1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
function MorphTextureDemo(dotson, normalson, stereomode, usefastoffscreenwindows)
% function MorphTextureDemo([dotson][, normalson][,stereomode][, usefastoffscreenwindows])
%
% MorphTextureDemo -- Demonstrates use of "moglmorpher" for fast morphing
% and rendering of 3D shapes *and* textures. See "help moglmorpher" for
% info on moglmorphers purpose and capabilities.
%
% This demo will load two morpheable shapes from OBJ files and two
% textures, then morph them continously into each other, using a simple
% sine-function to define the timecourse of the morph.
%
% Control keys and their meaning: 'a' == Zoom out by moving object away
% from viewer. 'z' == Zoom in by moving object close to viewer. 'k' and 'l'
% == Rotate object around axis. 'ESC' == Quit demo.
%
% Options:
%
% dotson = If set to 0 (default), just show surface. If set to 1, some dots
% are plotted to visualize the vertices of the underlying mesh. If set to
% 2, the mesh itself is superimposed onto the shape. If set to 3 or 4, then
% the projected vertex 2D coordinates are also visualized in a standard
% Matlab figure window.
%
% normalson = If set to 1, then the surface normal vectors will get
% visualized as small green lines on the surface.
%
% stereomode = n. For n>0 this activates stereoscopic rendering - The shape
% is rendered from two slightly different viewpoints and one of
% Psychtoolbox's built-in stereo display algorithms is used to present the
% 3D stimulus. This is very preliminary so it doesn't work that well yet.
%
% usefastoffscreenwindows = If set to 0 (default), work on any graphics
% card. If you have recent hardware, set it to 1. That will enable support
% for fast offscreen windows - and a much faster implementation of shape
% morphing.
%
% This demo and the morpheable OBJ shapes were contributed by Dr. Quoc C.
% Vuong, MPI for Biological Cybernetics, Tuebingen, Germany.
morphnormals = 1;
global win;
% Is the script running in OpenGL Psychtoolbox?
AssertOpenGL;
% Should per pixel lighting via OpenGL shading language be used? This doesnt work
% well yet.
perpixellighting = 0;
% Some default settings for rendering flags:
if nargin < 1 || isempty(dotson)
dotson = 0; % turn reference dots: off(0), on (1) or show reference lines (2)
end
dotson %#ok<NOPRT>
if nargin < 2 || isempty(normalson)
normalson = 0; % turn reference dots: off(0), on (1) or show reference lines (2)
end
normalson %#ok<NOPRT>
if nargin < 3 || isempty(stereomode)
stereomode = 0;
end;
stereomode %#ok<NOPRT>
if nargin < 4 || isempty(usefastoffscreenwindows)
usefastoffscreenwindows = 0;
end
usefastoffscreenwindows %#ok<NOPRT>
% Response keys: Mapping of keycodes to keynames.
KbName('UnifyKeyNames');
closer = KbName('a');
farther = KbName('z');
quitkey = KbName('ESCAPE');
rotateleft = KbName('l');
rotateright = KbName('k');
% Load OBJs. This will define topology and use of texcoords and normals:
% One can call LoadOBJFile() multiple times for loading multiple objects.
basepath = [fileparts(which(mfilename)) '/'];
objs = [ LoadOBJFile([basepath 'texblob01.obj']) LoadOBJFile([basepath 'texblob02.obj']) ];
% Find the screen to use for display:
screenid=max(Screen('Screens'));
% Disable Synctests for this simple demo:
oldskip = Screen('Preference','SkipSyncTests', 2);
% Setup Psychtoolbox for OpenGL 3D rendering support and initialize the
% mogl OpenGL for Matlab wrapper. We need to do this before the first call
% to any OpenGL function. Set debug level to zero -> Faster, but no error checking:
InitializeMatlabOpenGL(0,0);
% Open a double-buffered full-screen window: Everything is left at default
% settings, except stereomode:
if dotson~=3 && dotson~=4
rect = [];
else
rect = [0 0 500 500];
end;
if usefastoffscreenwindows
[win , winRect] = Screen('OpenWindow', screenid, 0, rect, [], [], stereomode, [], kPsychNeedFastOffscreenWindows);
else
[win , winRect] = Screen('OpenWindow', screenid, 0, rect, [], [], stereomode);
end
% Setup texture mapping:
% Load and create textures in Psychtoolbox:
basepath = [ PsychtoolboxRoot 'PsychDemos' filesep ];
texname = [basepath 'konijntjes1024x768blur.jpg'];
texture = imread(texname);
texid(1) = Screen('MakeTexture', win, texture);
texname = [basepath 'konijntjes1024x768.jpg'];
texture = imread(texname);
texid(2) = Screen('MakeTexture', win, texture);
% Swap (u,v) <-> (v,u) to account for the transposed images read via Matlab imread():
texcoords(2,:) = objs{1}.texcoords(1,:);
texcoords(1,:) = 1 - objs{1}.texcoords(2,:);
gltextarget = GL.TEXTURE_RECTANGLE_EXT;
% Rectangle texture: We need to rescale our texcoords as they are made for
% power-of-two textures, not rectangle textures:
texcoords(1,:) = texcoords(1,:) * size(texture,1);
texcoords(2,:) = texcoords(2,:) * size(texture,2);
% Reset moglmorpher:
moglmorpher('reset');
% Add the OBJS to moglmorpher for use as morph-shapes:
for i=1:size(objs,2)
objs{i}.texcoords = texcoords; % Add modified texture coords.
