1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
|
function MinimalisticOpenGLDemo(multiSample, imagingPipeline, checkerBoardTexture, doAccumulate, hdr)
% MinimalisticOpenGLDemo([multiSample][, imagingPipeline][, checkerBoardTexture][, doAccumulate=0][, hdr=0])
%
% This demo demonstrates use of OpenGL commands in a Matlab script to
% perform some very boring 3D rendering in Psychtoolbox.
%
% It shows a single static ball, lit with default lighting and exactly one
% light source. This is meant to demonstrate the minimum amount of code to
% draw anything visible with perspective projection. It also draws a static
% teapot and some little box with a cone as roof.
%
% Then it waits for a keyboard press.
%
% After that it demonstrates how to do basic texture mapping and animation:
% It loads a JPEG image of the earths surface from the filesystem, using
% Matlabs imread() function, then converts the image into a Psychtoolbox
% texture using Screen('MakeTexture'), then provides this texture as a
% standard OpenGL compatible texture using Screen('GetOpenGLTexture').
% This standard texture is applied to a sphere using standard OpenGL commands
% and finally the sphere is drawn as a rotating object in a simple animation
% loop. --> You'll see a rotating earth.
%
% Stop the demo by pressing any key and it will finish.
%
% The optional parameter 'multiSample' allows to enable anti-aliased
% drawing with 'multiSample' samples per pixel on hardware that supports
% this.
%
% The optional parameter 'imagingPipeline' allows (if set to non-zero
% value) to enable the PTB image processing pipeline, just to test that as
% well.
%
% The optional parameter 'checkerBoardTexture' allows (if set to non-zero
% value) to apply a checkerboard texture to the spinning sphere, instead of
% a "earth surface texture image". This demonstrates algorithmic texture
% generation and the use of trilinear mipmap filtering to improve image
% quality for high frequency edges and such...
%
% The optional parameter 'doAccumulate' allows to demonstrate an additional
% motion blur effect by use of the accumulation buffer. If you set the
% imagingPipeline flag to zero and doAccumulate to 1, then use of the -
% nowadays deprecated and extremely slow - accumulation buffer is
% demonstrated. If you set imagingPipeline to 1 and doAccumulate to 2 then
% a new fast technique is demonstrated. Both achieve the same visual effect
% with very similar code, but the latter technique is well supported on
% recent hardware, much more flexible and much faster.
%
% The optional parameter 'hdr' if set to 1 will set the window up for display
% on a HDR ("High Dynamic Range") display device if your system setup allows
% this. See "help PsychHDR" for system requirements and setup instructions.
%
% Notable implementation details regarding use of OpenGL:
%
% The call InitializeMatlabOpenGL at the top of the script initializes the
% Matlab-OpenGL toolbox and enables the 3D gfx support in Psychtoolbox to
% allow proper interfacing between the OpenGL toolbox and Psychtoolbox.
%
% After this call, all OpenGL functions are made available to Matlab with
% the same - or a very similar - calling syntax as in the C programming
% language. OpenGL constants are made available in a format that is optimized
% for Matlab, where the first underscore is replaced by a dot, e.g.,
% GL.DEPTH_TEST, instead of the C-style GL_DEPTH_TEST.
%
% In order to execute OpenGL 3D drawing commands to draw 3D stims into a
% Psychtoolbox Onscreen- or offscreen window, one needs to call
% Screen('BeginOpenGL', windowPtr). After OpenGL drawing and before
% execution of standard Screen() commands, one needs to call
% Screen('EndOpenGL', windowPtr) to tell Psychtoolbox that 3D drawing is
% finished.
