1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
|
function AdditiveBlendingForLinearSuperpositionTutorial(outputdevice, overlay, colorclut, doGainCorrection, useVulkan)
% AdditiveBlendingForLinearSuperpositionTutorial([outputdevice='None'][, overlay=1][, colorclut=0][, doGainCorrection=0][, useVulkan=0]);
%
% Illustrates use of floating point textures in combination with
% source-weighted additive alpha blending to create linear superpositions
% of image patches, in this case of two superimposed gratings. Due to the
% use of additive alpha-blending, you'll see that the two gratings will
% superimpose onto each other in a mathematically correct way -- pixel-wise
% addition/subtraction of luminance values. The demo uses a 32 bit floating
% point framebuffer on the latest hardware. This allows for an effective 23
% bits of precision in all math done and in the final stimuli - more than
% any display device in existence could resolve. On previous generation
% hardware (older than NVidia Geforce 8800 or ATI Radeon HD2000), alpha
% blending isn't supported in 32 bpc float precision. Therefore the demo
% will select 16 bpc floating point precision, where alpha blending works.
% This way the effective precision is 11 bits, a bit less than what special
% display devices can resolve. However, final gamma correction is done in
% full 23 bits precision, so you can make use of the extra bits for proper
% display linearization.
%
% The demo also demonstrates Psychtoolbox support for high precision
% display output devices, ie., display extenders, graphics cards and
% display modes that allow for luminance display with more than the
% standard 8 bits precision. By default the standard 8 bit framebuffer of
% standard graphics cards is demonstrated.
%
% However, by providing the first optional parameter 'outputdevice', you
% can select amongst all devices supported by PTB:
%
% 'NoneNoGamma' - Same as 'None': Use standard 8 bit framebuffer, but
% disable the gamma correction provided by PTB's imaging pipeline. This is
% usually not what you want, but it allows to test how much faster the
% display runs without gamma correction.
%
% 'PseudoGray' - PseudoGray display, also known as "Bit stealing". This
% technique allows to create the perception of up to 1786 different
% luminance levels on standard 8 bit graphics hardware by use of some
% clever color rendering trick. See "help CreatePseudoGrayLUT" for
% references and details.
%
% 'Native10Bit' - Enables the native 10 bpc framebuffer support on all supported
% GPUs. All gpus from AMD since ~2006, Intel since around ~2010 and NVidia since
% around ~2008 support this on Linux. This also works similar modern with NVidia
% Quadro and AMD Fire professional gpu's ounder MS-Windows.
%
% 'Native11Bit' - Enables the native ~11 bpc framebuffer support on some ATI
% Radeon X1xxx / HDxxx GPU's with DCE-8 to DCE-12 display engine when used under
% Linux. These GPU's do support ~11 bits per color channel when this special mode
% is used (11 bits red, 11 bits green, 10 bits blue).
%
% 'Native16Bit' - Enables the native up to 16 bpc framebuffer support on AMD
% GPU's when used under Linux with Vulkan display backend. While this activates
% a 16 bpc framebuffer, the precision of the video output signal depends on the
% specific gpu, connection and display. As of 2023, the "Sea Islands" AMD gpu
% family and later can output at most 12 bpc precision to suitable displays over
% HDMI or DisplayPort.
%
% 'Native16BitFloat' - Enable native 16 bit floating point (~11 bit linear)
% framebuffer support on suitable operating systems and graphics cards.
%
% 'VideoSwitcher' - Enable the Xiangrui Li et al. VideoSwitcher, a special
% type of video attenuator (see "help PsychVideoSwitcher") in standard
% "simple" mode.
%
% 'VideoSwitcherCalibrated' - Enable the Xiangrui Li et al. VideoSwitcher,
% but use the more complex (and more accurate?) mode with calibrated lookup
% tables (see "help PsychVideoSwitcher").
%
% 'Attenuator' - Enable support for standard Pelli & Zhang style video
% attenuators by use of lookup tables.