meshid(i) = moglmorpher('addMesh', objs{i}); %#ok<AGROW,NASGU>
end
% Output count of morph shapes:
count = moglmorpher('getMeshCount') %#ok<NOPRT,NASGU>
% Setup the OpenGL rendering context of the onscreen window for use by
% OpenGL wrapper. After this command, all following OpenGL commands will
% draw into the onscreen window 'win':
Screen('BeginOpenGL', win);
if perpixellighting==1
% Load a GLSL shader for per-pixel lighting, built a GLSL program out of it...
shaderpath = [PsychtoolboxRoot '/PsychDemos/OpenGL4MatlabDemos/GLSLDemoShaders/'];
glsl=LoadGLSLProgramFromFiles([shaderpath 'Pointlightshader'],1);
% ...and activate the shader program:
glUseProgram(glsl);
end;
% Setup texture mapping for our morphed texture:
glEnable(gltextarget);
% Choose texture application function: It shall modulate the light
% reflection properties of the the objects surface:
glTexEnvfv(GL.TEXTURE_ENV,GL.TEXTURE_ENV_MODE,GL.MODULATE);
% Get the aspect ratio of the screen, we need to correct for non-square
% pixels if we want undistorted displays of 3D objects:
ar=winRect(4)/winRect(3);
% Turn on OpenGL local lighting model: The lighting model supported by
% OpenGL is a local Phong model with Gouraud shading.
glEnable(GL.LIGHTING);
% Enable the first local light source GL.LIGHT_0. Each OpenGL
% implementation is guaranteed to support at least 8 light sources.
glEnable(GL.LIGHT0);
% Enable proper occlusion handling via depth tests:
glEnable(GL.DEPTH_TEST);
% Define the light reflection properties by setting up reflection
% coefficients for ambient, diffuse and specular reflection:
glMaterialfv(GL.FRONT_AND_BACK,GL.AMBIENT, [ 0.5 0.5 0.5 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.DIFFUSE, [ .7 .7 .7 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.SPECULAR, [ 0.2 0.2 0.2 1 ]);
glMaterialfv(GL.FRONT_AND_BACK,GL.SHININESS,12);
% Make sure that surface normals are always normalized to unit-length,
% regardless what happens to them during morphing. This is important for
% correct lighting calculations:
glEnable(GL.NORMALIZE);
% Set projection matrix: This defines a perspective projection,
% corresponding to the model of a pin-hole camera - which is a good
% approximation of the human eye and of standard real world cameras --
% well, the best aproximation one can do with 3 lines of code ;-)
glMatrixMode(GL.PROJECTION);
glLoadIdentity;
% Field of view is +/- 25 degrees from line of sight. Objects close than
% 0.1 distance units or farther away than 200 distance units get clipped
% away, aspect ratio is adapted to the monitors aspect ratio:
gluPerspective(25.0,1/ar,0.1,200.0);
% Setup modelview matrix: This defines the position, orientation and
% looking direction of the virtual camera:
glMatrixMode(GL.MODELVIEW);
glLoadIdentity;
% Setup position of lightsource wrt. origin of world:
% Pointlightsource at (20 , 20, 20)...
