1)/2;
X = X/max(abs(X(:))); Y = Y/max(abs(Y(:)));
XVec = reshape(X,1,imageSize^2); YVec = reshape(Y,1,imageSize^2);
imageLMS = bgLMS*ones(size(XVec))+rgConeInc*XVec+sConeInc*YVec;
[imageRGB,badIndex] = SensorToSettings(calLMS,imageLMS);
bgRGB = SensorToSettings(calLMS,bgLMS);
imageRGB(:,find(badIndex == 1)) = bgRGB(:,ones(size(find(badIndex == 1))));
rPlane = reshape(imageRGB(1,:),imageSize,imageSize);
gPlane = reshape(imageRGB(2,:),imageSize,imageSize);
bPlane = reshape(imageRGB(3,:),imageSize,imageSize);
theImage = zeros(imageSize,imageSize,3);
theImage(:,:,1) = rPlane;
theImage(:,:,2) = gPlane;
theImage(:,:,3) = bPlane;

% Show the image for illustrative purposes
figure; clf; image(theImage);

%% What if we want to convert between cone contrast coordinates and DKL?

% Also, let's optionally scale the cones so that they sum to luminance
SCALE_LMSUMTOLUM = false;
if (SCALE_LMSUMTOLUM)
    T_cones(1,:) = T_cones(1,:)*LMLumWeights(1);
    T_cones(2,:) = T_cones(2,:)*LMLumWeights(2);
end

% Specify LMS coordiantes of the background.  Here equal LMS excitations
% but you can try different values here.  Note that if you're mucking
% with the scaling of the cones, then holding this vector fixed across
% two different cone scalings is not holding the actual background fixed.
bgLMS = [0.2 0.3 0.25]';

% Compute matrix that goes into DKL
[M_ConeIncToDKL,LMLumWeights] = ComputeDKL_M(bgLMS,T_cones,T_Y);

% Set up modulations that should isolate each DKL direction.  Isochromatic
% is easy, because that is equal contrasts for all three cone types.
theBaseConeContrast = 0.5;
theIsochromaticConeContrast = [theBaseConeContrast theBaseConeContrast theBaseConeContrast]';
M_ConeContrastToConeInc = diag(bgLMS);
M_ConeIncToConeContrast = diag(1./bgLMS);
theIsochromaticDKL = M_ConeIncToDKL*M_ConeContrastToConeInc*theIsochromaticConeContrast;

% Red green is a little tricker.  We need red/green increments that have
% equal and opposite luminances.  Since increment depends on the
% background, we have to work backwards from increments to the appropriate
% contrasts.  These will not be equal to each other, in general.
relMContrast = bgLMS(1)/bgLMS(2)*LMLumWeights(1)/LMLumWeights(2);
meanRedGreenAbsConeContrast = mean([theBaseConeContrast relMContrast*theBaseConeContrast]);
theRedGreenConeContrast = [theBaseConeContrast -relMContrast*theBaseConeContrast 0]';
theRedGreenDKL = M_ConeIncToDKL*M_ConeContrastToConeInc*theRedGreenConeContrast;

% The third DKL isolating direction is also easy, because it's just S cone
% contrast.
theBYConeContrast = [0 0 theBaseConeContrast]';
theBYDKL = M_ConeIncToDKL*M_ConeContrastToConeInc*theBYConeContrast;

% Choose a scaling matrix so that the first DKL length is the luminance
% contrast, the second is the average of the LM contrasts for the
% isoluminant red-green direciton, and the third is the S cone contrast.
% You may have detected by now that there are lots of ways to choose the
% scaling of these directions. 
M_scaleDKLForContrastInput = diag(1./[theIsochromaticDKL(1)/theBaseConeContrast theRedGreenDKL(2)/meanRedGreenAbsConeContrast theBYDKL(3)/theBaseConeContrast]);
M_coneContrastToDKL = M_scaleDKLForContrastInput*M_ConeIncToDKL*M_ConeContrastToConeInc;

% Test full scaling.  This should be diagonal with the first and third
% entries equal to the base contrast and the middle one equal to the mean
% of the isoluminant red green cone contrasts.
theDKLFromConeContrasts = M_coneContrastToDKL*[theIsochromaticConeContrast theRedGreenConeContrast theBYConeContrast];

% Get the isolating directions.
M_DKLToConeContrast = inv(M_coneContrastToDKL);

% Check that regression on the isolating directions does what we expect.
% The output here should match what we get just above, in variable
% theDKLFromConeConrasts.  And it does to excellent tolerance.
theDKLFromConeContrastsCheck = M_DKLToConeContrast\[theIsochromaticConeContrast theRedGreenConeContrast theBYConeContrast];
if (max(abs(theDKLFromConeContrastsCheck(:)-theDKLFromConeContrasts(:))) > 1e-6)
    error('Unexpected difference in check values');
end