%
% Some OpenGL functions that return complex parameters to Matlab are not
% yet implemented - this is work in progress. The performance will be also
% lower than when coding in a compiled language like C++ or C -- that's the
% Matlab tax you'll have to pay ;-)
%
% The toolbox checks after execution of each single OpenGL command if it
% caused some error. It aborts your script with an error message, if so. If
% you are happy with your code and want to disable these error checks in
% order to squeeze out a bit more speed, you can call
% InitializeMatlabOpenGL(0,0) instead of InitializeMatlabOpenGL at the top
% of your script. This will disable automatic error-checking. You can then
% use the commands gluErrorString or glGetError to perform manual error-checks
% in your code if you want.
%
% Apart from that, use of OpenGL for Matlab is the same as OpenGL for the C
% programming language. If you are used to OpenGL coding in C, it should be
% a zero effort transition to code in Matlab+PTB. If you don't know OpenGL
% then get yourself one of the many good books or visit one of the many
% OpenGL tutorials on the internet.
%
% The OpenGL Red Book is a great introduction and reference for OpenGL
% programming. Release 1.0 is available online, later releases can be
% purchased in any good book store:
%
% http://www.glprogramming.com/red/
%
% For more infos, code samples, tutorials, online documentation, go to:
%
% http://www.opengl.org
%
% The earth surface JPEG-image is taken from the Linux/KDE application
% kdeworldclock. kdeworldclock and its components are licensed under
% GPL.
% 15-Dec-2005 -- created (RFM)
% 21-Jan-2006 -- Modified for use with OpenGL-Psychtoolbox (MK)
% 16-Feb-2006 -- Modified for use with new MOGL (MK)
% 05-Mar-2006 -- Cleaned up for public consumption (MK)
% 19-Apr-2006 -- Derived from SpinningCubeDemo (MK)
% 05-May-2006 -- Added some demo code for basic texture mapping (MK)
% 04-Aug-2015 -- Use modern way to setup imaging pipeline (MK)
if nargin < 1
multiSample = 0;
end
if isempty(multiSample)
multiSample = 0;
end
if nargin < 2
imagingPipeline = [];
end
if isempty(imagingPipeline)
imagingPipeline = 0;
end
if imagingPipeline > 0
imagingPipeline = 1;
else
imagingPipeline = 0;
end
if nargin < 3
checkerBoardTexture = [];
end
if isempty(checkerBoardTexture)
checkerBoardTexture = 0;
end
if nargin < 4
doAccumulate = [];
end
if isempty(doAccumulate)
doAccumulate = 0;
end
if nargin < 5 || isempty(hdr)
hdr = 0;
end
% Need imagingPipeline for HDR:
if hdr
imagingPipeline = 1;
end
if (doAccumulate >= 2) && (imagingPipeline == 0)
error('You must set the imagingPipeline flag to 1 if you set doAccumulate to 2!');
end
if (doAccumulate == 1) && (imagingPipeline > 0)
error('You must set the imagingPipeline flag to 0 if you set doAccumulate to 1!');
end
if doAccumulate == 1
doAccum = 2;
else
doAccum = 0;
end
% Is the script running in OpenGL Psychtoolbox? Abort, if not.
PsychDefaultSetup(1);
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper: A special setting of doAccum == 2 will
% enable OpenGL accumulation buffer support if code wants to use the
% glAccum() function.
InitializeMatlabOpenGL([],[],[], doAccum);
if imagingPipeline > 0
% Use imaging pipeline in minimal configuration with a virtual framebuffer:
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask', 'General', 'UseVirtualFramebuffer');
if hdr
PsychImaging('AddTask', 'General', 'EnableHDR');
end
end
% Open a double-buffered full-screen window on the main displays screen.
[win , winRect] = PsychImaging('OpenWindow', screenid, 0, [], [], [], 0, multiSample);
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
% Get the aspect ratio of the screen:
ar=winRect(4)/winRect(3);
% Setup default drawing color to yellow (R,G,B)=(1,1,0). This color only
% gets used when lighting is disabled - if you comment out the call to
% glEnable(GL.LIGHTING).
glColor3f(1,1,0);
% Turn on OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading. The color values
% at the vertices (corners) of polygons are computed with the Phong lighting
% model and linearly interpolated accross the inner area of the polygon from
% the vertex colors. The Phong lighting model is a coarse approximation of
% real world lighting with ambient light reflection (undirected isotropic light),
% diffuse light reflection (position wrt. light source matters, but observer
% position doesn't) and specular reflection (ideal mirror reflection for highlights).
