File: PsychOpenHMDVR.m

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (2194 lines) | stat: -rw-r--r-- 91,842 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
function varargout = PsychOpenHMDVR(cmd, varargin)
% PsychOpenHMDVR - A high level driver for VR hardware supported via OpenHMD.
%
% This driver is currently only for use with Linux/X11 with a native XOrg X-Server.
%
% Note: If you want to write VR code that is portable across
% VR headsets of different vendors, then use the PsychVRHMD()
% driver instead of this driver. The PsychVRHMD driver will use
% this driver as appropriate when connecting to a OpenHMD supported
% device, but it will also automatically work with other head mounted
% displays. This driver may expose a few functions specific to OpenHMD,
% so you can mix calls to this driver with calls to PsychVRHMD.
%
% Setup instructions:
%
% This driver needs libopenhmd.so version 0.3 or later to be installed
% in a linker accessible path (e.g., /usr/local/lib/ on a Linux system).
% You can either download, compile and install libopenhmd yourself from
% the official project GitHub...
%
% https://github.com/OpenHMD/OpenHMD
%
% ... or if you have a Oculus Rift and want to take advantage of an experimental
% implementation that provides absolute head position tracking of reasonable quality,
% from this repo and branch...
%
% https://github.com/thaytan/OpenHMD/tree/rift-kalman-filter
%
% ... or you can get a precompiled library for libopenhmd.so from:
%
% For RaspberryPi/Raspbian: https://github.com/Psychtoolbox-3/MiscStuff/tree/master/OpenHMD32BitRaspbianARMv7
%
% For 64-Bit Intel/Ubuntu:  https://github.com/Psychtoolbox-3/MiscStuff/tree/master/OpenHMD64BitIntelUbuntuLinux
%
% Follow the setup instructions in the accompanying Readme.txt files if you use the
% precompiled libraries.
%
% libopenhmd.so in turn needs libhidapi-libusb.so to be installed in
% a similar path. On Debian GNU/Linux based systems like Ubuntu, you can install
% this via the package libhidapi-libusb0 (apt-get install libhidapi-libusb0).
%
% On Ubuntu 20.04-LTS and later, or Debian 11 and later, you can also get the library
% via a simple "sudo apt install libopenhmd0" for version 0.3 of the library.
%
% Regarding Linux 4.16 and later:
%
% Note that on some HMD's, e.g., the Oculus Rift models, this driver will only work
% on a multi-X-Screen setup, where a dedicated X-Screen (typically X-Screen 1) is
% created, with the video output of the HMD assigned as only output to that X-Screen.
% Single-X-Screen operation will be unworkable in practice.
%
% The xorg.conf file needed for such a configuration must be manually created for your
% setup. The "Monitor" section for the video output representing the HMD must have this
% line included:
%
% Option "Enable" "on"
%
% E.g., if the video output with the HMD has the name "HDMI-A-0", the relevant
% section would look like this:
%
% Section "Monitor"
%   Identifier    "HDMI-A-0"
%   Option        "Enable" "on"
% EndSection
%
% An example file demonstrating this can be found in the PsychtoolboxRoot() folder,
% under the following name:
%
% Psychtoolbox/PsychHardware/LinuxX11ExampleXorgConfs/xorg.conf_DualXScreen_OculusRift_amdgpu.conf
%
% Regarding Linux 4.15 and earlier, the following may apply instead, at least for
% the Oculus Rift CV1 and later Oculus HMD's, maybe also for other models from
% other vendors:
%
% From the same URL above, you need to get openhmdkeepalivedaemon, an executable
% file, and make sure it gets started during system boot of your machine. This so
% the HMD gets correctly detected as video output by the X-Server and by Psychtoolbox,
% otherwise stimuli may not display on the HMD, but on your regular display. This
% executable is not needed for the Oculus Rift DK1 or DK2.
%
% LIMITATIONS: This driver is currently considered BETA quality and may
% undergo backwards incompatible changes without prior warning or notice.
% Use at your own risk!
%
% Usage:
%
% oldverbosity = PsychOpenHMDVR('Verbosity' [, newverbosity]);
% - Get/Set level of verbosity for driver status messages, warning messages,
% error messages etc. 'newverbosity' is the optional new verbosity level,
% 'oldverbosity' is the currently set verbosity level - ie. before changing
% it.  Valid settings are: 0 = Silent, 1 = Errors only, 2 = Warnings, 3 = Info,
% 4 = Debug.
%
%
% hmd = PsychOpenHMDVR('AutoSetupHMD' [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, deviceIndex]);
% - Open a OpenHMD supported HMD, set it up with good default rendering and
% display parameters and generate a PsychImaging('AddTask', ...)
% line to setup the Psychtoolbox imaging pipeline for proper display
% on the HMD. This will also cause the device connection to get
% auto-closed as soon as the onscreen window which displays on
% the HMD is closed. Returns the 'hmd' handle of the HMD on success.
%
% By default, the first detected HMD will be used and if no VR HMD
% is connected, it will open an emulated/simulated one for basic
% testing and debugging. You can override this default choice of
% HMD by specifying the optional 'deviceIndex' parameter to choose
% a specific HMD.
%
% More optional parameters: 'basicTask' what kind of task should be implemented.
% The default is 'Tracked3DVR', which means to setup for stereoscopic 3D
% rendering, driven by head motion tracking, for a fully immersive experience
% in some kind of 3D virtual world. This is the default if omitted. The task
% 'Stereoscopic' sets up for display of stereoscopic stimuli, but without
% head tracking. 'Monoscopic' sets up for display of monocular stimuli, ie.
% the HMD is just used as a special kind of standard display monitor. Please
% note that the Oculus Rift DK2 has a special video mode for such monoscopic
% presentation: If you set the video mode to 1080x948@120 Hz, then the DK2
% will only display a monoscopic image identical to both eyes, but at a refresh
% rate of 120 Hz. This allows you to (ab)use the DK2 as a high-speed 120 Hz
% monitor!
%
% 'basicRequirements' defines basic requirements for the task. Currently
% defined are the following strings which can be combined into a single
% 'basicRequirements' string: 'LowPersistence' = Try to keep exposure
% time of visual images on the retina low if possible, ie., try to approximate
% a pulse-type display instead of a hold-type display if possible. This has
% no effect at the moment for this driver and its supported devices.
%
% 'ForceSize=widthxheight' = Enforce a specific fixed size of the stimulus
% image buffer in pixels, overriding the recommmended value by the runtime,
% e.g., 'ForceSize=2200x1200' for a 2200 pixels wide and 1200 pixels high
% image buffer. By default the driver will choose values that provide good
% quality for the given HMD display device, which can be scaled up or down
% with the optional 'pixelsPerDisplay' parameter for a different quality vs.
% performance tradeoff in the function PsychOpenXR('SetupRenderingParameters');
% The specified values are clamped against the maximum values supported by
% the given hardware + driver combination.
%
% 'PerEyeFOV' = Request use of per eye individual and asymmetric fields of view even
% when the 'basicTask' was selected to be 'Monoscopic' or 'Stereoscopic'. This allows
% for wider field of view in these tasks, but requires the usercode to adapt to these
% different and asymmetric fields of view for each eye, e.g., by selecting proper 3D
% projection matrices for each eye.
%
% 'FastResponse' = Try to switch images with minimal delay and fast
% pixel switching time. This does nothing on this driver at the moment.
%
% 'TimingSupport' = Use high precision and reliability timing for presentation.
% Not really needed, as this driver always uses high precision timing and
% timestamping, at least if you present to your HMD via a dedicated
% X-Screen on a multi-X-Screen setup under Linux X11.
%
% 'TimeWarp' = Enable per eye image 2D timewarping via prediction of eye
% poses at scanout time. This mostly only makes sense for head-tracked 3D
% rendering. Depending on 'basicQuality' a more cheap or more expensive
% procedure is used. This does nothing on this driver at the moment.
%
% 'basicQuality' defines the basic tradeoff between quality and required
% computational power. A setting of 0 gives lowest quality, but with the
% lowest performance requirements. A setting of 1 gives maximum quality at
% maximum computational load. Values between 0 and 1 change the quality to
% performance tradeoff.
%
%
% hmd = PsychOpenHMDVR('Open' [, deviceIndex], ...);
% - Open HMD with index 'deviceIndex'. See PsychOpenHMDVRCore Open?
% for help on additional parameters.
%
%
% PsychOpenHMDVR('SetAutoClose', hmd, mode);
% - Set autoclose mode for HMD with handle 'hmd'. 'mode' can be
% 0 (this is the default) to not do anything special. 1 will close
% the HMD 'hmd' when the onscreen window is closed which displays
% on the HMD. 2 will do the same as 1, but close all open HMDs and
% shutdown the complete driver and OpenHMD runtime - a full cleanup.
%
%
% isOpen = PsychOpenHMDVR('IsOpen', hmd);
% - Returns 1 if 'hmd' corresponds to an open HMD, 0 otherwise.
%
%
% PsychOpenHMDVR('Close' [, hmd])
% - Close provided HMD device 'hmd'. If no 'hmd' handle is provided,
% all HMDs will be closed and the driver will be shutdown.
%
%
% PsychOpenHMDVR('Controllers', hmd);
% - Return a bitmask of all connected controllers: Can be the bitand
% of the OVR.ControllerType_XXX flags described in 'GetInputState'.
% This does not detect if controllers are hot-plugged or unplugged after
% the HMD was opened. Iow. only probed at 'Open'.
%
%
% info = PsychOpenHMDVR('GetInfo', hmd);
% - Retrieve a struct 'info' with information about the HMD 'hmd'.
% The returned info struct contains at least the following standardized
% fields with information:
% handle = Driver internal handle for the specific HMD.
% driver = Function handle to the actual driver for the HMD, e.g., @PsychOpenHMDVR.
% type   = Defines the type/vendor of the device, e.g., 'OpenHMD'.
% modelName = Name string with the name of the model of the device, e.g., 'Rift (DK2)'.
% separateEyePosesSupported = 1 if use of PsychOpenHMDVR('GetEyePose') will improve
%                             the quality of the VR experience, 0 if no improvement
%                             is to be expected, so 'GetEyePose' can be avoided
%                             to save processing time without a loss of quality.
%                             This always returns 0 on this driver.
%
% The returned struct may contain more information, but the fields mentioned
% above are the only ones guaranteed to be available over the long run. Other
% fields may disappear or change their format and meaning anytime without
% warning. See 'help PsychVRHMD' for more detailed info about available fields.
%
%
% isSupported = PsychOpenHMDVRCore('Supported');
% - Returns 1 if the OpenHMD driver is functional, 0 otherwise. The
% driver is functional if the OpenHMD runtime library was successfully
% initialized. It would return 0 if the required runtime library would
% not be correctly installed.
%
%
% [isVisible, playAreaBounds, OuterAreaBounds] = PsychOpenHMDVRCore('VRAreaBoundary', hmd [, requestVisible]);
% - Request visualization of the VR play area boundary for 'hmd' and returns its
% current extents.
%
% As VR area boundaries are not actually supported by this OpenHMD driver,
% this function returns no-op results, compatible with what other drivers
% would return if their guardian system would not be set up.
%
% The input flag 'requestVisible' is silently ignored:
% 'requestVisible' 1 = Request showing the boundary area markers, 0 = Don't
% request showing the markers.
%
% Returns in 'isVisible' the current visibility status of the VR area boundaries.
% This is always 0 for "invisible".
%
% 'playAreaBounds' is an empty matrix defining the play area boundaries. The empty
% return argument means that the play area is so far undefined on this driver.
%
% 'OuterAreaBounds' defines the outer area boundaries in the same way as
% 'playAreaBounds'. In other words, it always returns an empty matrix.
%
%
% input = PsychOpenHMDVRCore('GetInputState', hmd, controllerType);
% - Get input state of controller 'controllerType' associated with HMD 'hmd'.
%
% As this driver does not actually support special VR controllers, only a minimally
% useful 'input' state is returned for compatibility with other drivers, which is
% based on emulating or faking input from real controllers, so this function will be
% of limited use. Specifically, only the input.Valid, input.Time and input.Buttons fields are
% returned, all other fields are missing. input.Buttons maps defined OVR.Button_XXX
% fields to similar or corresponding buttons on the regular keyboard.
%
% 'controllerType' can be one of OVR.ControllerType_LTouch, OVR.ControllerType_RTouch,
% OVR.ControllerType_Touch, OVR.ControllerType_Remote, OVR.ControllerType_XBox, or
% OVR.ControllerType_Active for selecting whatever controller is currently active.
%
% Return argument 'input' is a struct with fields describing the state of buttons and
% other input elements of the specified 'controllerType'. It has the following fields:
%
% 'Valid' = 1 if 'input' contains valid results, 0 if input status is invalid/unavailable.
% 'ActiveInputs' = Bitmask defining which of the following struct elements do contain
% meaningful input from actual physical input source devices. This is a more fine-grained
% reporting of what 'Valid' conveys, split up into categories. The following flags will be
% logical or'ed together if the corresponding input category is valid, ie. provided with
% actual input data from some physical input source element, controller etc.:
%
% +1  = 'Buttons' gets input from some real buttons or switches.
