File: PsychOpenXR.m

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (3286 lines) | stat: -rw-r--r-- 157,958 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
function varargout = PsychOpenXR(cmd, varargin)
% PsychOpenXR - A high level driver for OpenXR supported XR hardware.
%
% Copyright (c) 2022-2023 Mario Kleiner. Licensed to you under the MIT license.
% Our underlying PsychOpenXRCore mex driver builds against the Khronos OpenXR SDK public
% headers, and links against the OpenXR open-source dynamic loader, to implement the
% interface to a system-installed OpenXR runtime. These components are dual-licensed by
% Khronos under Apache 2.0 and MIT license: SPDX license identifier "Apache-2.0 OR MIT"
%
% Note: If you want to write code that is portable across XR devices of
% different vendors, then use the PsychVRHMD() driver instead of this
% driver. The PsychVRHMD driver will use this driver as appropriate when
% connecting to a OpenXR supported XR device, but it will also
% automatically work with other head mounted displays. This driver does
% however expose a few functions specific to OpenXR hardware, so you can
% mix calls to this driver with calls to PsychVRHMD to do some mix & match.
%
% For setup instructions for OpenXR, see "help OpenXR".
%
%
% Usage:
%
% oldverbosity = PsychOpenXR('Verbosity' [, newverbosity]);
% - Get/Set level of verbosity for driver status messages, warning messages,
% error messages etc. 'newverbosity' is the optional new verbosity level,
% 'oldverbosity' is the currently set verbosity level - ie. before changing
% it.  Valid settings are: 0 = Silent, 1 = Errors only, 2 = Warnings, 3 = Info,
% 4 = Debug.
%
%
% hmd = PsychOpenXR('AutoSetupHMD' [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, deviceIndex]);
% - Open a OpenXR device, set it up with good default rendering and
% display parameters and generate a PsychImaging('AddTask', ...)
% line to setup the Psychtoolbox imaging pipeline for proper display
% on the device. This will also cause the device connection to get
% auto-closed as soon as the onscreen window which displays on
% the device is closed. Returns the 'hmd' handle of the device on success.
%
% By default, the first detected devide will be used and if no device
% is connected, it will return an empty [] hmd handle. You can override
% this default choice of device by specifying the optional 'deviceIndex'
% parameter to choose a specific device. However, only one device per machine is
% supported, so the 'deviceIndex' will probably be only useful in the future.
%
% More optional parameters: 'basicTask' what kind of task should be implemented.
% The default is 'Tracked3DVR', which means to setup for stereoscopic 3D
% rendering, driven by head motion tracking, for a fully immersive experience
% in some kind of 3D virtual world. This is the default if omitted. The task
% 'Stereoscopic' sets up for display of stereoscopic stimuli, but without
% head tracking. 'Monoscopic' sets up for display of monocular stimuli, ie.
% the device is just used as a special kind of standard display monitor. In 'Monoscopic'
% and 'Stereoscopic' mode, both eyes will be presented with an identical field of view,
% to make sure pure 2D drawing works, without the need for setup of special per-eye
% projection transformations. In 'Tracked3DVR' mode, each eye will have a different
% field of view, optimized to maximize the viewable area while still avoiding occlusion
% artifacts due to the nose of the wearer of the device.
%
% In monoscopic or stereoscopic mode, you can change the imaging parameters, ie.,
% apparent size and location of the 2D views used with the following command to
% optimize visual display:
%
% [oldPosition, oldSize, oldOrientation] = PsychOpenXR('View2DParameters', hmd, eye [, position][, size][, orientation]);
%
%
% 'basicRequirements' defines basic requirements for the task. Currently
% defined are the following strings which can be combined into a single
% 'basicRequirements' string:
%
% 'ForceSize=widthxheight' = Enforce a specific fixed size of the stimulus
% image buffer in pixels, overriding the recommmended value by the runtime,
% e.g., 'ForceSize=2200x1200' for a 2200 pixels wide and 1200 pixels high
% image buffer. By default the driver will choose values that provide good
% quality for the given XR display device, which can be scaled up or down
% with the optional 'pixelsPerDisplay' parameter for a different quality vs.
% performance tradeoff in the function PsychOpenXR('SetupRenderingParameters');
% The specified values are clamped against the maximum values supported by
% the given hardware + driver combination.
%
% 'Float16Display' = Request rendering, compositing and display in 16 bpc float
% format. This will ask Psychtoolbox to render and post-process stimuli in 16 bpc
% linear floating point format, and allocate 16 bpc half-float textures as final
% renderbuffers to be sent to the VR compositor. If the VR compositor takes advantage
% of the high source image precision is at the discretion of the compositor and device.
% By default, if this request is omitted, processing and display in sRGB format is
% requested from Psychtoolbox and the compositor, ie., a roughly gamma 2.2 8 bpc
% format is used.