glLightfv(GL.LIGHT0,GL.POSITION,[ 20 20 20 0 ]);
% Setup emission properties of the light source:
% Emits white (1,1,1,1) diffuse light:
glLightfv(GL.LIGHT0,GL.DIFFUSE, [ 1 1 1 1 ]);
% Emits white (1,1,1,1) specular light:
glLightfv(GL.LIGHT0,GL.SPECULAR, [ 1 1 1 1 ]);
% There's also some weak ambient light present:
glLightfv(GL.LIGHT0,GL.AMBIENT, [ 0.1 0.1 0.1 1 ]);
% Set size of points for drawing of reference dots
glPointSize(3.0);
glColor3f(0,0,1);
% Set thickness of reference lines:
glLineWidth(2.0);
% Add z-offset to reference lines, so they do not get occluded by surface:
glPolygonOffset(0, -5);
glEnable(GL.POLYGON_OFFSET_LINE);
% Initialize amount and direction of rotation for our slowly spinning,
% morphing objects:
theta=0;
rotatev=[ 0 0 1 ];
% Initialize morph vector:
w = [ 0 1 ];
% Setup initial z-distance of objects:
zz = 20.0;
ang = 0.0; % Initial rotation angle
% Half eye separation in length units for quick & dirty stereoscopic
% rendering. Our way of stereo is not correct, but it makes for a
% nice demo. Figuring out proper values is not too difficult, but
% left as an exercise to the reader.
eye_halfdist=3;
% Finish OpenGL setup and check for OpenGL errors:
Screen('EndOpenGL', win);
% Compute initial morphed shape for next frame, based on initial weights:
moglmorpher('computeMorph', w, morphnormals);
% Compute initial morphed texture and get standard OpenGL texture handle and
% target from Psychtoolbox for use of result with MOGL:
[morphtexid, gltexid, gltextarget] = moglmorpher('morphTexture', win, w, texid);
% Retrieve duration of a single monitor flip interval: Needed for smooth
% animation.
ifi = Screen('GetFlipInterval', win);
% Initially sync us to the VBL:
vbl=Screen('Flip', win);
% Some stats...
tstart=vbl;
framecount = 0;
waitframes = 1;
% Animation loop: Run until key press or one minute has elapsed...
t = GetSecs;
while ((GetSecs - t) < 60)
% Switch to OpenGL rendering for drawing of next frame:
Screen('BeginOpenGL', win);
% Bind morphed texture for rendering:
glBindTexture(gltextarget, gltexid);
% Left-eye cam is located at 3D position (-eye_halfdist,0,zz), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
glLoadIdentity;
gluLookAt(-eye_halfdist, 0, zz, 0, 0, 0, 0, 1, 0);
% Draw into image buffer for left eye:
Screen('EndOpenGL', win);
Screen('SelectStereoDrawBuffer', win, 0);
Screen('BeginOpenGL', win);
% Clear out the depth-buffer for proper occlusion handling:
glClear(GL.DEPTH_BUFFER_BIT);
% Call our subfunction that does the actual drawing of the shape (see below):
drawShape(ang, theta, rotatev, dotson, normalson);
% Stereo rendering requested?
if (stereomode > 0)
% Yes! We need to render the same object again, just with a different
% camera position, this time for the right eye:
% Right-eye cam is located at 3D position (+eye_halfdist,0,zz), points upright (0,1,0) and fixates
% at the origin (0,0,0) of the worlds coordinate system:
glLoadIdentity;
gluLookAt(+eye_halfdist, 0, zz, 0, 0, 0, 0, 1, 0);
% Draw into image buffer for right eye:
Screen('EndOpenGL', win);
Screen('SelectStereoDrawBuffer', win, 1);
Screen('BeginOpenGL', win);
% Clear out the depth-buffer for proper occlusion handling:
glClear(GL.DEPTH_BUFFER_BIT);
% Call subfunction that does the actual drawing of the shape (see below):
drawShape(ang, theta, rotatev, dotson, normalson)
end;
% Finish OpenGL rendering into Psychtoolbox - window and check for OpenGL errors.