%
% The model does not take any object relationships into account: Any effects
% of (self-)occlusion, (self-)shadowing or interreflection of light between
% objects are ignored. If you need shadows, interreflections and global illumination
% you will either have to learn advanced OpenGL rendering and shading techniques
% to implement your own realtime shadowing and lighting models, or
% compute parts of the scene offline in some gfx-package like Maya, Blender,
% Radiance or 3D Studio Max...
%
% If you want to do any shape from shading studies, it is very important to
% understand the difference between a local lighting model and a global
% illumination model!!!
glEnable(GL.LIGHTING);
% Enable the first local light source GL.LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources,
% GL.LIGHT0, ..., GL.LIGHT7
glEnable(GL.LIGHT0);
% Enable proper occlusion handling via depth tests:
glEnable(GL.DEPTH_TEST);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL.PROJECTION);
glLoadIdentity;
% Field of view is 25 degrees from line of sight. Objects closer than
% 0.1 distance units or farther away than 100 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25,1/ar,0.1,100);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% Our point lightsource is at position (x,y,z) == (1,2,3)...
glLightfv(GL.LIGHT0,GL.POSITION,[ 1 2 3 0 ]);
if hdr
% Set HDR metadata to an average scene luminance of 100 nits, and a peak luminance
% of 1000 nits, keep color gamut etc. at display native gamut etc.:
PsychHDR('HDRMetadata', win, 0, 100, 1000);
% We need to disable color clamping to [0; 1] range for vertex colors, or our
% light source intensities will only reach up to 1 nit, which is darkness:
glClampColorARB(GL.CLAMP_VERTEX_COLOR_ARB, GL.FALSE);
glLightfv(GL.LIGHT0,GL.AMBIENT,[ 10 10 10 0 ]);
glLightfv(GL.LIGHT0,GL.DIFFUSE,[ 100 100 100 0 ]);
glLightfv(GL.LIGHT0,GL.SPECULAR,[ 1000 1000 1000 0 ]);
end
% Cam is located at 3D position (3,3,5), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
% The OpenGL coordinate system is a right-handed system as follows:
% Default origin is in the center of the display.
% Positive x-Axis points horizontally to the right.
% Positive y-Axis points vertically upwards.
% Positive z-Axis points to the observer, perpendicular to the display
% screens surface.
gluLookAt(3,3,5,0,0,0,0,1,0);
% Set background clear color to 'black' (R,G,B,A)=(0,0,0,0):
glClearColor(0,0,0,0);
% Clear out the backbuffer: This also cleans the depth-buffer for
% proper occlusion handling: You need to glClear the depth buffer whenever
% you redraw your scene, e.g., in an animation loop. Otherwise occlusion
% handling will screw up in funny ways...
glClear;
% Draw a predefined (built-in) object, the Utah teapot at a size of 0.5
% units.