%
% 'ForbidMultiThreading' = Forbid any use of multi-threading for visual
% presentation by the driver for any means or purposes! This is meant to
% get your setup going in case of severe bugs in proprietary OpenXR
% runtimes that can cause instability, hangs, crashes or other malfunctions
% when multi-threading is used. Or if one wants to squeeze out every last
% bit of performance, no matter the consequences ("Fast and furious mode").
% On many proprietary OpenXR runtimes, this will prevent any reliable,
% trustworthy, robust or accurate presentation timing or timestamping, and
% may cause severe visual glitches under some modes of operation. See the
% following keywords below for descriptions of various more nuanced
% approaches to multi-threading vs. single-threading to choose fine-tuned
% tradeoffs between performance, stability and correctness for your
% specific experimental needs.
%
% 'Use2DViewsWhen3DStopped' = Ask the driver to switch to use of the same 2D views
% and geometry during the '3DVR' or 'Tracked3DVR' basicTask as would be used
% for pure 2D display in basicTask 'Stereoscopic' whenever the user script
% signals it does not execute a tight tracking and animation loop, ie.
% whenever the script calls PsychVRHMD('Stop', hmd). Switch back to regular
% 3D projected geometry and views after a consecutive PsychVRHMD('Start', hmd).
% This is useful if have phases in your experiment session when you want to
% display non-tracked content, e.g., instructions or feedback to the
% subject between trials, fixation crosses, etc., or pause script execution
% for more than a few milliseconds, but still want the visual display to
% stay stable. If this keyword is omitted, depending on the specific OpenXR
% runtime in use, the driver will stabilize the regular 3D projected
% display by use of multi-threaded operation when calling PsychVRHMD('Stop', hmd),
% and resume single-threaded operation after PsychVRHMD('Start', hmd). This
% higher overhead mode of operation via multi-threading will possibly have
% degraded performance, and not only between the 'Stop' and 'Start' calls,
% but throughout the whole session! This is why it can be advisable to
% evaulate if use of the 'Use2DViewsWhen3DStopped' keyword is a better
% solution for your specific experiment paradigm. The switching between 3D
% projected view and standard 2D stereoscopic view will change the image
% though, which may disorient the subject for a moment while the subjects
% eyes need to adapt their accomodation, vergence and focus point. You can
% change the imaging parameters, ie., apparent size and location of the 2D
% views used in this mode with the following command to minimize visual
% disorientation:
%
% [oldPosition, oldSize, oldOrientation] = PsychOpenXR('View2DParameters', hmd, eye [, position][, size][, orientation]);
%
% For such 2D views you can also specify the distance of the virtual
% viewscreen in meters in front of the eyes of the subject. By default the
% distance is 1 meter and the size and position is set up to fill out the
% field of view in a meaningful way, essentially covering the whole
% available field of view. By overriding the distance to a smaller or
% bigger distance than 1 meter, you can "zoom in" to the image, or make
% sure that also the corners and edges of the image are visible. E.g., the
% following keyword would place the virtual screen at 2.1 meters distance:
%
% '2DViewDistMeters=2.1'
%
% 'DontCareAboutVisualGlitchesWhenStopped' = Tell the driver that you don't
% care about potential significant visual presentation glitches happening if
% your script does not run a continuous animation with high framerate, e.g.,
% after calling PsychVRHMD('Stop', hmd), pausing, etc. This makes sense if
% you don't care, or if your script does not ever pause or slow down during
% a session or at least an ongoing trial. This will avoid multi-threading
% for glitch prevention in such cases, possibly allowing to side-step
% certain bugs in proprietary OpenXR runtimes, or to squeeze out higher
% steady-state performance.
%
% 'NoTimingSupport' = Signal no need at all for high precision and reliability
% timing for presentation. If you don't need any timing precision or
% reliability in your script, specifying this keyword may allow the driver
% to optimize for higher performance. See 'TimingSupport' explanation right
% below:
%
% 'TimingSupport' = Use high precision and reliability timing for presentation.
%
% The current OpenXR specification, as of OpenXR version v1.0.26 from January 2023,
% does not provide any means of reliable, trustworthy, accurate timestamping of
% presentation, and all so far tested proprietary OpenXR runtime implementations
% have severely broken and defective timing support. Only the open-source
% Monado OpenXR runtime on Linux provides a reliable and accurate timing
% implementation. Therefore this driver has to use a workaround on non-Monado
% OpenXR runtimes to achieve at least ok'ish timing if you require it, and
% that workaround involves multi-threaded operation. This multi-threading
% in turn can severely degrade performance, possibly reducing achievable
% presentation framerates to (less than) half of the maximum video refresh
% rate of your device! For this reason you should only request 'TimingSupport'
% on non-Monado if you really need it and be willing to pay the performance
% price.