Screen('EndOpenGL', win);
% For the fun of it: Draw morphed texture into a corner as an overlay:
Screen('DrawTexture', win, morphtexid, [], ScaleRect(Screen('Rect', morphtexid), 0.33, 0.33))
% Tell Psychtoolbox that drawing of this stim is finished, so it can optimize
% drawing:
Screen('DrawingFinished', win);
% Now that all drawing commands are submitted, we can do the other stuff before
% the Flip:
% Calculate rotation angle of object for next frame:
theta=mod(theta+0.1, 360);
rotatev=rotatev+0.0001*[ sin((pi/180)*theta) sin((pi/180)*2*theta) sin((pi/180)*theta/5) ];
rotatev=rotatev/sqrt(sum(rotatev.^2));
% Compute simple morph weight vector for next frame:
w(1)=(sin(framecount / 100 * 3.1415 * 2) + 1)/2;
w(2)=1-w(1);
% Compute morphed shape for next frame, based on new weight vector:
moglmorpher('computeMorph', w, morphnormals);
% Compute morphed texture and get standard OpenGL texture handle and
% target from Psychtoolbox for use of result with MOGL:
[morphtexid, gltexid, gltextarget] = moglmorpher('morphTexture', win, w, texid);
if 0
% Test morphed geometry readback:
mverts = moglmorpher('getGeometry');
scatter3(mverts(1,:), mverts(2,:), mverts(3,:));
drawnow;
end
% Check for keyboard press:
[KeyIsDown, endrt, KeyCode] = KbCheck;
if KeyIsDown
if ( KeyIsDown==1 && KeyCode(closer)==1 )
zz=zz-0.1;
KeyIsDown=0;
end
if ( KeyIsDown==1 && KeyCode(farther)==1 )
zz=zz+0.1;
KeyIsDown=0;
end
if ( KeyIsDown==1 && KeyCode(rotateright)==1 )
ang=ang+1.0;
KeyIsDown=0;
end
if ( KeyIsDown==1 && KeyCode(rotateleft)==1 )
ang=ang-1.0;
KeyIsDown=0;
end
if ( KeyIsDown==1 && KeyCode(quitkey)==1 )
break;
end
end
% Update frame animation counter:
framecount = framecount + 1;
% We're done for this frame:
% Show rendered image 'waitframes' refreshes after the last time
% the display was updated and in sync with vertical retrace:
vbl = Screen('Flip', win, vbl + (waitframes - 0.5) * ifi);
%Screen('Flip', win, 0, 0, 2);
end
vbl = Screen('Flip', win);
% Calculate and display average framerate:
fps = framecount / (vbl - tstart) %#ok<NOPRT,NASGU>
% Reset moglmorpher:
moglmorpher('reset');
% Close onscreen window and release all other ressources:
%Screen('Flip', win);
sca;
% Reenable Synctests after this simple demo:
Screen('Preference','SkipSyncTests', oldskip);
% Well done!
return
% drawShape does the actual drawing:
function drawShape(ang, theta, rotatev, dotson, normalson)
% GL needs to be defined as "global" in each subfunction that
% executes OpenGL commands:
global GL
global win
% Backup modelview matrix:
glPushMatrix;
% Setup rotation around axis:
glRotated(theta,rotatev(1),rotatev(2),rotatev(3));
glRotated(ang,0,1,0);
% Scale object by a factor of a:
a=0.1;
glScalef(a,a,a);
% Render current morphed shape via moglmorpher:
moglmorpher('render');
% Some extra visualizsation code for normals, mesh and vertices:
if (dotson == 1 || dotson == 3)
% Draw some dot-markers at positions of vertices:
% We disable lighting for this purpose:
glDisable(GL.LIGHTING);
% From all polygons, only their defining vertices are drawn:
glPolygonMode(GL.FRONT_AND_BACK, GL.POINT);
% Ask morpher to rerender the last shape:
moglmorpher('render');
% Reset settings for shape rendering:
glPolygonMode(GL.FRONT_AND_BACK, GL.FILL);
glEnable(GL.LIGHTING);
end;
if (dotson == 2)
% Draw connecting lines to visualize the underlying geometry:
% We disable lighting for this purpose:
glDisable(GL.LIGHTING);
% From all polygons, only their connecting outlines are drawn:
glPolygonMode(GL.FRONT_AND_BACK, GL.LINE);
% Ask morpher to rerender the last shape:
moglmorpher('render');
% Reset settings for shape rendering:
glPolygonMode(GL.FRONT_AND_BACK, GL.FILL);
glEnable(GL.LIGHTING);
end;
if (normalson > 0)
% Draw surface normal vectors on top of object:
glDisable(GL.LIGHTING);
% Green is a nice color for this:
glColor3f(0,1,0);
% Ask morpher to render the normal vectors of last shape:
moglmorpher('renderNormals', normalson);
% Reset settings for shape rendering:
glEnable(GL.LIGHTING);
glColor3f(0,0,1);
end;
if (dotson == 3 || dotson == 4)
% Compute and retrieve projected screen-space vertex positions:
vpos = moglmorpher('getVertexPositions', win);
% Plot the projected 2D points into a Matlab figure window:
vpos(:,2)=RectHeight(Screen('Rect', win)) - vpos(:,2);
plot(vpos(:,1), vpos(:,2), '.');
drawnow;
end;
% Restore modelview matrix:
glPopMatrix;
% Done, return to main-function:
return;
|