1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
|
function BitsPlusCSFDemo(screenid, gamma, method, charttype)
% BitsPlusCSFDemo([screenid=max] [, gamma = 2.2][, method=0][, charttype=0])
%
% This demo utilizes the Psychtoolbox imaging pipeline. Therefore it won't
% work on gfx-hardware older than ATI Radeon X1000 or NVidia Geforce 6000.
%
% Demonstrates advantage of the 14 bpc Mono++ display mode, and similar high
% bit depths display modes over the standard 8 bpc display mode of standard
% graphics hardware. The demo displays either the Campbell-Robson CSF chart
% if you set 'charttype' == 0, or a linear intensity gradient, if you set
% 'charttype' == 1. By default, the CSF chart is shown.
%
% The optional 'method' argument selects among different display output
% modes:
%
% A 'method' of 0 outputs to a regular 8 bit framebuffer. This is the
% default, if no method argument is provided.
%
% A 'method' of 1 tries to utilize the native 10 bpc framebuffers of recent
% AMD/NVidia hardware.
%
% A 'method' of 2 uses a method known as "PseudoGray" or "Bitstealing" for
% output.
%
% In 'method' == 3, the Mono++ display mode of the Bits++ box is used.
%
% A 'method' == 4 uses the Xiangrui Li et al. "VideoSwitcher", video
% attenuator device.
%
% In 'method' == 5, the M16 display mode of the VPixx - DataPixx box is used.
%
% A 'method' of 6 tries to utilize the native ~11 bpc framebuffers of recent
% AMD hardware.
%
% A 'method' of 7 tries to utilize the native up to 16 bpc framebuffers of recent
% AMD hardware.
%
% A 'method' of 8 tries to utilize the native 16 bpc float framebuffers of recent
% hardware.
%
% The optional 'gamma' parameter allows to select the initial gamma value
% of your display to correct for. This can be changed interactively later
% on.
%
% The optional 'screenid' parameter allows to select the id of the output
% display on multi-display setups. By default, the secondary display is
% chosen.
%
% Keyboard control keys:
% ----------------------
%
% At each press of space key, the display alternates between a high bpc
% version and a 8 bpc version to hopefully show a perceptible difference in
% contrast resolution. The ESCape key exits the demo.
%
% The left- and right cursor keys allow you to change the gamma-correction
% setting. The demo starts with standard power-function gamma correction
% for a display with gamma 2.2, i.e., out = in ^ (1/gamma) with gamma =
% 2.2.
%
% This demo is derived from a similar demo (written in C) which is part of
% the sample code collection for Bits++ from Cambridge Research Systems
% support website. It mostly replicates that C sample, however there are
% small differences.
%
% The original description of the CSF chart seems to be in (not checked):
% Campbell, F. W. and Robson, J. G. (1968) Application of Fourier analysis
% to the visibility of gratings. Journal of Physiology (London) 197:
% 551-566.
%
%
% History:
% 16.4.2008 Written - Derived/Converted from CRS sample code (MK).
% 01.11.2008 Extended for pseudogray, videoswitcher and ati output, as well
% as for display of alternate luminance gradient (MK).
% 14.12.2009 Extended for DataPixx. (MK)
% 26.06.2014 Also show off Native11Bits framebuffers on AMD (MK).
% 17.09.2014 Also show off Native16Bits framebuffers on AMD (MK).
% 10.07.2019 Also show off Native16BitFloat framebuffers (MK).
global screenShot;
% Set this to 1 to store a "Screenshot" image of the final converted image
% to the global variable screenShot: For debugging only!
doScreenshot = 0;
% Assure the demo is running under PTB-3:
AssertOpenGL;
% Select screen with highest id for display by default:
if nargin < 1
screenid =[];
end
if isempty(screenid)
screenid = max(Screen('Screens'));
end
if nargin < 2
gamma = [];
end
if isempty(gamma)
% Start with a encoding gamma for a gamma 2.2 display. Most displays are
% somewhere around that point:
gamma = 2.2;
end
if nargin < 3
method = [];
end
if isempty(method)
method = 0;
end
if nargin < 4
charttype = [];
end
if isempty(charttype)
charttype = 0;
end
% Key mappings, unified across operating systems:
KbName('UnifyKeyNames');
GammaDecrease = KbName('LeftArrow');
GammaIncrease = KbName('RightArrow');
ToggleModes = KbName('space');
Escape = KbName('ESCAPE');
Screen('Preference', 'VisualDebugLevel', 0);
% Define requirements for onscreen window - Setup imaging pipeline:
PsychImaging('PrepareConfiguration');
% Want a full 32 bit floating point precision framebuffer:
% This will provide an effective resolution of 23 bits in the displayable
% luminance range -- Plenty of headroom for the up-to 16 bits output devices.