%
% If you omit this keyword, the driver will try to guess if you need
% precise presentation timing for your session or not. As long as you only
% call Screen('Flip', window) or Screen('Flip', window, [], ...), ie. don't
% specify a requested stimulus onset time, the driver assumes you don't
% need precise timing, just presenting as soon as possible after a
% Screen('Flip'), and also that you don't care about accurate or trustworthy
% or correct presentation timestamps to be returned by Screen('Flip'). Once
% you specify a target onset time tWhen, ie. via calling 'Flip' as
% Screen('Flip', window, tWhen [, ...]), the driver assumes from then on
% and for the rest of the session that you want reasonably accurate
% presentation timing. It will then switch to multi-threaded operation with
% better timing, but potentially drastically reduced performance.
%
% 'TimestampingSupport' = Use high precision and reliability timestamping for presentation.
%
% 'NoTimestampingSupport' = Do not need high precision and reliability timestamping for presentation.
% Those keywords let you specify if you definitely need or don't need
% trustworthy, reliable, robust, precise presentation timestamps, ie. the
% 'timestamp' return values of timestamp = Screen('Flip') should be high
% quality, or if you don't care. If you omit both keywords, the driver will
% try to guess what you wanted. On most current OpenXR runtimes, use of
% timestamping will imply multi-threaded operation with the performance
% impacts and problems mentioned above in the section about 'TimingSupport',
% that is why it is advisable to explicitely state your needs, to allow the
% driver to optimize for the best precision/reliability/performance
% tradeoff on all the runtimes where such a tradeoff is required.
%
% As mentioned here, in "help PsychVRHMD" and our "help OpenXR" overview
% and setup instructions, currently no standard OpenXR implementation with
% reliable and trustworthy timestamping exists. Proper enhancements to
% OpenXR will need to be done in the future. Right now, as of Psychtoolbox
% 3.0.19.2, we have a hacky solution for a subset of Linux users, called
% "Monado metrics timestamping hack". It goes as follows:
%
% If you need reliable timestamping, the only solution right now is to use
% Linux + the latest Monado upstream version + a modified version of Mesa + an
% AMD or Intel gpu of sufficient performance + a VR HMD supported by Monado
% on Linux. Contact our paid support "help PsychPaidSupportAndServices" for
% help in setting up this feature and getting suitable modified Monado and
% Mesa drivers. Once everything is installed on the hardware and software
% side, the following steps need to be taken at the start of each
% experiment session to enable the special Monado metrics timestamping hack
% for trustworthy timestamping at the price of lowered performance:
%
%     1. Create a Linux fifo pipe file, e.g., in a terminal type
%        "sudo mkfifo /usr/local/framequeue.protobuf"
%        You can choose any file path and name instead of
%        /usr/local/framequeue.protobuf but it makes sense to choose a
%        directory which is under your users control, not a temporary
%        directory, unless you want to repeat step 1 after each system
%        reboot. In steps 2 and 3 you must path the same path/filename to
%        both monado-service and Octave/Matlab via the XRT_METRICS_FILE
%        environment variable.
%
%     2. Start monado-service and use the created fifo file as output file
%        for the metrics log, e.g., in a terminal window via
%
%        "XRT_METRICS_FILE=/usr/local/framequeue.protobuf XRT_METRICS_EARLY_FLUSH=true monado-service"
%
%        This will launch the monado-service OpenXR compositor, enable its
%        metrics logging with low latency into the fifo, and block its
%        startup until the Psychtoolbox XR work session is started.
%
%     3. Start a PTB session, also with XRT_METRICS_FILE environment variable
%        specified to the same fifo file location during launch of Octave or
%        Matlab, e.g., in a terminal start Octave or Matlab via:
%
%        "XRT_METRICS_FILE=/usr/local/framequeue.protobuf octave --gui" or
%        "XRT_METRICS_FILE=/usr/local/framequeue.protobuf matlab"
%
%        Once the PsychOpenXR driver has detected that a Monado XR server is
%        running, and that the fifo file exists and is accessible, it opens
%        that fifo for read access, which will let monado-service fully start
%        up and get ready to serve OpenXR clients. Your Psychtoolbox session
%        should then work with trustworthy timestamps, but at potentially
%        significantly reduced performance, e.g., a framerate of only half
%        or a third of the refresh rate of your VR HMD display.
%
%
% 'Eyetracking' = Request eye gaze tracking via a supported HMD builtin eye tracker.
% This keyword asks the driver to enable eye gaze tracking. A given combo
% of VR/AR/MR device (and its builtin eye tracker), operating system, OpenXR
% runtime and additional optionally installed eye tracking software, may
% support multiple different gaze tracking api's and runtimes. By default,
% the driver will try to use the most capable gaze tracking api, ie. the
% one which provides the most detailed and exhaustive information about the
% users gaze, at the highest sampling rate, with the most flexibility. It
% will fall back to less capable or efficient tracking api's if more
% capable ones are not supported or available. For this reason, the amount
% of information can differ widely between the most capable api's and the
% most basic api's. User scripts which strive to be usable on different
% operating systems, software setups or eyetracking hardware and HMDs must
% therefore be written in a defensive and adaptive way to be able to work
% with only the minimal subset of information guaranteed to be available on
% all implementations. The info struct returned by info = PsychVRHMD('GetInfo');
% contains info about basic gaze tracking capabilities as a bitmask in
% info.eyeTrackingSupported: A value of +1 means at least one gaze vector
% is reported. A value of +2 means reporting of binocular eye tracking data
% is supported. A value of +1024 means that HTC's proprietary SRAnipal
% eyetracking is used for more extensive gaze data reporting.