%
% Then we have support for the different modes of operation of the
% Cambridge Research Systems Bits++ box:
%
% 'Mono++' - Use 14 bit mono output mode, either with color index overlay
% (if the optional 2nd 'overlay' flag is set to 1, which is the default),
% or without color index overlay.
%
% 'Color++' - User 14 bits per color component mode.
%
% Then we have support for the different modes of operation of the
% VPixx Technologies DPixx (DataPixx) box:
%
% 'M16' - Use 16 bit mono output mode, either with color index overlay
% (if the optional 2nd 'overlay' flag is set to 1, which is the default),
% or without color index overlay.
%
% 'C48' - User 16 bits per color component mode.
%
%
% 'DualPipeHDR' - Use experimental output to dual-pipeline HDR display
% device.
%
%
% The third optional parameter 'colorclut' if provided, will use color
% lookup table based color correction / mapping, ie., mapping of luminance
% values to RGB values in the framebuffer - or intensity values if
% applicable. Any non-zero number will select a different CLUT. Look into
% the code for description. This just to demonstrate that you can use CLUT
% based color/intensity correction instead of simple power-law gamma
% correction if you want.
%
%
% The fourth optional parameter 'doGainCorrection' if provided and set to
% 1, will demonstrate use of display per-pixel gain correction, aka
% vignetting correction. It will modulate the brightness of each pixel with
% a gain factor, the gains increasing linearly from the left border to the
% right border of the display. See "help VignettingCorrectionDemo" for more
% details of this feature.
%
%
% The fifth optional parameter 'useVulkan' if provided and set to 1, will try
% to use a Vulkan based display backend, instead of the standard OpenGL based
% display backend. See "help PsychVulkan" for system requirements and caveats.
% You need to set useVulkan to 1 on Linux to get Native16Bit or Native16BitFloat
% mode on AMD graphics under Linux.
%
% The demo shows two superimposed sine wave gratings in the center of the
% screen. You can shift the 2nd grating up and down in subpixel steps by
% use of the cursor up-/down keys. You can change the contrast of the 2nd
% grating by use of the cursor left-/right keys. You can move the 2nd
% grating with the mouse, and rotate it clockwise or counterclockwise by
% pressing the mouse buttons. The keys 'i' and 'd' allow to change the
% "encoding gamma" factor used for the gamma correction algorithm. The ESC
% ape key ends the demo. Actually the demo performs some benchmark run for
% a few seconds after you've pressed ESC key, just to measure the speed of
% your graphics card in stimulus conversion.
%
% In 'VideoSwitcher' mode, it also draws some vertically moving greenish
% sync line just to show how to generate trigger signals on the
% VideoSwitcher device.
%
%
% Needs hardware with support for imaging pipeline (GLSL shaders and
% floating point framebuffers). Should work well on ATI Radeon X1000 and
% later, Geforce 6000 and later and even better on DirectX10 hardware like
% Radeon HD series and NVidia Geforce 8 / 9 series and later.
% History:
% 16.04.2007 Written (MK).
% 13.08.2008 Cleaned up, commented, more help text etc... (MK).
% 18.03.2013 Cleaned up, changed contrast of gratings to sensible 0.25 (MK).
% 26.06.2014 Also show off Native11Bits framebuffers on AMD (MK).
% 17.09.2014 Also show off Native16Bits framebuffers on AMD (MK).
% 10.07.2019 Also show off Native16BitFloat framebuffers (MK).