% Hardware older than NVidia Geforce 8000 or ATI Radeon HD 2000 won't be
% able to do alpha-blending at this mode though. Not an issue here, as we
% don't need alpha-blending...
PsychImaging('AddTask', 'General', 'FloatingPoint32Bit');
if method == 1
PsychImaging('AddTask', 'General', 'EnableNative10BitFramebuffer');
end
if method == 2
PsychImaging('AddTask', 'General', 'EnablePseudoGrayOutput');
end
if method == 3
% Want to use Mono++ mode: The appendix "WithOverlay" enables the color
% overlay in Mono++ mode, so we can display colorful text:
PsychImaging('AddTask', 'General', 'EnableBits++Mono++OutputWithOverlay');
end
if method == 4
PsychImaging('AddTask', 'General', 'EnableVideoSwitcherSimpleLuminanceOutput');
end
if method == 5
% Want to use M16 mode: The appendix "WithOverlay" enables the color
% overlay in M16 mode, so we can display colorful text:
PsychImaging('AddTask', 'General', 'EnableDataPixxM16OutputWithOverlay');
end
if method == 6
PsychImaging('AddTask', 'General', 'EnableNative11BitFramebuffer');
end
if method == 7
PsychImaging('AddTask', 'General', 'EnableNative16BitFramebuffer');
end
if method == 8
PsychImaging('AddTask', 'General', 'EnableNative16BitFloatingPointFramebuffer');
end
% Want to have simple power-law gamma correction of stims: We choose the
% method here. After opening the onscreen window, we can set and change
% encoding gamma via PsychColorCorrection() function...
PsychImaging('AddTask', 'FinalFormatting', 'DisplayColorCorrection', 'SimpleGamma');
% Open the onscreen window, get its handle and bounding rectangle. We open
% with a black background ( == 0 ) on display screen 'screenid':
[win, winRect] = PsychImaging('OpenWindow', screenid, 0);
% Get a window handle for the overlay window - This only makes sense for
% Bits++ Mono++ mode and DataPixx M16 mode though:
if method == 3 || method == 5
overlay = PsychImaging('GetOverlayWindow', win);
else
% In any other mode, our main 'win'dow and overlay window are the same:
overlay = win;
LoadIdentityClut(win);
end
if method == 3 || method == 5
% Upload a CLUT palette into the Bits++ or DPixx box for definition of overlay
% colors. We define a nice "blue intensity ramp", this way our text, which
% is anti-aliased, will look beautiful.
clut = zeros(256,3);
clut(1:256, 3) = linspace(0,1,256)';
Screen('LoadNormalizedGammaTable', win, clut, 2);
end
% Set encoding gamma: It is 1/gamma to compensate for decoding gamma...
PsychColorCorrection('SetEncodingGamma', win, 1/gamma);
% Set larger text size for text in overlay window:
Screen('TextSize', overlay, 24);
if charttype == 0
% Some info for user, drawn into the overlay plane with color index 255,
% centered in the center of the display:
DrawFormattedText(overlay, 'Computing CSF chart - Please standby...', 'center', 'center', 255);
end
Screen('Flip', win);
if charttype == 1
% Build a chart with a linear gradient. All returned
% values are encoded linearly with a intensity range of 0.0 to 1.0:
[CSFImage limitLine] = CreateGradient(RectWidth(winRect), RectHeight(winRect));
else
% Build a Matlab matrix with the Campbell-Robson CSF chart. All returned
% values are encoded linearly with a intensity range of 0.0 to 1.0:
[CSFImage limitLine] = CreateCSFChart(RectWidth(winRect), RectHeight(winRect));
end
% Make a high precision 32 bit floating point luminance texture out of it:
% The '2' requests high precision float representation. Values in the range
% 0.0 - 1.0 correspond to minimum and maximum displayable intensity, but
% other values (even negative ones) are also allowed and useful -- But
% that's a different story for a different demo...
CSF14Tex = Screen('MakeTexture', win, CSFImage, [], [], 2);
% Build a low-resolution 8 bits per component version: Bog-standard
% encoding with 8 bits and values between 0 and 255...