%
% If eye tracking is requested via the keyword and supported, then the user
% script can request return of the most recent eye gaze tracking sample
% data by calling the state = PsychVRHMD('PrepareRender', ..., reqmask, ...)
% function with reqmask flag +4. This will cause the returned 'state' struct
% to contain additional fields with information about the most recent gaze.
% See help text for the 'PrepareRender' function for more detailed info.
%
% The current driver supports the following gazetracking implementations:
%
% - With HTC VR HMDs with eyetracking support, under Microsoft Windows, in
% combination with the optional HTC SRAnipal runtime DLL's installed, and
% using Matlab, an optional SRAnipal mex driver can be used to provide both
% binocular per-eye gaze tracking data, separate for the subjects left and
% right eye, and a virtual 3rd "cyclops eye" which is synthesized info from
% both hardware eye trackers, sometimes of higher quality due to sensor
% fusion of the two gaze tracker data streams. For each of both eyes, in
% addition to eye gaze position and direction, estimated pupil size in
% millimeters and a measure of eye openess is reported, e.g., for eye
% blink detection or estimation of gaze data reliability. Reported times
% are hardware timestamps of when a gaze sample was measured. On the tested
% "HTC Vive Pro Eye" HMD sampling rates of up to 120 Hz were possible.
%
% - On other device + operating system + OpenXR runtime combos with OpenXR
% gazetracking support, information from the XR_EXT_eye_gaze_interaction
% gaze tracking extension is returned. This extension is supported on a wider
% range of XR devices, but the returned information is more limited: A
% single eye gaze vector and position, but without any information about the
% subjects eye openess, pupil size or of the systems confidence in the quality
% of the measured gaze. The gaze vector is of unspecified origin. It could
% be measured gaze from a monocular eye tracker, ie. either left or right eye
% gaze, or it could be a "cyclops eye" synthesized gaze computed via sensor
% fusion of gaze data from a binocular gaze tracker. The gaze data may be
% measured data from a time in the past, or interpolated or extrapolated
% gaze data from one or more past measured eye gaze samples. The returned
% gaze sample timestamp may be a hardware timestamp of when the gaze sample
% was measured, but could also be the time for which gaze was predicted via
% interpolation or extrapolation of past hardware measured gaze samples.
% Temporal resolution of the gaze data is also unspecified. On the tested
% HTC Vive Pro Eye, the reported gaze seems to correspond to the sensor
% fusion of gaze samples from the binocular eye tracker, and the temporal
% resolution is reduced to at best 16.6 msecs for at most 60 gaze samples
% per second.
%
%
% 'Handtracking' = Request articulated hand and finger tracking via a supported
% hand tracker. This keyword asks the driver to enable articulated hand tracking.
% Typical methods are markerless vision based hand and finger tracking, e.g.,
% from external cameras or HMD builtin cameras, or marker based optical tracking,
% or sensor equipped hand gloves, or other technologies, depending on your OpenXR
% runtime. The info struct returned by info = PsychVRHMD('GetInfo'); contains info
% about hand tracking capabilities as a bitmask in info.articulatedHandTrackingSupported:
% A value of +1 means that basic OpenXR hand tracking of finger and hand joint poses,
% typically for both hands of a user, is supported. A value of zero means lack of
% any support. NOTE: Current Psychtoolbox releases do not yet support hand tracking,
% this help text is preparation for future use and subject to incompatible changes!
%
% If hand tracking is requested via the keyword, and supported, then the user
% script can request return of hand tracking sample data by calling the
% state = PsychVRHMD('PrepareRender', ..., reqmask, ...) function with reqmask
% flag +8. This will cause the returned 'state' struct to contain additional fields
% with information about recently tracked articulated hand configuration. See the
% help text for the 'PrepareRender' function for details.
%
%
% 'basicQuality' defines the basic tradeoff between quality and required
% computational power. A setting of 0 gives lowest quality, but with the
% lowest performance requirements. A setting of 1 gives maximum quality at
% maximum computational load. Values between 0 and 1 change the quality to
% performance tradeoff.
%
%
% hmd = PsychOpenXR('Open' [, deviceIndex], ...);
% - Open device with index 'deviceIndex'. See PsychOpenXRCore Open?
% for help on additional parameters.