KbName('UnifyKeyNames');
UpArrow = KbName('UpArrow');
DownArrow = KbName('DownArrow');
LeftArrow = KbName('LeftArrow');
RightArrow = KbName('RightArrow');
esc = KbName('ESCAPE');
space = KbName('space');
GammaIncrease = KbName('i');
GammaDecrease = KbName('d');
if nargin < 1 || isempty(outputdevice)
outputdevice = 'None';
end
if nargin < 2 || isempty(overlay)
overlay = 1;
end
if nargin < 3 || isempty(colorclut)
colorclut = 0;
end
if nargin < 4 || isempty(doGainCorrection)
doGainCorrection = 0;
end
if nargin < 5 || isempty(useVulkan)
useVulkan = 0;
end
try
% This script calls Psychtoolbox commands available only in OpenGL-based
% versions of the Psychtoolbox. The Psychtoolbox command AssertPsychOpenGL will issue
% an error message if someone tries to execute this script on a computer without
% an OpenGL Psychtoolbox
AssertOpenGL;
% Get the list of screens and choose the one with the highest screen number.
% Screen 0 is, by definition, the display with the menu bar. Often when
% two monitors are connected the one without the menu bar is used as
% the stimulus display. Chosing the display with the highest dislay number is
% a best guess about where you want the stimulus displayed.
screenNumber = max(Screen('Screens'));
% Open a double-buffered fullscreen window with a gray (intensity =
% 0.5) background and support for 16- or 32 bpc floating point framebuffers.
PsychImaging('PrepareConfiguration');
% Shall Vulkan be used as display backend?
if useVulkan
PsychImaging('AddTask', 'General', 'UseVulkanDisplay');
end
lrect = [];
rrect = [];
% This will try to get 32 bpc float precision if the hardware supports
% simultaneous use of 32 bpc float and alpha-blending. Otherwise it
% will use a 16 bpc floating point framebuffer for drawing and
% alpha-blending, but a 32 bpc buffer for gamma correction and final
% display. The effective stimulus precision is reduced from 23 bits to
% about 11 bits when a 16 bpc float buffer must be used instead of a 32
% bpc float buffer:
PsychImaging('AddTask', 'General', 'FloatingPoint32BitIfPossible');
switch outputdevice
case {'Mono++'}
if overlay
% Use Mono++ mode with color index overlay support:
PsychImaging('AddTask', 'General', 'EnableBits++Mono++OutputWithOverlay');
else
% Use Mono++ mode without color overlay:
PsychImaging('AddTask', 'General', 'EnableBits++Mono++Output');
end
case {'Color++'}
% Use Color++ mode: We select averaging between even/odd
% pixels, aka mode 2:
PsychImaging('AddTask', 'General', 'EnableBits++Color++Output', 2);
overlay = 0;
case {'M16'}
if overlay
% Use M16 mode of Datapixx with color index overlay support:
PsychImaging('AddTask', 'General', 'EnableDataPixxM16OutputWithOverlay');
else
% Use M16 mode of Datapixx without color overlay:
PsychImaging('AddTask', 'General', 'EnableDataPixxM16Output');
end
case {'C48'}
% Use C48 mode of Datapixx: We select averaging between even/odd
% pixels, aka mode 2:
PsychImaging('AddTask', 'General', 'EnableDataPixxC48Output', 2);
overlay = 0;
case {'Attenuator'}
% Use the standard Pelli & Zhang style attenuator driver. This
% uses a simple 3 row (for the three color channels Red, Green,
% Blue) by n slots lookup table to map wanted intensity values
% to RGB triplets for driving the attenuator. Any number of
% slots up to 2^16 is supported, for a max precision of 16 bits
% luminance. As we don't have a calibrated table in this demo,
% we simply load a 2048 slot table (11 bit precision) with
% random values:
PsychImaging('AddTask', 'General', 'EnableGenericHighPrecisionLuminanceOutput', uint8(rand(3, 2048) * 255));
overlay = 0;
case {'VideoSwitcher'}
% Select simple opmode of VideoSwitcher, where only the btrr
% blue-to-red ratio from the global configuration file is used