% +2  = 'Touches' gets input from some real touch/proximity sensors or gesture recognizers.
% +4  = 'Trigger' gets input from some real analog trigger sensor or gesture recognizer.
% +8  = 'Grip' gets input from some real analog grip sensor or gesture recognizer.
% +16 = 'Thumbstick' gets input from some real thumbstick, joystick or trackpad or similar 2D sensor.
%
% 'Time' Time of last input state change of controller.
% 'Buttons' Vector with button state on the controller, similar to the 'keyCode'
% vector returned by KbCheck() for regular keyboards. Each position in the vector
% reports pressed (1) or released (0) state of a specific button. Use the OVR.Button_XXX
% constants to map buttons to positions.
%
%
% pulseEndTime = PsychOpenHMDVR('HapticPulse', hmd, controllerType [, duration=2.5][, freq=1.0][, amplitude=1.0]);
% - Trigger a haptic feedback pulse, some controller vibration, on the specified 'controllerType'
% associated with the specified 'hmd'. 'duration' is pulse duration in seconds, by default a maximum
% of 2.5 seconds is executed. 'freq' is normalized frequency in range 0.0 - 1.0. A value of 0 will
% disable an ongoing pulse.'amplitude' is the amplitude of the vibration in normalized 0.0 - 1.0 range.
%
%
% state = PsychOpenHMDVRCore('PrepareRender', hmd [, userTransformMatrix][, reqmask=1][, targetTime]);
% - Mark the start of the rendering cycle for a new 3D rendered stereoframe.
% Return a struct 'state' which contains various useful bits of information
% for 3D stereoscopic rendering of a scene, based on head tracking data.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'reqmask' defines what kind of information is requested to be returned in
% struct 'state'. Only query information you actually need, as computing some
% of this info is expensive! See below for supported values for 'reqmask'.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results,
% e.g., the midpoint of scanout of the next video frame.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
%
% state always contains a field state.tracked, whose bits signal the status
% of head tracking for this frame. A +1 flag means that head orientation is
% tracked. A +2 flag means that head position is tracked via some absolute
% position tracker like, e.g., the OpenHMD Rift DK2 camera. We also return a +128
% flag which means the HMD is actually strapped onto the subjects head and displaying
% our visual content. We can't detect actual HMD display state, but do this for
% compatibility to other drivers.
%
% state also always contains a field state.SessionState, whose bits signal general
% VR session status. In our case we always return +7 on this OpenHMD driver, as we
% can't detect ShouldQuit, ShouldRecenter or DisplayLost conditions, neither if the
% HMD is strapped to the users head.
%
% +1  = Our rendering goes to the HMD, ie. we have control over it. Lack of this could
%       mean the Health and Safety warning is displaying at the moment and waiting for
%       acknowledgement, or some other application is in control.
% +2  = HMD is present and active.
% +4  = HMD is strapped onto users head.
% +8  = DisplayLost condition! Some hardware/software malfunction, need to completely
%       quit this Psychtoolbox session to recover from this.
% +16 = ShouldQuit The user interface / user asks us to voluntarily terminate this session.
% +32 = ShouldRecenter = The user interface asks us to recenter/recalibrate our tracking origin.
%
%
% 'reqmask' defaults to 1 and can have the following values added together:
%
% +1 = Return matrices for left and right "eye cameras" which can be directly
%      used as OpenGL GL_MODELVIEW matrices for rendering the scene. 4x4 matrices
%      for left- and right eye are contained in state.modelView{1} and {2}.
%
%      Return position and orientation 4x4 camera view matrices which describe
%      position and orientation of the "eye cameras" relative to the world
%      reference frame. They are the inverses of state.modelView{}. These
%      matrices can be directly used to define cameras for rendering of complex
%      3D scenes with the Horde3D 3D engine. Left- and right eye matrices are
%      contained in state.cameraView{1} and state.cameraView{2}.
%
%      Additionally tracked/predicted head pose is returned in state.localHeadPoseMatrix
%      and the global head pose after application of the 'userTransformMatrix' is
%      returned in state.globalHeadPoseMatrix - this is the basis for computing
%      the camera transformation matrices.
%
% +2 = Return matrices for tracked left and right hands of user, ie. of tracked positions
%      and orientations of left and right hand tracking controllers, if any. As this OpenHMD
%      driver does not support hand tracking, this reports hard-coded neutral results and
%      reports a state.handStatus of 0 = "Not tracked/Invalid data".
%
%      state.handStatus(1) = Tracking status of left hand: 0 = Untracked, signalling that
%                            all the following information is invalid and can not be used
%                            in any meaningful way.
%
%      state.handStatus(2) = Tracking status of right hand. 0 = Untracked.
%
%      state.localHandPoseMatrix{1} = 4x4 OpenGL right handed reference frame matrix with
%                                     hand position and orientation encoded to define a
%                                     proper GL_MODELVIEW transform for rendering stuff
%                                     "into"/"relative to" the oriented left hand. Always
%                                     a 4x4 unit identity matrix for hand resting in origin.
%
%      state.localHandPoseMatrix{2} = Ditto for the right hand.
%
%      state.globalHandPoseMatrix{1} = userTransformMatrix * state.localHandPoseMatrix{1};
%                                      Left hand pose transformed by passed in userTransformMatrix.
%
%      state.globalHandPoseMatrix{2} = Ditto for the right hand.
%
%      state.globalHandPoseInverseMatrix{1} = Inverse of globalHandPoseMatrix{1} for collision
%                                             testing/grasping of virtual objects relative to
%                                             hand pose of left hand.
%
%      state.globalHandPoseInverseMatrix{2} = Ditto for right hand.
%
% More flags to follow...
%
%
% eyePose = PsychOpenHMDVR('GetEyePose', hmd, renderPass [, userTransformMatrix][, targetTime]);
% - Return a struct 'eyePose' which contains various useful bits of information
% for 3D stereoscopic rendering of the stereo view of one eye, based on head
% tracking data. This function provides essentially the same information as
% the 'PrepareRender' function, but only for one eye. Therefore you will need
% to call this function twice, once for each of the two renderpasses, at the
% beginning of each renderpass. Note: Currently there is no advantage to using
% this function on top of 'PrepareRender', it only increases overhead and is here
% only for compatibility with other drivers.
%
% 'hmd' is the handle of the HMD which delivers tracking data and receives the
% rendered content for display.
%
% 'renderPass' defines if information should be returned for the 1st renderpass
% (renderPass == 0) or for the 2nd renderpass (renderPass == 1). The driver will
% decide for you if the 1st renderpass should render the left eye and the 2nd
% pass the right eye, or if the 1st renderpass should render the right eye and
% then the 2nd renderpass the left eye. The ordering depends on the properties
% of the video display of your HMD, specifically on the video scanout order:
% Is it right to left, left to right, or top to bottom? For each scanout order
% there is an optimal order for the renderpasses to minimize perceived lag.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
% Return values in struct 'eyePose':
%
% 'eyeIndex' The eye for which this information applies. 0 = Left eye, 1 = Right eye.
%            You can pass 'eyeIndex' into the Screen('SelectStereoDrawBuffer', win, eyeIndex)
%            to select the proper eye target render buffer.
%
% 'modelView' is a 4x4 RHS OpenGL matrix which can be directly used as OpenGL
%             GL_MODELVIEW matrix for rendering the scene.
%
% 'cameraView' contains a 4x4 RHS camera matrix which describes position and
%              orientation of the "eye camera" relative to the world reference
%              frame. It is the inverse of eyePose.modelView. This matrix can
%              be directly used to define the camera for rendering of complex
%              3D scenes with the Horde3D 3D engine or other engines which want
%              absolute camera pose instead of the inverse matrix.
%
% Additionally tracked/predicted head pose is returned in eyePose.localHeadPoseMatrix
% and the global head pose after application of the 'userTransformMatrix' is
% returned in eyePose.globalHeadPoseMatrix - this is the basis for computing
% the camera transformation matrix.
%
%
% PsychOpenHMDVR('SetupRenderingParameters', hmd [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, fov=[HMDRecommended]][, pixelsPerDisplay=1])
% - Query the HMD 'hmd' for its properties and setup internal rendering
% parameters in preparation for opening an onscreen window with PsychImaging
% to display properly on the HMD. See section about 'AutoSetupHMD' above for
% the meaning of the optional parameters 'basicTask', 'basicRequirements'
% and 'basicQuality'.
%
% 'fov' Optional field of view in degrees, from line of sight: [leftdeg, rightdeg,
% updeg, downdeg]. If 'fov' is omitted, the HMD runtime will be asked for a
% good default field of view and that will be used. The field of view may be
% dependent on the settings in the HMD user profile of the currently selected
% user.
%
% 'pixelsPerDisplay' Ratio of the number of render target pixels to display pixels
% at the center of distortion. Defaults to 1.0 if omitted. Lower values can
% improve performance, at lower quality.
%
%
% PsychOpenHMDVR('SetBasicQuality', hmd, basicQuality);
% - Set basic level of quality vs. required GPU performance.
%
%
% oldSetting = PsychOpenHMDVR('SetFastResponse', hmd [, enable]);
% - Return old setting for 'FastResponse' mode in 'oldSetting',
% optionally disable or enable the mode via specifying the 'enable'
% parameter as 0 or greater than zero.
%
% Currently not implemented / supported. Does nothing.
%
%
% oldSetting = PsychOpenHMDVR('SetTimeWarp', hmd [, enable]);
% - Return old setting for 'TimeWarp' mode in 'oldSetting', which is
% always 0 for 'disabled'.
% Deprecated: Does nothing. Only for PsychVRHMD compatibility.
%
%
% oldSetting = PsychOpenHMDVR('SetLowPersistence', hmd [, enable]);
% - Return old setting for 'LowPersistence' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0.
% Currently not implemented / supported. Does nothing.
%
%
% PsychOpenHMDVR('SetHSWDisplayDismiss', hmd [, dismissTypes=1+2+4]);
% - Set how the user can dismiss the "Health and safety warning display".
% 'dismissTypes' can be -1 to disable the HSWD, or a value >= 0 to show
% the HSWD until a timeout and or until the user dismisses the HSWD.
% The following flags can be added to define type of dismissal:
%
% +0 = Display until timeout, if any. Will wait forever if there isn't any timeout!
% +1 = Dismiss via keyboard keypress.
% +2 = Dismiss via mouse click or mousepad tap.
% +4 = Dismiss via press of a button on a connected VR controller, e.g., touch controller.
%
%
% [bufferSize, imagingFlags, stereoMode] = PsychOpenHMDVR('GetClientRenderingParameters', hmd);
% - Retrieve recommended size in pixels 'bufferSize' = [width, height] of the client
% renderbuffer for each eye for rendering to the HMD. Returns parameters
% previously computed by PsychOpenHMDVR('SetupRenderingParameters', hmd).
%
% Also returns 'imagingFlags', the required imaging mode flags for setup of
% the Screen imaging pipeline. Also returns the needed 'stereoMode' for the
% pipeline.
%
%
% needPanelFitter = PsychOpenHMDVR('GetPanelFitterParameters', hmd);
% - 'needPanelFitter' is 1 if a custom panel fitter tasks is needed, and 'bufferSize'
% from the PsychVRHMD('GetClientRenderingParameters', hmd); defines the size of the
% clientRect for the onscreen window. 'needPanelFitter' is 0 if no panel fitter is
% needed.
%
%
% [winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample, screenid] = PsychOpenHMDVR('OpenWindowSetup', hmd, screenid, winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample);
% - Compute special override parameters for given input/output arguments, as needed
% for a specific HMD. Take other preparatory steps as needed, immediately before the
% Screen('OpenWindow') command executes. This is called as part of PsychImaging('OpenWindow'),
% with the user provided hmd, screenid, winRect etc.
%
%
% isOutput = PsychOpenHMDVR('IsHMDOutput', hmd, scanout);
% - Returns 1 (true) if 'scanout' describes the video output to which the
% HMD 'hmd' is connected. 'scanout' is a struct returned by the Screen
% function Screen('ConfigureDisplay', 'Scanout', screenid, outputid);
% This allows probing video outputs to find the one which feeds the HMD.
%
%
% [headToEyeShiftv, headToEyeShiftMatrix] = PsychOpenHMDVR('GetEyeShiftVector', hmd, eye);
% - Retrieve 3D translation vector [tx, ty, tz] that defines the 3D position of the given
% eye 'eye' for the given HMD 'hmd', relative to the origin of the local head/HMD
% reference frame. This is needed to translate a global head pose into a eye
% pose, e.g., to translate the output of PsychOpenHMDVR('GetEyePose') into actual
% tracked/predicted eye locations for stereo rendering.
%
% In addition to the 'headToEyeShiftv' vector, a corresponding 4x4 translation
% matrix is also returned in 'headToEyeShiftMatrix' for convenience.
%
%