%CSF8Tex = Screen('MakeTexture', win, floor(CSFImage * 256));
% This would do the same -- Encoding a "stripped down to 8 bits" image
% matrix into a 32 bpc float texture. But we don't wanna be wasteful ;-)
CSF8Tex = Screen('MakeTexture', win, floor(CSFImage * 256)/256 + 1/65536, [], [], 2);
% Clear overlay from old text:
Screen('FillRect', overlay, 0);
% Draw new one:
if charttype == 0
mytxt = 'Campbell-Robson CSF chart\n\nPress ESCape key to exit demo.\n\nPress left- and right- cursor keys to change gamma correction.\n\nPress space key to toggle resolution.';
else
mytxt = 'Luminance gradient chart\n\nPress ESCape key to exit demo.\n\nPress left- and right- cursor keys to change gamma correction.\n\nPress space key to toggle resolution.';
end
DrawFormattedText(overlay, mytxt, 'center', 'center', 255);
Screen('Flip', win);
% Wait for keystroke to start CSF display:
KbStrokeWait;
% Start with high bits mode toggled on:
toggle = 1;
% Our display loop:
while 1
% toggle set to 1 for max bits or low for 8 bits?
if toggle
% Draw 14 bpc texture: We use 'filterMode' == 0 to disable any kind
% of filtering so we really get a pixel-exact representation. This
% shouldn't be neccessary, but some hardware is a bit inexact, so
% better safe than sorry...
Screen('DrawTexture', win, CSF14Tex, [], [], [], 0);
txt2 = 'Resolution: Maximum bits per pixel - Space to toggle.';
else
% Draw 8 bpc texture:
Screen('DrawTexture', win, CSF8Tex, [], [], [], 0);
txt2 = 'Resolution: 8 bits per pixel - Space to toggle.';
end
% Text for the overlay:
if charttype == 0
txt1 = sprintf('Campbell-Robson CSF Chart\nDemo for high precision display devices - ESCape to exit.\nGamma: %f - Left/Right cursor to change.\n', gamma);
else
txt1 = sprintf('Luminance gradient Chart\nDemo for high precision display devices - ESCape to exit.\nGamma: %f - Left/Right cursor to change.\n', gamma);
end
if method == 3 || method == 5
% Clear the overlay to transparent "background color":
Screen('FillRect', overlay, 0);
end
% Draw horizontal line denoting the 8 bits vs. max bits contrast
% resolution boundary into the overlay at color index 2:
Screen('DrawLine', overlay, 255, 0, limitLine, RectWidth(winRect), limitLine);
DrawFormattedText(overlay, 'Not much to see above this line in 8 bit mode...', 0, limitLine, 255);
% Draw new text into it: We draw with index color 1 out of set of (1-255):
DrawFormattedText(overlay, [txt1 txt2], 0, 0, 255);
if doScreenshot
% Store a screenshot of the final output formatted byte image - as
% device will see it - in the global variable screenShot.
Screen('DrawingFinished', win, 0, 0);
screenShot=Screen('GetImage', win, [1 1 800 800], 'backBuffer');
end
% Show new image at next retrace:
Screen('Flip', win);
% Wait for a keypress, returns its 'keyCode':
[secs keyCode] = KbWait;
% What key pressed?
if keyCode(Escape)
% Demo done. Exit...
break;
end
if keyCode(ToggleModes)
% Toggle resolution:
toggle = 1 - toggle;
KbReleaseWait;
end
% Change of encoding gamma? Allow for range of 1.0 to 3.0, in steps of
% 0.001.
if keyCode(GammaIncrease)
gamma = min(gamma+0.001, 3.0);
PsychColorCorrection('SetEncodingGamma', win, 1/gamma);
WaitSecs(0.010);
end
if keyCode(GammaDecrease)
gamma = max(gamma-0.001, 1.0);
PsychColorCorrection('SetEncodingGamma', win, 1/gamma);
WaitSecs(0.010);
end
% Next loop iteration - Show updated settings...
end
if method == 3
% Load identity CLUT into Bits++ to restore proper display:
BitsPlusPlus('LoadIdentityClut', win);
end
% This flip is needed for the 'LoadIdentityClut' to take effect:
Screen('Flip', win);
% Load old gamma tables into gfx-card:
RestoreCluts;
% Demo done. Close Screen...
Screen('CloseAll');
% Bye!
return;
function [CSFImage limitLine] = CreateCSFChart(Xsize, Ysize, NcycLow, NcycHigh, CT_low, CT_high, centre, scale, LimitForBpc)
% [CSFImage limitLine] = CreateCSFChart(Xsize, Ysize [, NcycLow][, NcycHigh][, CT_low][, CT_high][, centre][, scale] [, LimitForBpc])
%
% Creates a image matrix with a chart of the "Campbell-Robson Contrast
% Sensitivity Function" (aka CSF-Chart). The matrix contains values between
% 0.0 for minimum output intensity and 1.0 for maximum output intensity.
%
% Input parameters (Most are optional and have reasonable defaults):
%
% Xsize == Width of chart in pixels.