% for calibrated output:
PsychImaging('AddTask', 'General', 'EnableVideoSwitcherSimpleLuminanceOutput', [], 1);
% Switch the device to high precision luminance mode:
PsychVideoSwitcher('SwitchMode', screenNumber, 1);
overlay = 0;
case {'VideoSwitcherCalibrated'}
% Again the videoswitcher, but in lookup-table calibrated mode,
% where additionally to the BTRR, a lookup table is loaded:
PsychImaging('AddTask', 'General', 'EnableVideoSwitcherCalibratedLuminanceOutput', [], [], 1);
% Switch the device to high precision luminance mode:
PsychVideoSwitcher('SwitchMode', screenNumber, 1);
overlay = 0;
case {'PseudoGray'}
% Enable bitstealing aka PseudoGray shader:
PsychImaging('AddTask', 'General', 'EnablePseudoGrayOutput');
overlay = 0;
case {'Native10Bit'}
% Enable ATI GPU's 10 bit framebuffer under certain conditions
% (see help for this file):
PsychImaging('AddTask', 'General', 'EnableNative10BitFramebuffer');
overlay = 0;
case {'Native11Bit'}
% Enable ATI GPU's ~11 bit framebuffer under certain conditions
% (see help for this file):
PsychImaging('AddTask', 'General', 'EnableNative11BitFramebuffer');
overlay = 0;
case {'Native16Bit'}
% Enable AMD GPU's up to 16 bit framebuffer under certain conditions
% (see help for this file):
PsychImaging('AddTask', 'General', 'EnableNative16BitFramebuffer');
overlay = 0;
case {'Native16BitFloat'}
% Enable native 16 bit floating point framebuffer under certain conditions
% currently only known to work on NVidia GeForce 1000 and later on Windows-10:
PsychImaging('AddTask', 'General', 'EnableNative16BitFloatingPointFramebuffer');
overlay = 0;
case {'None'}
% No high precision output, just the plain 8 bit framebuffer,
% but with software gamma correction:
PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange');
overlay = 0;
case {'NoneNoGamma'}
% No high precision output, just the plain 8 bit framebuffer,
% even without gamma correction:
PsychImaging('AddTask', 'General', 'NormalizedHighresColorRange');
overlay = 0;
case {'DualPipeHDR'}
% Enable experimental dual display, dual pipeline HDR output:
% Handle single-screen vs. dual-screen output:
if length(Screen('Screens')) == 1
lrect = [0 0 600 600];
rrect = [601 0 1201 600];
end
% Request actual output mode:
PsychImaging('AddTask', 'General', 'EnableDualPipeHDROutput', min(Screen('Screens')), rrect);
overlay = 0;
otherwise
error('Unknown "outputdevice" provided.');
end
if doGainCorrection
% Request per pixel 2D gain correction for display:
PsychImaging('AddTask', 'AllViews', 'DisplayColorCorrection', 'GainMatrix');
end
% Do not use gamma correction in calibrated video switcher mode or no
% gamma mode -- wouldn't make sense in either of these:
if ~strcmp(outputdevice, 'NoneNoGamma')
if ~colorclut
% Choose method of color correction: 'SimpleGamma' is simple gamma
% correction of monochrome stims via power-law, ie., Lout = Lin ^ gamma.
PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'SimpleGamma');
doTheGamma =1;
else
% Use CLUT based color correction:
PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'LookupTable');
doTheGamma =0;
end
else
doTheGamma = 0;
end
%PsychImaging('AddTask', 'General', 'InterleavedLineStereo', 0);
% Finally open a window according to the specs given with above
% PsychImaging calls, clear it to a background color of 0.5 aka 50%
% luminance:
[w, wRect]=PsychImaging('OpenWindow', screenNumber, 0.5, lrect);
% Use of overlay in Bits++ box Mono++ mode or DPixx box M16 mode wanted?
if overlay
% Get overlay window handle: Drawing into this window will affect
% the overlay:
wo = PsychImaging('GetOverlayWindow', w);
Screen('Preference','TextAntiAliasing', 1);
Screen('Preference','TextAlphaBlending', 1);
else
wo = 0;
end
% Calibrated conversion driver for VideoSwitcher in use?