%
%
% PsychOpenXR('SetAutoClose', hmd, mode);
% - Set autoclose mode for device with handle 'hmd'. 'mode' can be
% 0 (this is the default) to not do anything special. 1 will close
% the device 'hmd' when the onscreen window is closed which displays
% on the device. 2 will do the same as 1, but close all open HMDs and
% shutdown the complete driver and OpenXR runtime - a full cleanup.
%
%
% isOpen = PsychOpenXR('IsOpen', hmd);
% - Returns 1 if 'hmd' corresponds to an open device, 0 otherwise.
%
%
% PsychOpenXR('Close' [, hmd]);
% - Close provided device 'hmd'. If no 'hmd' handle is provided,
% all HMDs will be closed and the driver will be shutdown.
%
%
% PsychOpenXR('Controllers', hmd);
% - Return a bitmask of all connected controllers: Can be the bitand
% of the OVR.ControllerType_XXX flags described in 'GetInputState'.
%
%
% info = PsychOpenXR('GetInfo', hmd);
% - Retrieve a struct 'info' with information about the device 'hmd'.
% The returned info struct contains at least the following standardized
% fields with information:
%
% handle = Driver internal handle for the specific device.
% driver = Function handle to the actual driver for the device, e.g., @PsychOpenXR.
% type   = Defines the type/vendor of the device, e.g., 'OpenXR'.
% modelName = Name string with the name of the model of the device, e.g., 'Rift DK2'.
% separateEyePosesSupported = 1 if use of PsychOpenXR('GetEyePose') will improve
%                             the quality of the VR experience, 0 if no improvement
%                             is to be expected, so 'GetEyePose' can be avoided
%                             to save processing time without a loss of quality.
%                             This *always* returns 0 on this PsychOpenXR driver.
%
% eyeTrackingSupported = Info about eye gaze tracking capabilities. A value
% of +1 means at least one gaze vector is reported. A value of +2 means
% reporting of binocular per-eye tracking data is supported. A value of
% +1024 means that HTC's proprietary SRAnipal eyetracking is available for
% more extensive gaze data reporting.
%
% articulatedHandTrackingSupported = Info about hand tracking capabilities. A
% value of +1 means that basic articulated hand tracking is supported, usually
% for both hands. Zero means no support for articulated hand tracking. The hand
% tracking methods could be based on cameras and computer-vision markerless optical
% tracking, or on marker based tracking, or it could be, e.g., with some sensor
% glove input device, or with any other suitable future modality supported by your
% OpenXR runtime.
%
%
% The returned struct may contain more information, but the fields mentioned
% above are the only ones guaranteed to be available over the long run. Other
% fields may disappear or change their format and meaning anytime without
% warning. See 'help PsychVRHMD' for more detailed info about available fields.
%
%
% isSupported = PsychOpenXR('Supported');
% - Returns 1 if the OpenXR driver is functional, 0 otherwise. The
% driver is functional if the VR runtime library was successfully
% initialized and a connection to the VR server process has been
% established. It would return 0 if the server process would not be
% running, or if the required runtime library would not be correctly
% installed.
%
%
% [isVisible, playAreaBounds, OuterAreaBounds] = PsychOpenXR('VRAreaBoundary', hmd [, requestVisible]);
% - Request visualization of the VR play area boundary for 'hmd' and returns its
% current extents.
%
% 'requestVisible' 1 = Request showing the boundary area markers, 0 = Don't
% request showing the markers. This parameter is accepted, but ignored for OpenXR.
%
% Returns in 'isVisible' the current visibility status of the VR area boundaries.
% This driver always returns 0 for false / invisible.
%
% 'playAreaBounds' is a 3-by-n matrix defining the play area boundaries. Each
% column represents the [x;y;z] coordinates of one 3D definition point. Connecting
% successive points by line segments defines the boundary, as projected onto the
% floor. Points are listed in clock-wise direction. An empty return argument means
% that the play area is so far undefined. This driver returns empty if the boundaries
% are unknown. Otherwise it returns the bounding rectangle of the area, as current
% unextended OpenXR runtimes can only return a rectangle, not more complex boundaries.
%
% 'OuterAreaBounds' defines the outer area boundaries in the same way as
% 'playAreaBounds'. This driver currently returns the same as 'playAreaBounds', as
% current unextended OpenXR only supports that information.
%
%
% input = PsychOpenXR('GetInputState', hmd, controllerType);
% - Get input state of controller 'controllerType' associated with device 'hmd'.
%
% 'controllerType' can be one of OVR.ControllerType_LTouch, OVR.ControllerType_RTouch,
% OVR.ControllerType_Touch, OVR.ControllerType_Remote, OVR.ControllerType_XBox, or
% OVR.ControllerType_Active for selecting whatever controller is currently active.
%
% Return argument 'input' is a struct with fields describing the state of buttons and
% other input elements of the specified 'controllerType'. It has the following fields:
%
% 'Valid' = 1 if 'input' contains valid results, 0 if input status is invalid/unavailable.