% Ysize == Height of chart in pixels.
%
% Optional:
% NcycLow - NcycHigh == Spatial frequency range.
% CT_low - CT_high == Contrast range.
% centre = Intensity value for pixels with zero contrast.
% scale = constrast range around centre.
%
% LimitForBpc == Assumed bit depths of display -> Used to calculate the
% 'limitLine' return argument -- The pixel row above which there is no
% useful content anymore, due to limited bit resolution of output device.
%
% CSFImage itself is the Ysize x Xsize double matrix with luminance values.
if nargin < 2
error('Must provide at least XSize and YSize of chart in pixels!');
end
% Spatial frequency Range definitions
if ~exist('NcycLow', 'var')
NcycLow = 1.0;
end
if ~exist('NcycHigh', 'var')
NcycHigh = 77.0;
end
% Contrast range definitions
if ~exist('CT_low', 'var')
CT_low = (1.0/512.0);
end
if ~exist('CT_high', 'var')
CT_high = 1.0;
end
if ~exist('centre', 'var')
% centre is the neutral color, scale is the total range around
% 'centre', ie., all values will be in interval [centre-scale ; centre+scale].
%
% 'centre' is chosen as 127/255 instead of 0.5, ie. slighly less than 50%
% linear output intensity. The reason for this is because in 8 bpc
% mode, the 50% point (=0.5) can't be hit spot-on, as it would
% correspond to the 8 bit value 127.5 which is not representable with
% an integral number.
%
% Therefore we need to go for either 127 or 128 to get the same
% "neutral" base value for both 8 bit and 14 bit mode...
centre = 127/255;
end
if ~exist('scale', 'var')
scale = centre;
end
if ~exist('LimitForBpc', 'var')
LimitForBpc = 8;
end
% Multiplying factor per step for sweeping contrast.
CTbump = (CT_high/CT_low)^(1.0/Ysize);
% Increase spatial frequency by this factor for each point.
SFbump = (NcycHigh/NcycLow)^(1.0/Xsize);
% initialize contrast to the lowest value
Contrast = CT_low / CTbump;
% Preallocate matrix:
CSFImage = zeros(Ysize, Xsize);
% Fill matrix with content:
for i=0:Ysize-1
Contrast = Contrast * CTbump; % increase contrast by a constant factor
currentSF = (NcycLow/Xsize) / SFbump; % intialize to base lowest SF
% 'limitLine' is the pixel row where Contrast drops below the level that
% can be diplayed on a 'LimitForBpc' bpc display:
if (Contrast < 1.0/(2^(LimitForBpc-0)))
limitLine = i;
end
% Draw a line of swept-frequency sine wave data:
for j=0:Xsize-1
% Increase spatial frequency by constant factor:
currentSF = currentSF * SFbump;
% Calculate current linear value. Gamma encoding is done by PTB
% online, so no need to encode it into matrix:
CSFImage(i+1, j+1) = centre + Contrast * sin(j*currentSF*2.0*pi) * scale;
end
end
% Done.
return;
function [GradientImage limitLine] = CreateGradient(Xsize, Ysize)
% [GradientImage limitLine] = CreateGradient(Xsize, Ysize)
%
% Creates a image matrix with a linear vertical intensity gradient.
% The matrix contains values between 0.0 for minimum output intensity and
% 1.0 for maximum output intensity, linearly increasing from the top of the
% image to the bottom.
%
% Input parameters (Most are optional and have reasonable defaults):
%
% Xsize == Width of chart in pixels.
% Ysize == Height of chart in pixels.
%
% Optional:
%
% LimitForBpc == Assumed bit depths of display -> Used to calculate the
% 'limitLine' return argument -- The pixel row above which there is no
% useful content anymore, due to limited bit resolution of output device.
%
% CSFImage itself is the Ysize x Xsize double matrix with luminance values.
if nargin < 2
error('Must provide at least XSize and YSize of chart in pixels!');
end
% Preallocate matrix:
GradientImage = zeros(Ysize, Xsize);
% Fill matrix with content:
for i=0:Ysize-1
GradientImage(i+1, 1:Xsize/4) = i/(Ysize-1) * 0.25;
GradientImage(Ysize - i, Xsize/4+1:Xsize/2) = i/(Ysize-1) * 0.25 + 0.25;
GradientImage(i+1, Xsize/2+1:Xsize*3/4) = i/(Ysize-1) * 0.25 + 0.5;
GradientImage(Ysize - i, Xsize*3/4+1:Xsize) = i/(Ysize-1) * 0.25 + 0.75;
end
limitLine = -50;
% Done.
return;
|