glutSolidTeapot(0.5);
% Translate by +2 units in z-direction:
glTranslatef(0, 0, +2);
% Change the color - or better: The light reflection properties of the
% material - of the following objects to greenish. We only change ambient and
% diffuse reflection properties. The color for specular reflection is left
% to its default of "white":
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ 0.0 0.6 0.0 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ 0.0 0.6 0.0 1 ]);
% Draw a solid sphere of radius 0.25
glutSolidSphere(0.25, 100, 100);
% From the position of the sphere, go 1.5 units into positive x-direction
% and -1 units back in z-direction:
glTranslatef(1.5, 0, -1);
% Change the color - or better: The light reflection properties of the
% material of the following objects - to blue. We only change ambient and
% diffuse reflection properties. The color for specular reflection is left
% to its default of "white":
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ 0.0 0.0 1.0 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ 0.0 0.0 1.0 1 ]);
% Draw some solid cube:
glutSolidCube(0.25);
% Translate upwards (positve y-direction):
glTranslatef(0, 0.125, 0);
% Rotate our frame of reference - and thereby all objects drawn after this
% line - by -90 degrees around the current x-axis (1,0,0):
glRotatef(-90, 1, 0, 0);
% change material reflection properties again to red:
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ 1.0 0.0 0.0 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ 1.0 0.0 0.0 1 ]);
% And draw some cone on top of the cube:
glutSolidCone(0.25, 0.25, 100, 100);
% Finish OpenGL rendering into PTB window. This will switch back to the
% standard 2D drawing functions of Screen and will check for OpenGL errors.
Screen('EndOpenGL', win);
% Show rendered image at next vertical retrace:
Screen('Flip', win);
% Wait for keyboard press.
KbWait;
% Wait for keyboard release:
while KbCheck; end;
% Now we draw a solid, spinning textured sphere of radius 1.0.
if ~checkerBoardTexture
% Prepare texture to by applied to the sphere: Load and create it from an image file:
myimg = imread([PsychtoolboxRoot 'PsychDemos/OpenGL4MatlabDemos/earth_512by256.jpg']);
else
% Apply regular checkerboard pattern as texture:
bv = zeros(16);
wv = ones(16);
myimg = double(repmat([bv wv; wv bv],32,32) > 0.5) * 255;
end
% Make a special power-of-two texture from the image by setting the enforcepot - flag to 1
% when calling 'MakeTexture'. GL_TEXTURE_2D textures (==power of two textures) are
% especially easy to handle in OpenGL. If you use the enforcepot flag, it is important
% that the texture image 'myimg' has a width and a height that is exactly a power of two,
% otherwise this command will fail: Allowed values for image width and height are, e.g.,
% 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 and on some high-end gfx cards
% 4096 pixels. Our example image has a size of 512 by 256 pixels...
% Psychtoolbox also supports rectangular textures of arbitrary size, so called
% GL_TEXTURE_RECTANGLE_2D textures. These are normally used for Screen's drawing
% commands, but they are more difficult to handle in standard OpenGL code...
mytex = Screen('MakeTexture', win, myimg, [], 1, 0);
% Retrieve OpenGL handles to the PTB texture. These are needed to use the texture
% from "normal" OpenGL code:
[gltex, gltextarget] = Screen('GetOpenGLTexture', win, mytex);
% Begin OpenGL rendering into onscreen window again:
Screen('BeginOpenGL', win);
% Enable texture mapping for this type of textures...
glEnable(gltextarget);
% Bind our texture, so it gets applied to all following objects:
glBindTexture(gltextarget, gltex);
% Textures color texel values shall modulate the color computed by lighting model:
glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.MODULATE);
% Clamping behaviour shall be a cyclic repeat:
glTexParameteri(gltextarget, GL.TEXTURE_WRAP_S, GL.REPEAT);
glTexParameteri(gltextarget, GL.TEXTURE_WRAP_T, GL.REPEAT);
% Set up minification and magnification filters. This is crucial for the thing to work!
if checkerBoardTexture
% Checkerboard pattern: This has high frequency edges, so we'll
% need trilinear filtering for a good look:
glTexParameteri(gltextarget, GL.TEXTURE_MIN_FILTER, GL.LINEAR_MIPMAP_LINEAR);
% Need mipmapping for trilinear filtering --> Create mipmaps:
if ~isempty(strfind(glGetString(GL.EXTENSIONS), 'GL_EXT_framebuffer_object'))
% Ask the hardware to generate all depth levels automatically:
glGenerateMipmapEXT(GL.TEXTURE_2D);
else
% No hardware support for auto-mipmap-generation. Do it "manually":
% Use GLU to compute the image resolution mipmap pyramid and create
% OpenGL textures ouf of it: This is slow, compared to glGenerateMipmapEXT:
r = gluBuild2DMipmaps(gltextarget, GL.LUMINANCE, size(myimg,1), size(myimg,2), GL.LUMINANCE, GL.UNSIGNED_BYTE, uint8(myimg));
if r>0
error('gluBuild2DMipmaps failed for some reason.');
end
end
else
% Regular image: Bilinear filtering will do for this demo...