% 'Time' Time of last input state change of controller.
% 'ActiveInputs' = Bitmask defining which of the following struct elements do contain
% meaningful input from actual physical input source devices. This is a more fine-grained
% reporting of what 'Valid' conveys, split up into categories. The following flags will be
% logical or'ed together if the corresponding input category is valid, ie. provided with
% actual input data from some physical input source element, controller etc.:
%
% +1  = 'Buttons' gets input from some real buttons or switches.
% +2  = 'Touches' gets input from some real touch/proximity sensors or gesture recognizers.
% +4  = 'Trigger' gets input from some real analog trigger sensor or gesture recognizer.
% +8  = 'Grip' gets input from some real analog grip sensor or gesture recognizer.
% +16 = 'Thumbstick' gets input from some real thumbstick, joystick or trackpad or similar 2D sensor.
% +32 = 'Thumbstick2' gets input from some real secondary thumbstick, joystick or trackpad or similar 2D sensor.
%
% 'Buttons' Vector with button state on the controller, similar to the 'keyCode'
% vector returned by KbCheck() for regular keyboards. Each position in the vector
% reports pressed (1) or released (0) state of a specific button. Use the OVR.Button_XXX
% constants to map buttons to positions.
%
% 'Touches' Like 'Buttons' but for touch buttons. Use the OVR.Touch_XXX constants to map
% touch points to positions.
%
% 'Trigger'(1/2) = Left (1) and Right (2) trigger: Value range 0.0 - 1.0, filtered and with dead-zone.
% 'TriggerNoDeadzone'(1/2) = Left (1) and Right (2) trigger: Value range 0.0 - 1.0, filtered.
% 'TriggerRaw'(1/2) = Left (1) and Right (2) trigger: Value range 0.0 - 1.0, raw values unfiltered.
% 'Grip'(1/2) = Left (1) and Right (2) grip button: Value range 0.0 - 1.0, filtered and with dead-zone.
% 'GripNoDeadzone'(1/2) = Left (1) and Right (2) grip button: Value range 0.0 - 1.0, filtered.
% 'GripRaw'(1/2) = Left (1) and Right (2) grip button: Value range 0.0 - 1.0, raw values unfiltered.
%
% 'Thumbstick' = 2x2 matrix: Column 1 contains left thumbsticks [x;y] axis values, column 2 contains
%  right sticks [x;y] axis values. Values are in range -1 to +1, filtered and with deadzone applied.
% 'ThumbstickNoDeadzone' = Like 'Thumbstick', filtered, but without a deadzone applied.
% 'ThumbstickRaw' = 'Thumbstick' raw date without deadzone or filtering applied.
%
% 'Thumbstick2' = Like 'Thumbstick', but for devices with a 2nd 2D input device for each hand, e.g.,
% a 2nd thumbstick or a trackpad.
%
%
% pulseEndTime = PsychOpenXR('HapticPulse', hmd, controllerType [, duration=2.5][, freq=1.0][, amplitude=1.0]);
% - Trigger a haptic feedback pulse, some controller vibration, on the
% specified 'controllerType' associated with the specified 'hmd'.
%
% Currently supported values for 'controllerType' are:
%
% OVR.ControllerType_XBox   - The Microsoft XBox controller or compatible gamepad.
% OVR.ControllerType_Remote - Connected remote control or similar, e.g., control buttons on device.
% OVR.ControllerType_LTouch - Haptic enabled left hand controller.
% OVR.ControllerType_RTouch - Haptic enabled right hand controller.
% OVR.ControllerType_Touch  - All haptics enabled hand controllers.
% OVR.ControllerType_Active - All active haptics enabled controllers.
%
% 'duration' is requested pulse duration in seconds. By default a pulse of
% 2.5 seconds duration is executed, as this is the maximum pulse duration
% supported by Oculus Rift CV1 touch controllers. Other controllers or
% OpenXR runtimes may have different limits on pulse duration, or no limit
% at all. A duration of 0 maps to the minimum duration supported by the
% active OpenXR runtime and device. 'freq' may be a normalized frequency in
% range 0.0 - 1.0, or a higher frequency in Hz. A value of 0 will disable
% an ongoing pulse. The range up to 1.0 gets mapped to the interval 0 - 320
% Hz for backwards compatibility with older Oculus VR drivers. Values
% greater than 1 are interpreted as desired frequency in Hz. OpenXR
% runtimes and hardware may clamp the requested frequency to implementation
% dependent minimum or maximum values, or quantize to only a few discrete
% frequencies. E.g., Oculus touch controllers only support 160 Hz and 320
% Hz, no other frequencies. 'amplitude' is the amplitude of the vibration
% in normalized 0.0 - 1.0 range.
%
% 'pulseEndTime' returns the expected stop time of vibration in seconds,
% given the parameters. This may be inaccurate, depending on OpenXR runtime
% and hardware.