% History:
% 30-Jul-2017  mk   Written. derived from original classic PsychOculusVR driver.

% Global GL handle for access to OpenGL constants needed in setup:
global GL;
global OVR;
global hsw_dismissed;

persistent hmd;

if nargin < 1 || isempty(cmd)
  help PsychOpenHMDVR;
  fprintf('\n\nAlso available are functions from PsychOpenHMDVRCore:\n');
  PsychOpenHMDVRCore;
  return;
end

% Fast-Path callback function for VR compositing path into window backbuffer:
if cmd == 0
  handle = varargin{1};

  % Switch to onscreen window system backbuffer:
  glBindFramebuffer(GL.FRAMEBUFFER, 0);

  % Fast-path: Use precompiled display list to execute VR warp blit:
  if ~isempty(hmd{handle}.dl)
    glCallList(hmd{handle}.dl);
    return;
  end

  % Need to create a display list with VR warp blit first:
  imax = 2;

  dl = glGenLists(1);
  glNewList(dl, GL.COMPILE);

  glMatrixMode(GL.MODELVIEW);
  glPushMatrix;
  glLoadIdentity;

  % On 90 degrees rotated "portrait mode" panel setups, like in the
  % Oculus Rift DK2, rotate our rendering and viewport:
  if hmd{handle}.panelRotated
    glViewport(0, 0, hmd{handle}.panelHeight, hmd{handle}.panelWidth);
    glRotatef(90, 0, 0, 1);
  else
    glViewport(0, 0, hmd{handle}.panelWidth, hmd{handle}.panelHeight);
  end

  % Is this a Rift DK2 in special 1080x948 @ 120Hz video mode?
  if strcmp(hmd{handle}.modelName, 'Rift (DK2)') && hmd{handle}.panelRotated && (hmd{handle}.panelWidth == 948)
    % Yes. In this mode, the content of the framebuffer is considered a monoscopic image,
    % and it is replicated into the top and bottom half of the display panel, thereby
    % cloning the framebuffer as identical image into left and right eye of the user.
    % Iow. the Rift acts as a monoscopic image viewer, with 120 Hz refresh rate. It still
    % needs lens distortion correction and color abberation correction though. Ergo still
    % run our warp shader, but only the left-eye one, sourcing from one input texture,
    % doing the warp:
    imax = 1;

    % Extend the blitted quad from that one shader pass to the full framebuffer/viewport
    % size, by some translation and scaling of the quad. The Rift will undo this during
    % "cloning" of the "fullscreen" quad into both eyes:
    glTranslatef(1, 0, 0);
    glScalef(2, 1, 1);
  end

  glMatrixMode(GL.PROJECTION);
  glPushMatrix;
  glLoadIdentity;

  for i=1:imax
    glUseProgram(hmd{handle}.glsl(i));
    glBindTexture(GL.TEXTURE_2D, hmd{handle}.inTex(i));
    glBegin(GL.QUADS);
    if i == 1
      ipd = -hmd{handle}.ipd / 2;
      glTexCoord2d(ipd + 0,  0);
      glVertex3d(  -1, -1, 0);
      glTexCoord2d(ipd + 1,  0);
      glVertex3d(   0, -1, 0);
      glTexCoord2d(ipd + 1,  1);
      glVertex3d(   0,  1, 0);
      glTexCoord2d(ipd + 0,  1);
      glVertex3d(  -1,  1, 0);
    else
      ipd = +hmd{handle}.ipd / 2;
      glTexCoord2d(ipd + 0,  0);
      glVertex3d(   0, -1, 0);
      glTexCoord2d(ipd + 1,  0);
      glVertex3d(   1, -1, 0);
      glTexCoord2d(ipd + 1,  1);
      glVertex3d(   1,  1, 0);
      glTexCoord2d(ipd + 0,  1);
      glVertex3d(   0,  1, 0);
    end
    glEnd();
  end

  glBindTexture(GL.TEXTURE_2D, 0);
  glUseProgram(0);

  if 0
    glPointSize(10);
    glBegin(GL.POINTS);
    glColor3f(1,1,0);
    glVertex2d(-0.5, 0);
    glVertex2d(+0.5, 0);
    glEnd;
    glPointSize(1);
  end

  glPopMatrix();
  glMatrixMode(GL.MODELVIEW);
  glPopMatrix();

  % Done compiling the display list:
  glEndList;
  hmd{handle}.dl = dl;

  return;
end

if strcmpi(cmd, 'PrepareRender')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenHMDVR:PrepareRender: Specified handle does not correspond to an open HMD!');
  end

  % Make local working copy of current hmd total state:
  myhmd = hmd{myhmd.handle};

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    userTransformMatrix = varargin{2};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Valid: Get request mask of information to return:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    reqmask = varargin{3};
  else
    % Default to: Provide basic tracking status flags, and directly useable
    % GL_MODELVIEW matrices for the cameras for rendering the left- and right-eye:
    reqmask = 1;
  end

  % Get target time for predicted camera poses, head poses etc.:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    targetTime = varargin{4};
  else
    % Default: Provide predicted value for the midpoint of the next video
    % refresh cycle - assuming we hit the flip deadline for the next video
    % frame, so that point in time will be exactly in the middle of both
    % eyes:
    winfo = Screen('GetWindowInfo', hmd{myhmd.handle}.win);
    targetTime = winfo.LastVBLTime + 1.5 * hmd{myhmd.handle}.videoRefreshDuration;
  end

  % Eyetracking data via SRAnipalMex requested?
  if bitand(reqmask, 4) && bitand(myhmd.eyeTrackingSupported, 1024)
    % Get latest sample from SRAnipalMex:
    srLastSample = [];
    srCalibNeeded = 0;
    [srSample, srNeedCalib, srImprove] = SRAnipalMex(5);
    srCalibNeeded = srCalibNeeded + srNeedCalib;
    while ~isempty(srSample)
      srLastSample = srSample;
      [srSample, srNeedCalib, srImprove] = SRAnipalMex(5);
      srCalibNeeded = srCalibNeeded + srNeedCalib;
    end

    while isempty(srLastSample)
      [srLastSample, srNeedCalib, srImprove] = SRAnipalMex(5);
      srCalibNeeded = srCalibNeeded + srNeedCalib;
    end

    if PsychOpenHMDVRCore('Verbosity') > 2
      if srCalibNeeded
        fprintf('PsychOpenHMDVR: At time %f seconds - Eyetracker suggests a calibration might be needed.\n', GetSecs);
      end

      for i=1:length(srImprove)
        fprintf('PsychOpenHMDVR: Eyetracker suggests tracking improvement %i\n', srImprove(i));
      end
    end

    % Convert time in msecs to GetSecs time in seconds:
    [gaze(1).Time, gaze(2).Time, gaze(3).Time] = deal(srLastSample(2) / 1000);

    % Map eye openess to tracked status:
    if srLastSample(9) > 0 && norm(srLastSample(3:5)) > 0.1
        gaze(1).Status = 3; %#ok<*AGROW>
    else
        gaze(1).Status = 1;
    end

    if srLastSample(19) > 0 && norm(srLastSample(13:15)) > 0.1
        gaze(2).Status = 3; %#ok<*AGROW>
    else
        gaze(2).Status = 1;
    end

    if gaze(1).Status == 3 && gaze(2).Status == 3
        gaze(3).Status = 3; %#ok<*AGROW>
    else
        gaze(3).Status = 1;
    end

    % Swap eye center / translation between left eye and right eye, to compensate
    % for a bug in the SRAnipal runtime on at least HTC Vive Pro Eye:
    gaze(1).GazePose = [srLastSample(16:18) / 1000, srLastSample(3:5)];
    gaze(2).GazePose = [srLastSample(6:8) / 1000, srLastSample(13:15)];

    % Need to switch sign of x-axis position of cyclops eye due to HTC eye switching bug above!
    srLastSample(26) = -srLastSample(26);
    gaze(3).GazePose = [srLastSample(26:28) / 1000, srLastSample(23:25)];

    gaze(1).gazeEyeOpening = srLastSample(9);
    gaze(2).gazeEyeOpening = srLastSample(19);
    gaze(3).gazeEyeOpening = srLastSample(29);

    gaze(1).gazeEyePupilDiameter = srLastSample(10);
    gaze(2).gazeEyePupilDiameter = srLastSample(20);
    gaze(3).gazeEyePupilDiameter = srLastSample(30);

    % Pupil position in normalized 2D sensor space:
    gaze(1).sensor2D = srLastSample(11:12);
    gaze(2).sensor2D = srLastSample(21:22);
    gaze(3).sensor2D = srLastSample(31:32);
  else
    gaze = [];
  end

  % Get predicted head pose for targetTime:
  [state, touch] = PsychOpenHMDVRCore('GetTrackingState', myhmd.handle, targetTime);

  hmd{myhmd.handle}.state = state;

  % Always return basic tracking status:
  result.tracked = state.Status;

  % Always return faked session state:
  result.SessionState = 7; % = 1 + 2 + 4 = All is fine, no trouble, subject is attentive ;-)

  % Want matrices which take a usercode supplied global transformation into account?
  if bitand(reqmask, 1)
    % Yes: We need tracked + predicted head pose, so we can apply the user transform,
    % and then per-eye transforms:

    % Bonus feature: HeadPose as 7 component translation + orientation quaternion vector:
    result.headPose = state.HeadPose;

    % Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
    result.localHeadPoseMatrix = eyePoseToCameraMatrix(state.HeadPose);

    % Premultiply usercode provided global transformation matrix:
    result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;

    % Compute per-eye global pose matrices:
    result.cameraView{1} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{1};
    result.cameraView{2} = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{2};

    % Compute inverse matrices, useable as OpenGL GL_MODELVIEW matrices for rendering:
    result.modelView{1} = inv(result.cameraView{1});
    result.modelView{2} = inv(result.cameraView{2});

    if 0 % Not usable with current OpenHMD versions yet, so spare us the wasted cpu cycles.
    if ~isempty(state.HeadLinearSpeed)
      result.HeadLinearSpeed = state.HeadLinearSpeed;
    end

    if ~isempty(state.HeadAngularSpeed)
      result.HeadAngularSpeed = state.HeadAngularSpeed;
    end

    if ~isempty(state.HeadLinearAcceleration)
      result.HeadLinearAcceleration = state.HeadLinearAcceleration;
    end

    if ~isempty(state.HeadAngularAcceleration)
      result.HeadAngularAcceleration = state.HeadAngularAcceleration;
    end
    end
  end

  % Want matrices with tracked position and orientation of touch controllers ~ users hands?
  if bitand(reqmask, 2)
    % Yes: We can't do this on current OpenHMD, so fake stuff:

    for i=1:2
      result.handStatus(i) = touch(i).Status;

      % Bonus feature: HandPoses as 7 component translation + orientation quaternion vectors:
      result.handPose{i} = touch(i).HandPose;;

      % Convert hand pose vector to 4x4 OpenGL right handed reference frame matrix:
      % In our untracked case, simply an identity matrix:
      result.localHandPoseMatrix{i} = eyePoseToCameraMatrix(result.handPose{i});

      % Premultiply usercode provided global transformation matrix - here use as is:
      result.globalHandPoseMatrix{i} = userTransformMatrix * result.localHandPoseMatrix{i};

      % Compute inverse matrix, maybe useable for collision testing / virtual grasping of virtual objects:
      % Provides a transform that maps absolute geometry into geometry as "seen" from the pov of the hand.
      result.globalHandPoseInverseMatrix{i} = inv(result.globalHandPoseMatrix{i});
    end
  end

  if bitand(reqmask, 4)
    % Store raw gaze data provided by eyetracker driver in gazeRaw, can be empty:
    result.gazeRaw = gaze;

    if ~isempty(gaze)
      % Process each entry:
      for i = 1:length(gaze)
        result.gazeStatus(i) = gaze(i).Status;
        result.gazeTime(i) = gaze(i).Time;
        result.gazeConfidence(i) = NaN;
        result.gazeEyeOpening(i) = NaN;
        result.gazeEyePupilDiameter(i) = NaN;
        result.gazeEyeConvergenceDistance = NaN;

        gazeM = diag([1 1 1 1]);

        % Valid, tracked sample from SRAnipalMex available?
        if gaze(i).Status == 3
          % Override gazeM matrix with a fake matrix, based on SRAnipal data.
          % Only columns 3 and 4 for z-axis and position are valid, just enough:
          gazeM(1:3, 4) = gaze(i).GazePose(1:3);
          gazeM(1:3, 3) = gaze(i).GazePose(4:6);

          % Mysterious negation hack needed with SRAnipal:
          gazeM(1:3, 3) = -gazeM(1:3, 3);
        end

        % Store estimated eye opening and pupil diameter:
        result.gazeEyeOpening(i) = gaze(i).gazeEyeOpening;
        result.gazeEyePupilDiameter(i) = gaze(i).gazeEyePupilDiameter;

        % Distance to point of eye convergence - ie. to point of fixation:
        result.gazeEyeConvergenceDistance = srLastSample(33);

        % Invert the y-Rotation subvector: Why? I don't know! But without
        % it, vertical gaze vector is wrong with the HTC Vive Pro Eye.
        % Maybe a HTC SRAnipal runtime bug?
        gazeM(2, 1:3) = -gazeM(2, 1:3);

        % Disabled, as impossible to make compatible with other implementations:
        % result.gazeLocalMatNonPortable{i} = gazeM;

        % Compute gaze ray in XR device (HMD) local reference frame:
        result.gazeRayLocal{i}.gazeC = gazeM(1:3, 4);
        result.gazeRayLocal{i}.gazeD = gazeM(1:3, 3);

        % VR display device (HMD) tracking info available?
        if bitand(reqmask, 1)
          % Compute global gaze orientation matrix and gaze ray:
          gazeM = result.globalHeadPoseMatrix * gazeM;
          % Disabled, see gazeLocalMatNonPortable result.gazeGlobalMatNonPortable{i} = gazeM;
          result.gazeRayGlobal{i}.gazeC = gazeM(1:3, 4);
          result.gazeRayGlobal{i}.gazeD = gazeM(1:3, 3);
        end

        % Try to compute 2D gaze points in onscreen window coordinates:
        handle = myhmd.handle;
        [winw, winh] = Screen('WindowSize', hmd{handle}.win);

        % Get local gaze ray definition:
        tv = result.gazeRayLocal{i}.gazeC;
        dv = result.gazeRayLocal{i}.gazeD;

        % Define plane of projectionLayer to be -10 meters away from the
        % optical center of the virtual camera, ie. translated by MT. Why
        % 10 meters? Because small values give numerical instability and
        % wrong results. MT defines shift of 10 meters along negative
        % z-axis of camera reference frame:
        clipNear = 10;
        MT = diag([1 1 1 1]);
        MT(3,4) = -clipNear;

        % Left eye view, mono view or cyclops view - anything other than right eye?
        if i ~= 2
          % Left eye/projectionLayer field of view:
          fov = hmd{handle}.fovL;
          MV = hmd{myhmd.handle}.eyeShiftMatrix{1} * MT;
        else
          % Right eye/projectionLayer field of view:
          fov = hmd{handle}.fovR;
          MV = hmd{myhmd.handle}.eyeShiftMatrix{2} * MT;
        end

        % Solve ray - plane intersection between gaze ray and projectionLayer plane:
        GM = [MV(1:3, 1), MV(1:3, 2), -dv];
        GB = tv - MV(1:3, 4);
        gaze3D = (GM \ GB)'; % Faster and more accurate implementation of gaze3D = (inv(GM) * GB)';

        % Compute left/right/up/down distance in projectionLayer plane
        % away from (0,0) 2D center, in meters. Instead of the real
        % plane, we use a bigger plane that is 10 meters shifted away, to
        % avoid numerical problems down the road. This takes the
        % asymetric view frustum of projectionLayers into account:
        lw = tand(-fov(1)) * clipNear;
        rw = tand(+fov(2)) * clipNear;
        th = tand(+fov(3)) * clipNear;
        bh = tand(-fov(4)) * clipNear;

        % Width and height of plane in meters:
        aw = rw - lw;
        ah = th - bh;

        % Map to normalized 2D (x,y) position in view, range [0;1] inside views area:
        gaze2D = (gaze3D(1:2) - [lw, bh]) ./ [aw, ah];
        gaze2D(1) = gaze2D(1) * winw;
        gaze2D(2) = (1 - gaze2D(2)) * winh;

        % Assign as output:
        result.gazePos{i} = gaze2D;
      end
    else
      warning('PsychOpenHMDVR:PrepareRender: Eye gaze tracking data requested, but gaze tracking not supported or enabled!');
    end
  end

  varargout{1} = result;

  return;
end

if strcmpi(cmd, 'GetEyePose')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenHMDVR:GetEyePose: Specified handle does not correspond to an open HMD!');
  end

  % Valid: Get view render pass for which to return information:
  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenHMDVR:GetEyePose: Required ''renderPass'' argument missing.');
  end
  renderPass = varargin{2};

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    userTransformMatrix = varargin{3};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Get eye pose for this renderPass, or more exactly the headPose from which this
  % renderPass eyePose will get computed:
  [result.headPose, result.eyeIndex] = PsychOpenHMDVRCore('GetEyePose', myhmd.handle, renderPass);

  % Convert head pose vector to 4x4 OpenGL right handed reference frame matrix:
  result.localHeadPoseMatrix = eyePoseToCameraMatrix(result.headPose);

  % Premultiply usercode provided global transformation matrix:
  result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;

  % Compute per-eye global pose matrix for this eyeIndex:
  result.cameraView = result.globalHeadPoseMatrix * hmd{myhmd.handle}.eyeShiftMatrix{result.eyeIndex + 1};

  % Compute inverse matrix, useable as OpenGL GL_MODELVIEW matrix for rendering:
  result.modelView = inv(result.cameraView);

  varargout{1} = result;

  return;
end

if strcmpi(cmd, 'Supported')
  % Check if the OpenHMD VR runtime is supported and active on this
  % installation, so it can be used to open connections to real HMDs,
  % or at least to emulate a HMD for simple debugging purposes:
  try
    if exist('PsychOpenHMDVRCore', 'file') && PsychOpenHMDVRCore('GetCount') >= 0
      varargout{1} = 1;
    else
      varargout{1} = 0;
    end
  catch
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'GetInputState')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenHMDVR:GetInputState: Specified handle does not correspond to an open HMD!');
  end

  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenHMDVR:GetInputState: Required ''controllerType'' argument missing.');
  end

  varargout{1} = PsychOpenHMDVRCore('GetInputState', myhmd.handle, double(varargin{2}));

  return;
end

if strcmpi(cmd, 'HapticPulse')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenHMDVR:HapticPulse: Specified handle does not correspond to an open HMD!');
  end

  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenHMDVR:HapticPulse: Required ''controllerType'' argument missing.');
  end

  varargout{1} = PsychOpenHMDVRCore('HapticPulse', myhmd.handle, double(varargin{2}), varargin{3:end});

  return;
end

if strcmpi(cmd, 'VRAreaBoundary')
  myhmd = varargin{1};
  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('VRAreaBoundary: Passed in handle does not refer to a valid and open HMD.');
  end

  % Return no-op values:
  [varargout{1}, varargout{2}, varargout{3}] = deal(0, [], []);
  return;
end

% Autodetect first connected HMD and open a connection to it. Open a
% emulated one, if none can be detected. Perform basic setup with
% default configuration, create a proper PsychImaging task.
if strcmpi(cmd, 'AutoSetupHMD')
  % Do we have basic runtime support?
  if ~PsychOpenHMDVR('Supported')
    % Nope: Game over.
    fprintf('PsychOpenHMDVR:AutoSetupHMD: Could not initialize OpenHMD driver. Game over!\n');

    % Return an empty handle to signal lack of VR HMD support to caller,
    % so caller can cope with it somehow:
    varargout{1} = [];
    return;
  end

  % Basic task this HMD should fulfill:
  if length(varargin) >= 1 && ~isempty(varargin{1})
    basicTask = varargin{1};
  else
    basicTask = 'Tracked3DVR';
  end

  % Basic basicRequirements to choose:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicRequirements = varargin{2};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicQuality = varargin{3};
  else
    basicQuality = 0;
  end

  % HMD device selection:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    deviceIndex = varargin{4};
    newhmd = PsychOpenHMDVR('Open', deviceIndex);
  else
    % Check if at least one OpenHMD HMD is connected and available:
    if PsychOpenHMDVR('GetCount') > 0
      % Yes. Open and initialize connection to first detected HMD:
      fprintf('PsychOpenHMDVR: Opening the first connected OpenHMD VR headset.\n');
      newhmd = PsychOpenHMDVR('Open', 0);
    else
      % No. Open an emulated/simulated HMD for basic testing and debugging:
      fprintf('PsychOpenHMDVR: No OpenHMD HMD detected. Opening a simulated HMD.\n');
      newhmd = PsychOpenHMDVR('Open', -1);
    end
  end