if strcmp(outputdevice, 'VideoSwitcherCalibrated')
% Tell the driver what luminance the background has. This allows
% for some quite significant speedups in stimulus conversion:
PsychVideoSwitcher('SetBackgroundLuminanceHint', w, 0.5);
end
% Assign a CLUT for color correction?
if colorclut
% Yes.
switch colorclut
case 1
% Create a standard colormap() 3 channel RGB CLUT for a nice effect:
clut = colormap;
case 2
% A 1024 slots CLUT with inverted green channel:
clut = ((0:1/1023:1)' * ones(1, 3));
clut(:, 2) = 1 - clut(:, 2);
case 3
% A simple inverted one channel (luminance) map with only two slots
% for linearly interpolated values inbetween:
clut = 1 - (0:1)';
case 4
% Extreme amplification CLUT:
clut = 3800 * (0:1)';
otherwise
clut = colormap;
end
% Assign the CLUT:
PsychColorCorrection('SetLookupTable', w, clut);
end
if doTheGamma
% We set initial encoding gamma to correct for a display with a
% decoding gamma of 2.0 -- A good tradeoff, given most displays are
% somewhere between 1.8 and 2.2:
gamma = 1 / 2.0;
PsychColorCorrection('SetEncodingGamma', w, gamma);
else
gamma = 1;
end
% From here on, all color values should be specified in the range 0.0
% to 1.0 for displayable luminance values. Values outside that range
% are allowed as intermediate results, but the final stimulus image
% should be in range 0-1, otherwise result will be undefined.
[width, height]=Screen('WindowSize', w);
if doGainCorrection
% Test support for display gain correction:
gainmatrix = meshgrid(1:width, 1:height) / width * 1.5;
PsychColorCorrection('SetGainMatrix', w, gainmatrix);
end
% Enable alpha blending. We switch it into additive mode which takes
% source alpha into account:
Screen('BlendFunction', w, GL_SRC_ALPHA, GL_ONE);
inc=0.25;
% Compute one frame of a static grating: It has a total size of third
% the screen size:
s=min(width, height) / 6;
[x,y]=meshgrid(-s:s-1, -s:s-1);
angle=30*pi/180; % 30 deg orientation.
f=0.01*2*pi; % cycles/pixel
a=cos(angle)*f;
b=sin(angle)*f;
% Build grating texture:
m=sin(a*x+b*y);
tex=Screen('MakeTexture', w, m,[],[], 2);
% Show the gray background:
Screen('Flip', w);
i=0;
rotate = 0;
yd =0;
show2nd = 1;
if overlay
Screen('TextSize', wo, 18);
else
Screen('TextSize', w, 18);
end
% Center mouse on stimulus display, then make mouse cursor invisible:
[cx, cy] = RectCenter(wRect);
SetMouse(cx, cy, w);
HideCursor(screenNumber);
framecount = 0;
tstart = GetSecs;
% Animation loop:
while 1
Screen('DrawTexture', w, tex, [], [], [], [], 0.25);
i=i+rotate;
[x,y,buttons]=GetMouse(w);
[x,y] = RemapMouse(w, 'AllViews', x, y);
if any(buttons)
if buttons(1)
i=i+0.1;
end
if buttons(2)
i=i-0.1;
end
end
if show2nd
dstRect=CenterRectOnPoint(Screen('Rect', tex), x, y+yd);
Screen('DrawTexture', w, tex, [], dstRect, i, [], inc);
end
[d1, d2, keycode]=KbCheck; %#ok<*ASGLU>
if d1
if keycode(UpArrow)
yd=yd-0.1;
end
if keycode(DownArrow)
yd=yd+0.1;
end
if keycode(LeftArrow) && inc >= 0.001
inc=inc-0.001;
end
if keycode(RightArrow) && inc <= 0.999
inc=inc+0.001;
end
% Change of encoding gamma?