%
% In general, unfortunately, testing so far shows that OpenXR runtimes vary
% considerably in how well they follow the requested haptic pulse duration,
% frequency, and timing, so some caution is advised wrt. haptic pulse
% feedback. Never trust a given software + hardware combo blindly, always
% verify your specific setup!
%
%
% state = PsychOpenXR('PrepareRender', hmd [, userTransformMatrix][, reqmask=1][, targetTime]);
% - Mark the start of the rendering cycle for a new 3D rendered stereoframe.
% Return a struct 'state' which contains various useful bits of information
% for 3D stereoscopic rendering of a scene, based on head tracking data.
%
% 'hmd' is the handle of the device which delivers tracking data and receives the
% rendered content for display.
%
% 'reqmask' defines what kind of information is requested to be returned in
% struct 'state'. Only query information you actually need, as computing some
% of this info is expensive! See below for supported values for 'reqmask'.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results,
% e.g., the midpoint of scanout of the next video frame.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
%
% state always contains a field state.tracked, whose bits signal the status
% of head tracking for this frame. A +1 flag means that head orientation is
% tracked. A +2 flag means that head position is tracked via some absolute
% position tracker like, e.g., the Oculus Rift DK2 or Rift CV1 camera. A +128
% flag means the device is actually strapped onto the subjects head and displaying
% our visual content. Lack of this flag means the device is off and thereby blanked
% and dark, or we lost access to it to another application.
%
% state also always contains a field state.SessionState, whose bits signal general
% VR session status:
% +1  = Our rendering goes to the device, ie. we have control over it. Lack of this could
%       mean the Health and Safety warning is displaying at the moment and waiting for
%       acknowledgement, or the OpenXR GUI application is in control.
% +2  = Device is present and active.
% +4  = Device is strapped onto users head. A Rift CV1 would switch off/blank if not on the head.
% +8  = DisplayLost condition! Some hardware/software malfunction, need to completely quit this
%       Psychtoolbox session to recover from this.
% +16 = ShouldQuit The user interface / user asks us to voluntarily terminate this session.
% +32 = ShouldRecenter = The user interface asks us to recenter/recalibrate our tracking origin.
%
% 'reqmask' defaults to 1 and can have the following values added together:
%
% +1 = Return matrices for left and right "eye cameras" which can be directly
%      used as OpenGL GL_MODELVIEW matrices for rendering the scene. 4x4 matrices
%      for left- and right eye are contained in state.modelView{1} and {2}.
%
%      Return position and orientation 4x4 camera view matrices which describe
%      position and orientation of the "eye cameras" relative to the world
%      reference frame. They are the inverses of state.modelView{}. These
%      matrices can be directly used to define cameras for rendering of complex
%      3D scenes with the Horde3D 3D engine. Left- and right eye matrices are
%      contained in state.cameraView{1} and state.cameraView{2}.
%
%      Additionally tracked/predicted head pose is returned in state.localHeadPoseMatrix
%      and the global head pose after application of the 'userTransformMatrix' is
%      returned in state.globalHeadPoseMatrix - this is the basis for computing
%      the camera transformation matrices.
%
% +2 = Return matrices for tracked left and right hands of user, ie. of tracked positions
%      and orientations of left and right XR input controllers, if any.
%
%      state.handStatus(1) = Tracking status of left hand: 0 = Untracked, 1 = Orientation
%                            tracked, 2 = Position tracked, 3 = Orientation and position
%                            tracked. If handStatus is == 0 then all the following information
%                            is invalid and can not be used in any meaningful way.
%      state.handStatus(2) = Tracking status of right hand.
%
%      state.localHandPoseMatrix{1} = 4x4 OpenGL right handed reference frame matrix with
%                                     hand position and orientation encoded to define a
%                                     proper GL_MODELVIEW transform for rendering stuff
%                                     "into"/"relative to" the oriented left hand.
%      state.localHandPoseMatrix{2} = Ditto for the right hand.
%
%      state.globalHandPoseMatrix{1} = userTransformMatrix * state.localHandPoseMatrix{1};
%                                      Left hand pose transformed by passed in userTransformMatrix.
%      state.globalHandPoseMatrix{2} = Ditto for the right hand.
%
%      state.globalHandPoseInverseMatrix{1} = Inverse of globalHandPoseMatrix{1} for collision
%                                             testing/grasping of virtual objects relative to
%                                             hand pose of left hand.
%      state.globalHandPoseInverseMatrix{2} = Ditto for right hand.
%
% +4 = Return the most recent eye gaze information on devices with built-in eye tracking hardware.
%      Returned information may represent the latest available measured eye
%      gaze data, or it may be predicted eye gaze information for the
%      specified 'targetTime', computed via interpolation or extrapolation
%      from actual previously measured eye gaze. This is dependent on the
%      specific gaze tracker implementation of your system. If the reported
%      gaze sample timestamps are identical to the provided 'targetTime'
%      then that is one possible indication that reported gaze may be
%      predicted gaze instead of a direct hardware measured gaze sample.