glTexParameteri(gltextarget, GL.TEXTURE_MIN_FILTER, GL.LINEAR);
end
glTexParameteri(gltextarget, GL.TEXTURE_MAG_FILTER, GL.LINEAR);
% Set basic "color" of object to white to get a nice interaction between the texture
% and the objects lighting:
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ 1 1 1 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ 1 1 1 1 ]);
if hdr
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ .1 .1 .1 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ .4 .4 .4 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.SPECULAR, [ 1 1 1 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.SHININESS, 100);
end
% Reset our virtual camera and all geometric transformations:
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% Reposition camera (see above):
gluLookAt(0,0,5,0,0,0,0,1,0);
% Create the sphere as a quadric object. This is needed because the simple glutSolidSphere
% command does not automatically assign texture coordinates for texture mapping onto a sphere:
% mysphere is a handle that you need to pass to all quadric functions:
mysphere = gluNewQuadric;
% Enable automatic generation of texture coordinates for our quadric object:
gluQuadricTexture(mysphere, GL.TRUE);
% Apply some static rotation to the object to have a nice view onto it:
% This basically rotates our spinning earth into an orientation that
% roughly matches the real orientation in space...
% First -90 degrees around its x-axis...
glRotatef(-90, 1,0,0);
% ...then 18 degrees around its new (rotated) y-axis...
glRotatef(18,0,1,0);
% Now for our little animation loop. This loop will run until a key is pressed.
% It rotates the object by a few degrees (actually: Applies a rotation transformation
% to all objects to be drawn) and then redraws it at its new orientation:
while ~KbCheck
% Clear out backbuffer and depth buffer:
glClear;
% Increment rotation angle around new z-Axis (0,0,1) by 0.1 degrees:
glRotatef(0.1, 0, 0, 1);
% Draw the textured sphere-quadric of radius 0.7. As OpenGL has to approximate
% all curved surfaces (i.e. spheres) with flat triangles, we tell it to resolve
% the sphere into 1000 slices in elevation and 1000 sectors in azimuth: Higher values
% provide a better approximation, but they take longer to draw. Live is full of
% trade-offs...
gluSphere(mysphere, 0.7, 1000, 1000);
% Could do a textured cylinder by uncommenting the following line:
% gluCylinder(mysphere, 1.0, 1.0, 1.0, 360, 100);
% Finish OpenGL rendering into PTB window. This will switch back to the
% standard 2D drawing functions of Screen and will check for OpenGL errors.
Screen('EndOpenGL', win);
% Show new image at next retrace:
Screen('Flip', win);
% Start OpenGL rendering again after flip for drawing of next frame...
Screen('BeginOpenGL', win);
% Ready for next draw loop iteration...
end;
KbReleaseWait;
% Demonstrate simple motion blur effect, once implemented via slow
% accumulation buffer, once implemented via fast imaging pipeline based
% method:
if doAccumulate
% Control amount of blur with blurf in range 0 to 1:
blurf = 0.9;
% Fast Offscreenwindow/FBO/alpha-blending based method on modern GPU's?