  % Trigger an automatic device close at onscreen window close for the HMD display window:
  PsychOpenHMDVR('SetAutoClose', newhmd, 1);

  % Setup default rendering parameters:
  PsychOpenHMDVR('SetupRenderingParameters', newhmd, basicTask, basicRequirements, basicQuality);

  % Add a PsychImaging task to use this HMD with the next opened onscreen window:
  PsychImaging('AddTask', 'General', 'UseVRHMD', newhmd);

  % Return the device handle:
  varargout{1} = newhmd;

  % Ready.
  return;
end

if strcmpi(cmd, 'SetAutoClose')
  myhmd = varargin{1};

  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('PsychOpenHMDVR:SetAutoClose: Specified handle does not correspond to an open HMD!');
  end

  % Assign autoclose flag:
  hmd{myhmd.handle}.autoclose = varargin{2};

  return;
end

if strcmpi(cmd, 'SetHSWDisplayDismiss')
  myhmd = varargin{1};

  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('PsychOpenHMDVR:SetHSWDisplay: Specified handle does not correspond to an open HMD!');
  end

  % Method of dismissing HSW display:
  if length(varargin) < 2 || isempty(varargin{2})
    % Default is keyboard or mouse click or controller button press:
    hmd{myhmd.handle}.hswdismiss = 1 + 2 + 4;
  else
    hmd{myhmd.handle}.hswdismiss = varargin{2};
  end

  return;
end

% Open a HMD:
if strcmpi(cmd, 'Open')
  [handle, modelName, panelWidth, panelHeight, controllerTypes, controllerFlags] = PsychOpenHMDVRCore('Open', varargin{:});
  [~, ~, ~, ~, ~, ~, ~, pw, ph] = PsychOpenHMDVRCore('GetUndistortionParameters', handle, 0);

  newhmd.handle = handle;
  newhmd.driver = @PsychOpenHMDVR;
  newhmd.type   = 'OpenHMD';
  newhmd.subtype = 'OpenHMD';
  newhmd.open = 1;
  newhmd.modelName = modelName;
  newhmd.panelWidth = panelWidth;
  newhmd.panelHeight = panelHeight;
  newhmd.panelWidthMM = round(pw * 1000);
  newhmd.panelHeightMM = round(ph * 1000);
  newhmd.separateEyePosesSupported = 0;
  newhmd.controllerTypes = controllerTypes;
  if controllerTypes
    newhmd.VRControllersSupported = 1;
  else
    newhmd.VRControllersSupported = 0;
  end

  if bitand(controllerFlags, 1+2)
    newhmd.handTrackingSupported = 1;
  else
    newhmd.handTrackingSupported = 0;
  end

  if bitand(controllerFlags, 4)
    newhmd.hapticFeedbackSupported = 1;
  else
    newhmd.hapticFeedbackSupported = 0;
  end

  newhmd.eyeTrackingSupported = 0;
  newhmd.needEyeTracking = 0;
  newhmd.articulatedHandTrackingSupported = 0;

  % Eye gaze tracking via SRAnipal on MS-Windows on HTC Vive Pro Eye etc. supported?
  if IsWin && exist('SRAnipalMex', 'file') && ~isempty(strfind(newhmd.modelName, 'Vive'))
    newhmd.eyeTrackingSupported = 1;
  end

  % Default autoclose flag to "no autoclose":
  newhmd.autoclose = 0;

  % By default allow user to dismiss HSW display via key press
  % or mouse click or controller button press:
  newhmd.hswdismiss = 1 + 2 + 4;

  % Setup basic task/requirement/quality specs to "nothing":
  newhmd.basicQuality = 0;
  newhmd.basicTask = '';
  newhmd.basicRequirements = '';

  % Init to "unknown":
  metersPerTanAngleAtCenter = 0;

  if strcmp(modelName, 'Rift (DK2)')
    % Probably right for DK2:
    metersPerTanAngleAtCenter = 0.0425 * 1.33;
  end

  if strcmp(modelName, 'Rift (CV1)')
    % Maybe right for CV1?
    metersPerTanAngleAtCenter = 0.036 * 1.33;
  end

  if metersPerTanAngleAtCenter == 0
    % Set size of display in meters per radians tan angle at the display center.
    % Default to the setting of a Oculus Rift DK2, so we have something
    % to work with if we can't find the true value for a HMD:
    metersPerTanAngleAtCenter = 0.0425 * 1.33;
    warning('PsychOpenHMDVRCore: Open: metersPerTanAngleAtCenter value unknown for this HMD, using Oculus Rift DK2 default. Please try to find a proper setting!');
  end

  newhmd.metersPerTanAngleAtCenter = metersPerTanAngleAtCenter;

  if isempty(OVR)
    % Define global OVR.XXX constants:
    OVR.ControllerType_LTouch = hex2dec('0001');
    OVR.ControllerType_RTouch = hex2dec('0002');
    OVR.ControllerType_Touch = OVR.ControllerType_LTouch + OVR.ControllerType_RTouch;
    OVR.ControllerType_Remote = hex2dec('0004');
    OVR.ControllerType_XBox = hex2dec('0010');
    OVR.ControllerType_Active = hex2dec('ffffffff');

    OVR.Button_A = 1 + log2(hex2dec('00000001'));
    OVR.Button_B = 1 + log2(hex2dec('00000002'));
    OVR.Button_RThumb = 1 + log2(hex2dec('00000004'));
    OVR.Button_RShoulder = 1 + log2(hex2dec('00000008'));
    OVR.Button_X = 1 + log2(hex2dec('00000100'));
    OVR.Button_Y = 1 + log2(hex2dec('00000200'));
    OVR.Button_LThumb = 1 + log2(hex2dec('00000400'));
    OVR.Button_LShoulder = 1 + log2(hex2dec('00000800'));
    OVR.Button_Up = 1 + log2(hex2dec('00010000'));
    OVR.Button_Down = 1 + log2(hex2dec('00020000'));
    OVR.Button_Left = 1 + log2(hex2dec('00040000'));
    OVR.Button_Right = 1 + log2(hex2dec('00080000'));
    OVR.Button_Enter = 1 + log2(hex2dec('00100000'));
    OVR.Button_Back = 1 + log2(hex2dec('00200000'));
    OVR.Button_VolUp = 1 + log2(hex2dec('00400000'));
    OVR.Button_VolDown = 1 + log2(hex2dec('00800000'));
    OVR.Button_Home = 1 + log2(hex2dec('01000000'));
    OVR.Button_Private = [OVR.Button_VolUp, OVR.Button_VolDown, OVR.Button_Home];
    OVR.Button_RMask = [OVR.Button_A, OVR.Button_B, OVR.Button_RThumb, OVR.Button_RShoulder];
    OVR.Button_LMask = [OVR.Button_X, OVR.Button_Y, OVR.Button_LThumb, OVR.Button_LShoulder, OVR.Button_Enter];
    OVR.Button_MicMute = 1 + log2(hex2dec('02000000')); % PTB extension, not in original OVR spec.

    OVR.Touch_A = OVR.Button_A;
    OVR.Touch_B = OVR.Button_B;
    OVR.Touch_RThumb = OVR.Button_RThumb;
    OVR.Touch_RThumbRest = 1 + log2(hex2dec('00000008'));
    OVR.Touch_RIndexTrigger = 1 + log2(hex2dec('00000010'));
    OVR.Touch_RButtonMask = [OVR.Touch_A, OVR.Touch_B, OVR.Touch_RThumb, OVR.Touch_RThumbRest, OVR.Touch_RIndexTrigger];
    OVR.Touch_X = OVR.Button_X;
    OVR.Touch_Y = OVR.Button_Y;
    OVR.Touch_LThumb = OVR.Button_LThumb;
    OVR.Touch_LThumbRest = 1 + log2(hex2dec('00000800'));
    OVR.Touch_LIndexTrigger = 1 + log2(hex2dec('00001000'));
    OVR.Touch_LButtonMask = [OVR.Touch_X, OVR.Touch_Y, OVR.Touch_LThumb, OVR.Touch_LThumbRest, OVR.Touch_LIndexTrigger];
    OVR.Touch_RIndexPointing = 1 + log2(hex2dec('00000020'));
    OVR.Touch_RThumbUp = 1 + log2(hex2dec('00000040'));
    OVR.Touch_LIndexPointing = 1 + log2(hex2dec('00002000'));
    OVR.Touch_LThumbUp = 1 + log2(hex2dec('00004000'));
    OVR.Touch_RPoseMask =  [OVR.Touch_RIndexPointing, OVR.Touch_RThumbUp];
    OVR.Touch_LPoseMask = [OVR.Touch_LIndexPointing, OVR.Touch_LThumbUp];

    OVR.TrackedDevice_HMD        = hex2dec('0001');
    OVR.TrackedDevice_LTouch     = hex2dec('0002');
    OVR.TrackedDevice_RTouch     = hex2dec('0004');
    OVR.TrackedDevice_Touch      = OVR.TrackedDevice_LTouch + OVR.TrackedDevice_RTouch;

    OVR.TrackedDevice_Object0    = hex2dec('0010');
    OVR.TrackedDevice_Object1    = hex2dec('0020');
    OVR.TrackedDevice_Object2    = hex2dec('0040');
    OVR.TrackedDevice_Object3    = hex2dec('0080');

    OVR.TrackedDevice_All        = hex2dec('FFFF');

    OVR.KEY_USER = 'User';
    OVR.KEY_NAME = 'Name';
    OVR.KEY_GENDER = 'Gender';
    OVR.KEY_DEFAULT_GENDER = 'Unknown';
    OVR.KEY_PLAYER_HEIGHT = 'PlayerHeight';
    OVR.KEY_EYE_HEIGHT = 'EyeHeight';
    OVR.KEY_NECK_TO_EYE_DISTANCE = 'NeckEyeDistance';
    OVR.KEY_EYE_TO_NOSE_DISTANCE = 'EyeToNoseDist';

    newhmd.OVR = OVR;
    evalin('caller','global OVR');
  end

  % Store in internal array:
  hmd{handle} = newhmd;

  % Return device struct:
  varargout{1} = newhmd;
  varargout{2} = modelName;

  if IsLinux && ~IsWayland
    pause(4);
    screenid = max(Screen('Screens'));
    [rc, outputs] = system(sprintf('xrandr --screen %i | grep connected | cut -d '' '' -f1', screenid));
    pause(1);
    if rc == 0
      while ~isempty(outputs)
        [output, outputs] = strtok(outputs);
        if ~isempty(output)
          system(sprintf('xrandr --screen %i --output %s --set non-desktop 0', screenid, output))
          %pause(1);
          %system(sprintf('xrandr --screen %i --output %s --auto', screenid, output))
        end
      end

      pause(2);
      clear Screen;
    end
  end

  return;
end

if strcmpi(cmd, 'IsOpen')
  myhmd = varargin{1};
  if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
    varargout{1} = 1;
  else
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'Controllers')
  myhmd = varargin{1};
  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('Controllers: Passed in handle does not refer to a valid and open HMD.');
  end

  varargout{1} = myhmd.controllerTypes;
  return;
end

if strcmpi(cmd, 'GetInfo')
  % Ok, cheap trick: We just return the passed in 'hmd' struct - the up to date
  % internal copy that is:
  if ~PsychOpenHMDVR('IsOpen', varargin{1})
    error('GetInfo: Passed in handle does not refer to a valid and open HMD.');
  end

  myhmd = varargin{1};
  varargout{1} = hmd{myhmd.handle};

  return;
end

if strcmpi(cmd, 'Close')
  if ~isempty(varargin) && ~isempty(varargin{1})
    % Close a specific hmd device:
    myhmd = varargin{1};