if keycode(GammaIncrease) && doTheGamma
gamma = min(gamma+0.001, 1.0);
PsychColorCorrection('SetEncodingGamma', w, gamma);
end
if keycode(GammaDecrease) && doTheGamma
gamma = max(gamma-0.001, 0.0);
PsychColorCorrection('SetEncodingGamma', w, gamma);
end
if keycode(space)
show2nd = 1-show2nd;
KbReleaseWait;
if show2nd
HideCursor(screenNumber);
else
ShowCursor(screenNumber);
end
end
if keycode(esc)
break;
end
end
txt0= 'At startup:\ngrating = sin(f*cos(angle)*x + f*sin(angle)*y); % Compute luminance grating matrix in Matlab.\n';
txt1= 'tex = Screen(''MakeTexture'', win, grating, [], [], 2); % Convert it into a 32bpc floating point texture.\n';
txt2= 'Screen(''BlendFunction'', win, GL_SRC_ALPHA, GL_ONE); % Enable additive alpha-blending.\n\nIn Display loop:\n\n';
txt3= 'Screen(''DrawTexture'', win, tex, [], [], [], [], 0.25); % Draw static grating at center of screen.\n';
txt4 = sprintf('Screen(''DrawTexture'', win, tex, [], [%i %i %i %i], %f, [], %f);\n', dstRect(1), dstRect(2), dstRect(3), dstRect(4), i, inc);
txt5 = sprintf('\nEncoding Gamma is %f --> Correction for a %f gamma display.', gamma, 1/gamma);
if overlay
% Need to manually clear the overlay window:
Screen('FillRect', wo, 0);
% Need to use text color values in 0-255 range, instead of
% normalized 0-1 range:
DrawFormattedText(wo, [txt0 txt1 txt2 txt3 txt4 txt5], 0, 20, 255);
else
DrawFormattedText(w, [txt0 txt1 txt2 txt3 txt4 txt5], 0, 20, 1.0);
end
framecount = framecount + 1;
% For the fun of it: Set a specific scanline to send a trigger
% signal for the VideoSwitcher. This does nothing if the driver for
% VideoSwitcher is not selected. We send out a trigger for 1 redraw
% cycle every 30 redraw cycles. The triggerline is placed at
% scanline 10 (for no special reason):
if mod(framecount, 30) == 0
PsychVideoSwitcher('SetTrigger', w, 10, 1);
end
% Show stimulus at next display retrace:
Screen('Flip', w);
end
% Done.
avgfps = framecount / (GetSecs - tstart);
fprintf('Average redraw rate in demo was %f Hz.\n', avgfps);
% Again, just to test conversion speed: A fast benchmark with sync of
% buffer swaps to retrace disabled -- Go as fast as you can!
nmaxbench = 300;
tstart = Screen('Flip', w);
for i=1:nmaxbench
Screen('Flip', w, 0, 2, 2);
end
tend = Screen('Flip', w);
fprintf('Average update rate in pipeline was %f Hz.\n', nmaxbench / (tend - tstart));
Screen('Preference','TextAntiAliasing', 1);
Screen('Preference','TextAlphaBlending', 0);
% We're done: Close all windows and textures:
sca;
catch %#ok<*CTCH>
%this "catch" section executes in case of an error in the "try" section
%above. Importantly, it closes the onscreen window if its open.
ShowCursor(screenNumber);
sca;
Screen('Preference','TextAntiAliasing', 1);
Screen('Preference','TextAlphaBlending', 0);
psychrethrow(psychlasterror);
end %try..catch..
if ~isempty(strfind(outputdevice, 'VideoSwitcher')) %#ok<STREMP>
% If VideoSwitcher was active, switch it back to standard RGB desktop
% display mode:
PsychVideoSwitcher('SwitchMode', screenNumber, 0);
end
% Restore gfx gammatables if needed:
RestoreCluts;
return;
|