if (doAccumulate == 2) && (imagingPipeline > 0)
% Yes: Perform one-time setup of pipeline:
Screen('EndOpenGL', win);
% We'll render each single image to the offscreen window 'wint',
% with proper multiSample anti-aliasing enabled:
wint = Screen('OpenOffscreenWindow', win, [0 0 0 255], [], [], [], multiSample);
% If wint is allocated with multiSample anti-aliasing, then we need
% to perform a manual multisample-resolve copy operation later down
% in the code. For this we need an additional 'winres' window which
% has the same format as wint, but is not multiSample'd:
if multiSample > 0
% Allocate multisample resolve target window winres:
winres = Screen('OpenOffscreenWindow', win, [0 0 0 255]);
else
% No need for manual resolve, set winres == wint:
winres = wint;
end
% We create another offscreen window as 'accum'ulation buffer
% work-alike, with a pixeldepths of 64 bits, ie., 16 bit floating
% point resolution per color channel, so we have sufficient
% numerical precision for a nice blur-by-averaging effect:
accum = Screen('OpenOffscreenWindow', win, [0 0 0 255], [], 64);
% We enable alpha-blending for all drawing ops into this
% accum-ulation window, so we can control the weighted average by
% selection of the alpha-values:
Screen('Blendfunction', accum, GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
% Prepare rendering into wint:
Screen('BeginOpenGL', wint);
else
% Standard rendering into backbuffer: wint == win:
wint = win;
end
ts = GetSecs;
fc = 0;
while ~KbCheck
% Increment framecounter:
fc = fc + 1;
% Clear out backbuffer and depth buffer:
glClear;
% Increment rotation angle around new z-Axis (0,0,1) by 1.1 degrees:
glRotatef(1.1, 0, 0, 1);
% Draw the textured sphere-quadric of radius 0.7. As OpenGL has to approximate
% all curved surfaces (i.e. spheres) with flat triangles, we tell it to resolve
% the sphere into 100 slices in elevation and 100 sectors in azimuth: Higher values
% provide a better approximation, but they take longer to draw. Live is full of
% trade-offs...
gluSphere(mysphere, 0.7, 100, 100);
% Could do a textured cylinder by uncommenting the following line:
% gluCylinder(mysphere, 1.0, 1.0, 1.0, 360, 100);
% Standard accumulation buffer blur?
if doAccumulate == 1
% Yes, old-school stuff...
if fc > 1
% Compute new content of accumulation buffer as:
% newvalue = blurf * oldvalue + (1-blurf) * currentrenderedimage;
glAccum(GL.MULT, blurf);
glAccum(GL.ACCUM, 1-blurf);
else
% On first frame, init the accumulation buffer with first image:
glAccum(GL.LOAD, 1);
end
% Copyback new blurred image in accumulation buffer to regular backbuffer
% for display:
glAccum(GL.RETURN, 1);
Screen('EndOpenGL', wint);
else
% New style: Same as above, but with drawtexture and
% alpha-blending for accumulation-blur:
Screen('EndOpenGL', wint);
% If 'wint' is multiSample'd, we need to perform a manual
% multisample-resolve operation into winres by use of the
% 'CopyWindow' function:
if multiSample > 0
Screen('CopyWindow', wint, winres);
end
if fc > 1
Screen('DrawTexture', accum, winres, [], [], [], 0, (1-blurf));
else
Screen('DrawTexture', accum, winres, [], [], [], 0, 1);
end
% Copy current blurred accum-ulation buffer window back into
% framebuffer of onscreen win-dow for display:
Screen('DrawTexture', win, accum, [], [], [], 0);
end
% Show new image at next retrace:
Screen('Flip', win);
% Start OpenGL rendering again after flip for drawing of next frame...
Screen('BeginOpenGL', wint);
% Ready for next draw loop iteration...
end;
fprintf('Average framerate for motion blur is %f Hz.\n', fc / (GetSecs - ts));
end
% Done with the drawing loop:
% Delete our sphere object:
gluDeleteQuadric(mysphere);
% Unselect our texture...
glBindTexture(gltextarget, 0);
% ... and disable texture mapping:
glDisable(gltextarget);
% End of OpenGL rendering...
Screen('EndOpenGL', win);
% Close onscreen window and release all other ressources:
sca;
% Well done!
return
|