    % This function can be called with the raw index handle by
    % the autoclose code path. In that case, map index back into
    % full handle struct:
    if ~isstruct(myhmd)
      if length(hmd) >= myhmd
        myhmd = hmd{myhmd};
      else
        return;
      end
    end

    if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
      PsychOpenHMDVRCore('Close', myhmd.handle);
      hmd{myhmd.handle}.open = 0;

      % Was SRAnipalMex eyetracking active?
      if bitand(hmd{myhmd.handle}.eyeTrackingSupported, 1024) && hmd{myhmd.handle}.needEyeTracking
        % Stop tracking:
        SRAnipalMex(3);
        % Shutdown tracker connection
        SRAnipalMex(1);
      end
    end
  else
    % Shutdown whole driver:
    PsychOpenHMDVRCore('Close');
    hmd = [];
  end

  return;
end

if strcmpi(cmd, 'IsHMDOutput')
  myhmd = varargin{1};
  scanout = varargin{2};

  % Does physical display size from EDID match the one reported by the HMD?
  mmmatch = (abs(myhmd.panelWidthMM - scanout.displayWidthMM) < 5 && abs(myhmd.panelHeightMM - scanout.displayHeightMM) < 5) || ...
            (abs(myhmd.panelWidthMM - scanout.displayHeightMM) < 5  && abs(myhmd.panelHeightMM - scanout.displayWidthMM) < 5);

  % Is this an output with a resolution or physical size matching HMD panel resolution or size?
  % Assumption here is that it is a tilted panel in portrait mode in case of
  % the Rift DK1/DK2, but a non-tilted panel in landscape mode on other HMDs,
  % e.g., the Rift CV1:
  if (~isempty(strfind(myhmd.modelName, '(DK')) && (scanout.width == myhmd.panelHeight) && (scanout.height == myhmd.panelWidth || scanout.height == 948)) || ...
     (isempty(strfind(myhmd.modelName, '(DK')) && (scanout.width == myhmd.panelWidth) && (scanout.height == myhmd.panelHeight)) || mmmatch
    varargout{1} = 1;
  else
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'SetBasicQuality')
  myhmd = varargin{1};
  handle = myhmd.handle;
  basicQuality = varargin{2};
  basicQuality = min(max(basicQuality, 0), 1);
  hmd{handle}.basicQuality = basicQuality;

  if ~isempty(strfind(hmd{handle}.basicRequirements, 'LowPersistence'))
    PsychOpenHMDVRCore('SetLowPersistence', handle, 1);
  else
    PsychOpenHMDVRCore('SetLowPersistence', handle, 0);
  end

  return;
end

if strcmpi(cmd, 'SetFastResponse')
  myhmd = varargin{1};
  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('SetFastResponse: Passed in handle does not refer to a valid and open HMD.');
  end
  handle = myhmd.handle;

  % Does nothing, always return "FastResponse off":
  varargout{1} = 0;
  return;
end

if strcmpi(cmd, 'SetTimeWarp')
  myhmd = varargin{1};
  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('SetTimeWarp: Passed in handle does not refer to a valid and open HMD.');
  end

  % Does nothing. Always returns "TimeWarp off":
  varargout{1} = 0;

  return;
end

if strcmpi(cmd, 'SetLowPersistence')
  myhmd = varargin{1};
  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('SetLowPersistence: Passed in handle does not refer to a valid and open HMD.');
  end

  % SetLowPersistence determines use low persistence mode on the Rift DK2. Return old setting:
  varargout{1} = PsychOpenHMDVRCore('SetLowPersistence', myhmd.handle);

  % New setting requested?
  if (length(varargin) >= 2) && ~isempty(varargin{2})
    PsychOpenHMDVRCore('SetLowPersistence', myhmd.handle, varargin{2});
  end

  return;
end

if strcmpi(cmd, 'GetStaticRenderParameters')
  myhmd = varargin{1};

  if ~PsychOpenHMDVR('IsOpen', myhmd)
    error('GetStaticRenderParameters: Passed in handle does not refer to a valid and open HMD.');
  end

  % Retrieve projL and projR from driver:
  [varargout{1}, varargout{2}] = PsychOpenHMDVRCore('GetStaticRenderParameters', myhmd.handle, varargin{2:end});

  % Get cached values of fovL and fovR, for compatibility with OpenXR driver:
  varargout{3} = deg2rad([-hmd{myhmd.handle}.fovL(1), hmd{myhmd.handle}.fovL(2), hmd{myhmd.handle}.fovL(3), -hmd{myhmd.handle}.fovL(4)]);
  varargout{4} = deg2rad([-hmd{myhmd.handle}.fovR(1), hmd{myhmd.handle}.fovR(2), hmd{myhmd.handle}.fovR(3), -hmd{myhmd.handle}.fovR(4)]);

  return;
end

if strcmpi(cmd, 'SetupRenderingParameters')
  myhmd = varargin{1};

  % Basic task this HMD should fulfill:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicTask = varargin{2};
  else
    basicTask = 'Tracked3DVR';
  end

  % Basic requirements to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicRequirements = varargin{3};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    basicQuality = varargin{4};
  else
    basicQuality = 0;
  end

  if length(varargin) >= 5 && ~isempty(varargin{5})
    fov = varargin{5};
  else
    fov = [];
  end

  if length(varargin) >= 6 && ~isempty(varargin{6})
    pixelsPerDisplay = varargin{6};
  else
    pixelsPerDisplay = 1;
  end

  hmd{myhmd.handle}.basicTask = basicTask;
  hmd{myhmd.handle}.basicRequirements = basicRequirements;

  PsychOpenHMDVR('SetBasicQuality', myhmd, basicQuality);

  metersPerTanAngleAtCenter = myhmd.metersPerTanAngleAtCenter * pixelsPerDisplay;

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for left eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fovL] = PsychOpenHMDVRCore('GetFovTextureSize', myhmd.handle, 0, metersPerTanAngleAtCenter, fov, varargin{7:end});

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for right eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fovR] = PsychOpenHMDVRCore('GetFovTextureSize', myhmd.handle, 1, metersPerTanAngleAtCenter, fov, varargin{7:end});

  % If the basic task is not a 3D VR rendering one (with or without HMD tracking),
  % and the special requirement 'PerEyeFOV' is not set, then assume usercode wants
  % to do pure 2D rendering (monocular, or stereoscopic), e.g., with the Screen()
  % 2D drawing commands, and doesn't set up per-eye projection and modelview matrices.
  % In this case we must use a field of view that is identical for both eyes, and
  % both vertically and horizontally symmetric, ie. no special treatment of the nose
  % facing field of view! Why? Because standard 2D mono/stereo drawing code doesn't
  % know about/can't use per eye view projection matrices, which are needed for proper
  % results for asymmetric per-eye FOV. It would cause weird shifts in display on the
  % HMD. This effect is almost imperceptible/negligible on the Rift DK1/DK2, but very
  % disturbing on the Rift CV1.
  if isempty(strfind(hmd{myhmd.handle}.basicTask, 'Tracked3DVR')) && ...
     isempty(strfind(hmd{myhmd.handle}.basicTask, '3DVR')) && ...
     isempty(strfind(hmd{myhmd.handle}.basicRequirements, 'PerEyeFOV'))
    % Need identical, symmetric FOV for both eyes. Build one that has the same
    % vertical FOV as proposed by the runtime, but horizontally uses the minimal
    % left/right FOV extension of both per-eye FOV's, so we get a symmetric FOV
    % identical for both eyes, guaranteed to lie within the view cone not occluded
    % by the nose of the user.
    fov(1) = min(hmd{myhmd.handle}.fovL(1), hmd{myhmd.handle}.fovR(1));
    fov(2) = min(hmd{myhmd.handle}.fovL(2), hmd{myhmd.handle}.fovR(2));
    fov(3) = min(hmd{myhmd.handle}.fovL(3), hmd{myhmd.handle}.fovR(3));
    fov(4) = min(hmd{myhmd.handle}.fovL(4), hmd{myhmd.handle}.fovR(4));

    % Recompute parameters based on override fov:
    [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fovL] = PsychOpenHMDVRCore('GetFovTextureSize', myhmd.handle, 0, metersPerTanAngleAtCenter, fov, varargin{7:end});
    [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.fovR] = PsychOpenHMDVRCore('GetFovTextureSize', myhmd.handle, 1, metersPerTanAngleAtCenter, fov, varargin{7:end});
  end

  % Set twice the HMD panel resolution as reasonable maximum for the renderbuffers:
  hmd{myhmd.handle}.maxrbwidth = 2 * hmd{myhmd.handle}.panelWidth;
  hmd{myhmd.handle}.maxrbheight = 2 * hmd{myhmd.handle}.panelHeight;

  % Forced override size of framebuffer provided?
  rbOvrSize = strfind(basicRequirements, 'ForceSize=');
  if ~isempty(rbOvrSize)
    rbOvrSize = sscanf(basicRequirements(min(rbOvrSize):end), 'ForceSize=%ix%i');
    if length(rbOvrSize) ~= 2 || ~isvector(rbOvrSize) || ~isreal(rbOvrSize)
      sca;
      error('SetupRenderingParameters(): Invalid ''ForceSize='' string in ''basicRequirements'' specified! Must be of the form ''ForceSize=widthxheight'' pixels.');
    end

    % Clamp to valid range and assign:
    hmd{myhmd.handle}.rbwidth = max(1, min(ceil(rbOvrSize(1) * pixelsPerDisplay), hmd{myhmd.handle}.maxrbwidth));
    hmd{myhmd.handle}.rbheight = max(1, min(ceil(rbOvrSize(2) * pixelsPerDisplay), hmd{myhmd.handle}.maxrbheight));
    if hmd{myhmd.handle}.rbwidth ~= rbOvrSize(1) || hmd{myhmd.handle}.rbheight ~= rbOvrSize(2)
        warning('SetupRenderingParameters(): Had to clamp ''ForceSize=widthxheight'' requested pixelbuffer size to fit into valid range! Result may look funky.');
    end
  end

  % Eye gaze tracking requested?
  if ~isempty(strfind(basicRequirements, 'Eyetracking'))
    if ~hmd{myhmd.handle}.eyeTrackingSupported
      warning('SetupRenderingParameters: ''Eyetracking'' requested in ''basicRequirements'', but this VR system does not support eye tracking!');
      hmd{myhmd.handle}.needEyeTracking = 0;
    else
      hmd{myhmd.handle}.needEyeTracking = 1;
    end
  end

  return;
end

if strcmpi(cmd, 'GetClientRenderingParameters')
  myhmd = varargin{1};
  varargout{1} = [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight];

  % We need fast backing store support for imaging pipeline with virtual framebuffers,
  % also output redirection for providing final output to us:
  imagingMode = mor(kPsychNeedFastBackingStore, kPsychNeedFinalizedFBOSinks);

  % Does usercode want a 16 bpc half-float rendering pipeline?
  if ~isempty(strfind(hmd{myhmd.handle}.basicRequirements, 'Float16Display'))
    % Request a 16 bpc float framebuffer from Psychtoolbox:
    imagingMode = mor(imagingMode, kPsychNeed16BPCFloat);
  else
    % Standard RGBA8 images: Use sRGB format for rendering/blending/compositing/display:
    % TODO imagingMode = mor(imagingMode, kPsychEnableSRGBRendering);
  end

  if ~strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
    % We must use stereomode 12, so we get separate draw buffers for left and
    % right eye, and separate stream processing into our backing textures, with
    % all internal buffers at at least full eye resolution.
    stereoMode = 12;
  else
    % Monoscopic presentation will do:
    stereoMode = 0;
  end

  varargout{2} = imagingMode;
  varargout{3} = stereoMode;
  return;
end

if strcmpi(cmd, 'GetPanelFitterParameters')
  % No need for PanelFitter:
  varargout{1} = 0;
  return;
end

% [winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample, screenid] = PsychOpenHMDVR('OpenWindowSetup', hmd, screenid, winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample);
if strcmpi(cmd, 'OpenWindowSetup')
  myhmd = varargin{1};
  screenid = varargin{2};
  winRect = varargin{3};
  ovrfbOverrideRect = varargin{4};
  ovrSpecialFlags = varargin{5};
  ovrMultiSample = varargin{6};

  % Override winRect for the OpenHMD dummy HMD device:
  if strcmp(myhmd.modelName, 'Dummy Device') || strcmp(myhmd.modelName, 'External Device')
    winRect = [0, 0, myhmd.panelWidth, myhmd.panelHeight];
  elseif IsWin
    % MS-Windows:

    % Fullscreen on proper screenid:
    winRect = [];

    % Find proper screenid with matching resolution of our HMD panel:
    for screenids = Screen('Screens')
      [w, h] = Screen('WindowSize', screenids);
      if (w == myhmd.panelWidth) && (h == myhmd.panelHeight)
        screenid = screenids;
        break;
      end
    end
  else
    % Linux/X11: Try to find the output with the HMD:
    scanout = [];
    for i=0:Screen('ConfigureDisplay', 'NumberOutputs', screenid)-1
      scanout = Screen('ConfigureDisplay', 'Scanout', screenid, i);
      if ~myhmd.driver('IsHMDOutput', myhmd, scanout)
        % This output is not it:
        scanout = [];
      end
    end

    if isempty(scanout)
      sca;
      error('PsychOpenHMDVR-ERROR: Could not find X-Screen output with HMD on target X-Screen %i!', screenid);
    end

    % Yes. Trying to display on a screen with more than one video output?
    if isempty(winRect) && (Screen('ConfigureDisplay', 'NumberOutputs', screenid) > 1)
      % Yes. Not good, as this will impair graphics performance and timing a lot.
      % Warn about this, then try to at least position the onscreen window on the
      % right output.
      fprintf('PsychOpenHMDVR-WARNING: You are requesting display to a VR HMD on a screen with multiple active video outputs.\n');
      fprintf('PsychOpenHMDVR-WARNING: This will impair visual stimulation timing and cause decreased VR performance!\n');
      fprintf('PsychOpenHMDVR-WARNING: I strongly recommend only activating one output on the HMD screen - the HMD output on the screen.\n');
      fprintf('PsychOpenHMDVR-WARNING: On Linux with X11 X-Server, you should create a separate X-Screen for the HMD.\n');

      % Position our onscreen window accordingly:
      winRect = OffsetRect([0, 0, scanout.width, scanout.height], scanout.xStart, scanout.yStart);
      fprintf('PsychOpenHMDVR-Info: Positioning onscreen window at rect [%i, %i, %i, %i] to align with HMD output %i [%s] of screen %i.\n', ...
              winRect(1), winRect(2), winRect(3), winRect(4), i, scanout.name, screenid);
    end
  end

  % Get "panel size" / true framebuffer size:
  if isempty(winRect)
    panelRect = Screen('Rect', screenid);
  else
    panelRect = winRect;
  end

  % Turn target video output off, then on again, to get some VR HMD's like the
  % Oculus Rift CV1 unstuck. This is needed because display DPMS seems to get
  % into an undefined or wrong state after the HMD is powered down to standby,
  % and therefore the video output hot-unplugged, then powered up in a new session,
  % and therefore the video output hot-plugged again. Also set the output to be a
  % regular "desktop" output, otherwise X can not OpenGL display on it.
  %
  % A DPMS forced standby -> on cycle would also work, but is more intrusive/
  % flickery, as it globally powers down and up all connected monitors, not just
  % the HMD, so lets do a output off->on cycle instead to only affect the actual
  % output which needs a DPMS off -> on, which happens as side-effect of the off
  % on cycle:
  if IsLinux && ~isempty(strfind(myhmd.modelName, 'Rift'))
      cmd = sprintf('xrandr --screen %i --output %s --off', screenid, scanout.name);
      % Works also, but more intrusive on multi-display setups: cmd = sprintf('xset dpms force standby');
      system(cmd);
      WaitSecs(2);
      cmd = sprintf('xrandr --screen %i --output %s --set ''non-desktop'' 0 --mode %ix%i', screenid, scanout.name, hmd{myhmd.handle}.panelWidth, hmd{myhmd.handle}.panelHeight);
      % Works also, but more intrusive on multi-display setups: cmd = sprintf('xset dpms force on');
      system(cmd);
      WaitSecs(1);
  end

  % How is the panel mounted in the HMD, portrait or landscape?
  % Have special case for Rift DK2 as it can also operate in 1080 x 948 mode at 120 Hz.
  if RectWidth(panelRect) < RectHeight(panelRect) || strcmp(myhmd.modelName, 'Rift (DK2)')
    % Portrait: Need to rotate our rendering:
    hmd{myhmd.handle}.panelRotated = 1;
    % Make sure Rift DK2 is handled properly also in 1080 x 948 @120 Hz.
    hmd{myhmd.handle}.panelWidth = RectHeight(panelRect);
    hmd{myhmd.handle}.panelHeight = RectWidth(panelRect);
  else
    % Landscape: No need to rotate:
    hmd{myhmd.handle}.panelRotated = 0;
  end

  % The current design iteration requires the PTB parent onscreen windows
  % effective backbuffer (from the pov of the imaging pipeline) to have the
  % same size (width x height) as the renderbuffer for one eye, so enforce
  % that constraint by setting ovrfbOverrideRect accordingly.

  % Get required output buffer size:
  clientRes = myhmd.driver('GetClientRenderingParameters', myhmd);

  % Set as fbOverrideRect for window:
  ovrfbOverrideRect = [0, 0, clientRes(1), clientRes(2)];

  fprintf('PsychOpenHMDVR-Info: Overriding onscreen window framebuffer size to %i x %i pixels for use with VR-HMD direct output mode.\n', ...
          clientRes(1), clientRes(2));

  % Make sure the window is not transparent:
  Screen('Preference', 'WindowShieldinglevel', 2000);

  varargout{1} = winRect;
  varargout{2} = ovrfbOverrideRect;
  varargout{3} = ovrSpecialFlags;
  varargout{4} = ovrMultiSample;
  varargout{5} = screenid;

  return;
end

if strcmpi(cmd, 'GetEyeShiftVector')
  myhmd = varargin{1};

  if varargin{2} == 0
    varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetLeft;
    varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{1};
  else
    varargout{1} = hmd{myhmd.handle}.HmdToEyeViewOffsetRight;
    varargout{2} = hmd{myhmd.handle}.eyeShiftMatrix{2};
  end

  return;
end

if strcmpi(cmd, 'PerformPostWindowOpenSetup')
  % Must have global GL constants:
  if isempty(GL)
    varargout{1} = 0;
    warning('PTB internal error in PsychOpenHMDVR: GL struct not initialized?!?');
    return;
  end

  % OpenHMD device handle:
  myhmd = varargin{1};
  handle = myhmd.handle;

  % Onscreen window handle:
  win = varargin{2};
  winfo = Screen('GetWindowInfo', win);
  hmd{handle}.StereoMode = winfo.StereoMode;

  % Keep track of window handle of associated onscreen window:
  hmd{handle}.win = win;

  % Init display list handle to none:
  hmd{handle}.dl = [];

  % Need to know user selected clearcolor:
  clearcolor = varargin{3};

  % Also keep track of video refresh duration of the HMD:
  hmd{handle}.videoRefreshDuration = Screen('Framerate', win);
  if hmd{handle}.videoRefreshDuration == 0
    % Unlikely to ever hit this situation, but if we would, just
    % default to a reasonable default video refresh rate of 75 Hz, which
    % is between the lowest known 60 Hz and typical modern 90 Hz.
    hmd{handle}.videoRefreshDuration = 75;
  end
  hmd{handle}.videoRefreshDuration = 1 / hmd{handle}.videoRefreshDuration;

  % Compute effective size of per-eye input buffer for undistortion render.
  % The input buffers for undistortion are the finalizedDrawbufferFBO's, ie.
  % the final output buffers of Psychtoolbox imaging pipeline.
  % This means [inputWidth, inputHeight] == [rbwidth, rbheight].
  hmd{handle}.inputWidth = hmd{handle}.rbwidth;
  hmd{handle}.inputHeight = hmd{handle}.rbheight;

  % Query undistortion parameters for left eye view:
  [hmd{handle}.rbwidth, hmd{handle}.rbheight, hsx, hsy, hsz, abberationk, distortionk, viewport_scale(1), viewport_scale(2)] = PsychOpenHMDVRCore('GetUndistortionParameters', handle, 0, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fovL);
  hmd{handle}.HmdToEyeViewOffsetLeft = [hsx, hsy, hsz];

  % Query parameters for right eye view:
  [hmd{handle}.rbwidth, hmd{handle}.rbheight, hsx, hsy, hsz, abberationk, distortionk, viewport_scale(1), viewport_scale(2)] = PsychOpenHMDVRCore('GetUndistortionParameters', handle, 1, hmd{handle}.inputWidth, hmd{handle}.inputHeight, hmd{handle}.fovR);
  hmd{handle}.HmdToEyeViewOffsetRight = [hsx, hsy, hsz];

  % Only have horizontal width per eye:
  viewport_scale(1) = viewport_scale(1) / 2;

  % Retrieve texture handles for the finalizedFBOs, which contain our per-eye input data for VR compositing:
  [hmd{handle}.inTex(1), hmd{handle}.inTex(2), glTextureTarget, format, multiSample, width, height] = Screen('HookFunction', win, 'GetDisplayBufferTextures');

  % In Monoscopic mode, we only have one finalizedFBO, so assign that ones texture
  % for right eye compositing shader as well:
  if winfo.StereoMode == 0
    hmd{handle}.inTex(2) = hmd{handle}.inTex(1);
  end

  if strcmp(hmd{handle}.modelName, 'HTC Vive')
    % HTC Vive (Pro) specific correction shader:
    grow_for_undistort = 0.6000000238418579; % In ohmd and JSON, vs. 0.5 for vive/survive. In JSON: grow_for_undistort
    aspect_x_over_y = 0.8999999761581421; % Monado all drivers and JSON. In JSON: physical_aspect_x_over_y
    coeffs = zeros(3,3,2);

    % Left eye:
    coeffs(:, 1, 1) = [-0.16640834766821358   ; -0.20331470531297763  ; -0.25831734144170526]; % Coefficient 0 rgb
    coeffs(:, 2, 1) = [-0.08398524684858014   ; -0.027578563152494302 ;  0.06924808042080391]; % Coefficient 1 rgb
    coeffs(:, 3, 1) = [-0.0037370006049573983 ; -0.03378921675897428  ; -0.0911560015027105]; % Coefficient 2 rgb

    % Right eye:
    coeffs(:, 1, 2) = [-0.15753946841491998  ; -0.19474535844822508  ; -0.24972289009157236]; % Coefficient 0 rgb
    coeffs(:, 2, 2) = [-0.09719549197929116  ; -0.03913691895553098  ;  0.056551348616293635]; % Coefficient 1 rgb
    coeffs(:, 3, 2) = [ 0.004565599952242557 ; -0.026737368587367503 ; -0.08277243093472844]; % Coefficient 2 rgb

    left_lens_center(1) = 0.08822191906110802;
    left_lens_center(2) = 0.002215858404763872;

    right_lens_center(1) = -0.08930821920625079;
    right_lens_center(2) = 0.0025618317453592;

    for i = 1:2
      glsl(i) = LoadGLSLProgramFromFiles([fileparts(mfilename('fullpath')) filesep 'HTCViveCorrectionShader'], 1);
      glUseProgram(glsl(i));

      glUniform1i(glGetUniformLocation(glsl(i), 'warpTexture'), 0);
      glUniform1f(glGetUniformLocation(glsl(i), 'grow_for_undistort'), grow_for_undistort);
      glUniform1f(glGetUniformLocation(glsl(i), 'aspect_x_over_y'), aspect_x_over_y);
      glUniform3fv(glGetUniformLocation(glsl(i), 'coeffs'), 3, coeffs(:,:,i));

      if i == 1
        glUniform2fv(glGetUniformLocation(glsl(i), 'LensCenter'), 1, left_lens_center);
      else
        glUniform2fv(glGetUniformLocation(glsl(i), 'LensCenter'), 1, right_lens_center);
      end

      glUseProgram(0);
    end
  else
    % Get GLSL shader source code for the distortion shaders:
    [vertexShaderSrc, fragmentShaderSrc] = PsychOpenHMDVRCore('GetCorrectionShaders', handle);

    left_lens_center(2) = hmd{handle}.HmdToEyeViewOffsetLeft(2);
    right_lens_center(2) = hmd{handle}.HmdToEyeViewOffsetRight(2);
    left_lens_center(1) = viewport_scale(1) + hmd{handle}.HmdToEyeViewOffsetLeft(1);
    right_lens_center(1) = hmd{handle}.HmdToEyeViewOffsetRight(1);

    if left_lens_center(1) > right_lens_center(1)
      warp_scale = left_lens_center(1);
    else
      warp_scale = right_lens_center(1);
    end

    % Setup shaders:
    for i = 1:2
      vertexShader = glCreateShader(GL.VERTEX_SHADER);
      fragmentShader = glCreateShader(GL.FRAGMENT_SHADER);
      glsl(i) = glCreateProgram();

      glAttachShader(glsl(i), vertexShader);
      glAttachShader(glsl(i), fragmentShader);

      glShaderSource(vertexShader, vertexShaderSrc);
      glCompileShader(vertexShader);

      glShaderSource(fragmentShader, fragmentShaderSrc);
      glCompileShader(fragmentShader);

      glDeleteShader(vertexShader);
      glDeleteShader(fragmentShader);

      glLinkProgram(glsl(i));

      glUseProgram(glsl(i));
      glUniform1i(glGetUniformLocation(glsl(i), 'warpTexture'), 0);
      glUniform2fv(glGetUniformLocation(glsl(i), 'ViewportScale'), 1, viewport_scale);
      glUniform3fv(glGetUniformLocation(glsl(i), 'aberr'), 1, abberationk);
      glUniform1f(glGetUniformLocation(glsl(i), 'WarpScale'), warp_scale);
      glUniform4fv(glGetUniformLocation(glsl(i), 'HmdWarpParam'), 1, distortionk);

      if i == 1
        glUniform2fv(glGetUniformLocation(glsl(i), 'LensCenter'), 1, left_lens_center);
      else
        glUniform2fv(glGetUniformLocation(glsl(i), 'LensCenter'), 1, right_lens_center);
      end

      glUseProgram(0);
    end
  end

  % Assign the two shaders:
  hmd{handle}.glsl = glsl;

  % Setup callback from Screen() for triggering the final VR compositing operation:
  cmdString = sprintf('PsychOpenHMDVR(0, %i);', handle);
  if winfo.StereoMode > 0
    % In stereo mode, use right finalizer chain for triggering the VR compositing pass, as it executes last:
    Screen('Hookfunction', win, 'AppendMFunction', 'RightFinalizerBlitChain', 'OpenHMD Stereo commit Operation', cmdString);
    Screen('Hookfunction', win, 'Enable', 'RightFinalizerBlitChain');
  else
    % In mono mode, use left finalizer chain for triggering the VR compositing pass, as it executes only - and therefore last:
    Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'OpenHMD Mono commit Operation', cmdString);
    Screen('Hookfunction', win, 'Enable', 'LeftFinalizerBlitChain');
  end

  % Does usercode request auto-closing the HMD or driver when the onscreen window is closed?
  if hmd{handle}.autoclose > 0
    % Attach a window close callback for Device teardown at window close time:
    if hmd{handle}.autoclose == 2
      % Shutdown driver completely:
      Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOpenHMDVR driver.', 'PsychOpenHMDVR(''Close'');');
    else
      % Only close this HMD:
      Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPostGLShutdown', 'Shutdown window callback into PsychOpenHMDVR driver.', sprintf('PsychOpenHMDVR(''Close'', %i);', handle));
    end

    Screen('HookFunction', win, 'Enable', 'CloseOnscreenWindowPostGLShutdown');
  end

  % Compute head to eyeshift vectors as simple horizontal translation based on ipd,
  % the interpupillar distance:
  [~, ~, ipd] = PsychOpenHMDVRCore('GetStaticRenderParameters', handle);
  hmd{handle}.ipd = ipd;
  hmd{handle}.HmdToEyeViewOffsetLeft  = [-ipd / 2, 0, 0];
  hmd{handle}.HmdToEyeViewOffsetRight = [+ipd / 2, 0, 0];

  % Convert head to eye shift vectors into 4x4 matrices, as we'll need them frequently:
  EyeT = diag([1 1 1 1]);
  EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetLeft';
  hmd{handle}.eyeShiftMatrix{1} = EyeT;

  EyeT = diag([1 1 1 1]);
  EyeT(1:3, 4) = hmd{handle}.HmdToEyeViewOffsetRight';
  hmd{handle}.eyeShiftMatrix{2} = EyeT;

  % Need HSW display?
  if (hmd{handle}.hswdismiss >= 0) && isempty(getenv('PSYCH_OpenHMD_HSWSKIP'))
    if IsWin
      % Windows doesn't distinguish keyboards, so don't query "all"
      % keyboards. This gives the same effect as on Linux/OSX, but avoids
      % use of PsychHID and potential "libusb not installed" warnings:
      kbddev = [];
    else
      kbddev = -1;
    end

    if bitand(hmd{myhmd.handle}.hswdismiss, 1)
      KbReleaseWait(kbddev);
    end

    dismiss = 0;
    if isempty(hsw_dismissed) || (GetSecs > hsw_dismissed)
      % Set next HSW display to 1 hour from now:
      hsw_dismissed = GetSecs + 3600;

      % Yes: Display HSW text:
      hswtext = ['HEALTH & SAFETY WARNING\n\n' ...
                'Read and follow all warnings\n' ...
                'and instructions included with\n' ...
                'the Headset before use. Headset\n' ...
                'should be calibrated for each user.\n' ...
                'Not for use by children under 13.\n' ...
                'Stop use if you experience any\n' ...
                'discomfort or health reactions.\n\n' ...
                'More: www.oculus.com/warnings\n\n' ...
                'To acknowledge:\n'];

      if bitand(hmd{myhmd.handle}.hswdismiss, 1)
        hswtext = [hswtext 'Press a key\n'];
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 2)
        hswtext = [hswtext 'Click any mouse button\n'];
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 4)
        hswtext = [hswtext 'Click any controller button'];
      end

      Screen('Flip', win);
      Screen('Flip', win);

      oldTextSize = Screen('TextSize', win, 16);
      Screen('SelectStereoDrawBuffer', win, 1);
      DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
      Screen('SelectStereoDrawBuffer', win, 0);
      DrawFormattedText(win, hswtext, 'center', 'center', [0 255 0]);
      Screen('TextSize', win, oldTextSize);
      Screen('Flip', win, [], 1);

      % Wait for dismiss via keypress or mouse button click:
      while ~dismiss
        % Allow dismiss via keypress?
        if bitand(hmd{myhmd.handle}.hswdismiss, 1) && KbCheck(kbddev)
          dismiss = 1;
        end

        % Allow dismiss via mouse click?
        if bitand(hmd{myhmd.handle}.hswdismiss, 2)
          [dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
          if any(buttons)
            dismiss = 1;
            while any(buttons)
              [dummy1, dummy2, buttons] = GetMouse; %#ok<ASGLU>
            end
          end
        end

        % Allow dismiss via controller button?
        if bitand(hmd{myhmd.handle}.hswdismiss, 4)
          istate = PsychOpenHMDVRCore('GetInputState', myhmd.handle, hex2dec('ffffffff'));
          if any(istate.Buttons)
            dismiss = 1;
          end
        end
      end

      if bitand(hmd{myhmd.handle}.hswdismiss, 1)
        KbReleaseWait(kbddev);
      end

      % Clear HSW text:
      Screen('Flip', win);
    end
  end

  if ~isempty(strfind(hmd{myhmd.handle}.basicTask, 'Tracked3DVR'))
    % 3D head tracked VR rendering task. Start tracking as a convenience:
    PsychOpenHMDVRCore('Start', handle);
  end

  % 3D rendering requested, instead of pure 2D rendering?
  if ~isempty(strfind(hmd{myhmd.handle}.basicTask, '3D'))
    % Nothing to do yet.
  end

  % Is this a Rift DK2 in special 1080x948 @ 120Hz video mode? And no Monoscopic mode selected?
  if strcmp(hmd{handle}.modelName, 'Rift (DK2)') && hmd{handle}.panelRotated && (hmd{handle}.panelWidth == 948) && ...
     isempty(strfind(hmd{myhmd.handle}.basicTask, 'Monoscopic'))
     % Yes. Inform user that this is probably suboptimal, as stereoscopic display
     % won't work in this op-mode of the DK2:
     fprintf('PsychOpenHMDVR: WARNING: Rift DK2 in 1080x948@120 Hz MONO mode detected, but you are not using the Monoscopic\n');
     fprintf('PsychOpenHMDVR: WARNING: basicTask. Note that stereoscopic rendering and display will not work. You only get the\n');
     fprintf('PsychOpenHMDVR: WARNING: left eye view displayed to both eyes, while still wasting resources on stereo rendering.\n');
  end

  % Eye tracking wanted in this session and supported by system?
  if hmd{handle}.needEyeTracking && hmd{handle}.eyeTrackingSupported
    % Tracking api specific setup:

    % SRAnipalMex available for HTC Vive SRAnipal eye tracking?
    if IsWin && exist('SRAnipalMex', 'file') && ~isempty(strfind(hmd{handle}.modelName, 'Vive'))
      % Yes. Use it:
      fprintf('PsychOpenHMDVR-INFO: Trying to enable HTC SRAnipal eye tracking for this session.\n');

      % Initialize eyetracker connection:
      try
        if SRAnipalMex(0)
          % Start data acquisition:
          SRAnipalMex(2);

          % Upgrade eyeTrackingSupported:
          % +1 "Basic" monocular/single gazevector
          % +2 Binocular/separate left/right eye gaze
          % +1024 HTC SRAnipal eye tracking in use
          hmd{handle}.eyeTrackingSupported = 1 + 2 + 1024;
        else
          warning('HTC SRAnipal eye tracker startup failed! Eye tracking disabled!');
          hmd{handle}.eyeTrackingSupported = 0;
        end
      catch
        warning('HTC SRAnipal eye tracker runtime interface DLL unavailable! Eye tracking disabled!');
        hmd{handle}.eyeTrackingSupported = 0;
      end
    end
  end

  % Return success result code 1:
  varargout{1} = 1;
  return;
end

% Dummy implementation for compatibility with other drivers:
if strcmpi(cmd, 'View2DParameters')
  varargout{1} = [NaN, NaN, NaN];
  varargout{2} = [NaN, NaN];
  varargout{3} = [NaN, NaN, NaN, NaN];
  return;
end

% 'cmd' so far not dispatched? Let's assume it is a command
% meant for PsychOpenHMDVRCore:
if (length(varargin) >= 1) && isstruct(varargin{1})
  myhmd = varargin{1};
  handle = myhmd.handle;
  [ varargout{1:nargout} ] = PsychOpenHMDVRCore(cmd, handle, varargin{2:end});
else
  [ varargout{1:nargout} ] = PsychOpenHMDVRCore(cmd, varargin{:});
end

return;

end