%
%      The following fields are mandatory as part of the state struct, if gaze
%      tracking is supported and enabled and requested:
%
%      state.gazeRaw = If no new gaze tracking data is available, returns an
%      empty [] variable. Otherwise a variable in a format that is
%      dependent on the actually used gaze tracking api and implementation.
%      It could be a vector, a struct, an array of structs... The format
%      may change without prior notice, without any regard for backward
%      compatibility, so it is mostly useful for debugging by the PTB
%      developers or other Psychtoolbox internal special use cases, not to
%      be relied on by regular user experiment scripts!
%
%      The following variables are arrays, whose length depends on the
%      used gaze tracking method. Each array element represents properties
%      of one tracked eye gaze. At a minimum, the arrays have one element
%      for the most basic gaze tracking, e.g., if the OpenXR extension
%      XR_EXT_eye_gaze_interaction is used for gaze tracking, it will only
%      report one gaze vector in index 1: A monocular gaze sample from either
%      the left or right eye, or a synthetic "cyclops eye" gaze sample, computed
%      via sensor fusion of data from a binocular gazetracker. The arrays could
%      also have 2 elements for a purely binocular eye tracker, with index 1 for
%      the left eye, and index 2 for the right eye data. On a binocular tracker,
%      it is also possible for a three element array to be returned, in
%      which case index 1 is left eye date, 2 is right eye date, and 3 is
%      synthesized "cyclops eye" data.
%
%      Please write your scripts so they can handle any number of 1, 2 or
%      three array elements meaningfully:
%
%      state.gazeStatus(i) = A flag telling if i'th gaze is unavailable
%                            (=0), available (+1) or available and somewhat
%                            trustworthy (+2). Values other than 3 (=1+2)
%                            should not really be trusted. A value of only
%                            1 could, e.g., mean that data was reported,
%                            but it is not based on an actual measured eye
%                            gaze sample, but purely extrapolated or
%                            predicted from past valid data. A value of 3
%                            is not a guarantee of high quality data, just
%                            that the data is actually measured eye gaze
%                            data and passed the minimum quality treshold.
%
%
%      state.gazeTime(i) = A timestamp of the time for which the given
%      gaze information is valid, or the value NaN if no valid timestamp is
%      available from the gaze tracker. Depending on gaze tracking method in
%      use, this could be a time in the past, referring to the hardware
%      timestamp of when the gaze tracker hardware acquired that sample, or
%      it could be the time in the past or near future for which the gaze
%      data was computed via prediction / extrapolation of gaze movement or
%      interpolation from past gaze tracking data history. OpenXR built in
%      gaze tracking extensions often may not report the most recent
%      measured eye gaze sample from a past tracking cycle. Instead they
%      take the user provided 'targetTime' (or predicted stimulus onset
%      time for the next to-be-presented VR/AR/MR/XR stimulus image, if
%      'targetTime' was omitted) and try to predict where the subject will
%      be looking (for a 'targetTime' in the near future) or has looked
%      (for a 'targetTime' in the near past). In case of such prediction,
%      the reported state.gazeTime(i) corresponds to the time for which
%      gaze was actually predicted. It is a bit of a hazard for scientific
%      research purposes that there is some uncertainty if timestamps refer
%      to time of real measured gaze, or to some predicted time, or that
%      prediction / interpolation / extrapolation may be used instead of
%      reporting measured data, or that the prediction method - if any - is
%      not specified or standardized across different devices, gaze
%      trackers and gaze tracking runtimes and api's. This is unfortunately
%      unavoidable, as most commercial off the shelf gaze trackers for XR
%      applications are not targeted at scientific research use cases, but
%      as human computer interaction method for operating and navigating in
%      VR and AR, e.g., for gaming and entertainment purposes. Not much we
%      could do about this, so you will have to deal with this in your
%      research paradigm or carefully select hardware with known suitable
%      properties for your specific use case.
%
%      Actual gaze information is provided in two formats, a 2D format, in
%      onscreen window pixel coordinates, ie. where in the image has the
%      subject looked, and a 3D format, as 3D gaze rays, ie. where in a
%      rendered 3D scene has the subject looked:
%
%      2D - Onscreen window referenced:
%
%      state.gazePos{i} = A two-element [x,y] vector of the estimated 2D user
%      gaze position in Psychtoolbox onscreen window coordinates. Iow. the
%      x,y coordinates of where the user looked. In mono display mode this
%      is done by mapping the users gaze vector to the 2D space of the
%      common image that is displayed in the left and right eye display of
%      a VR/AR/MR HMD. In stereoscopic 2D display mode or full 3D perspective
%      correct rendering mode with potential head tracking, where a different
%      image is rendered and displayed to the subjects left and right eye, the
%      mapping of indices is as follows: state.gazePos{1} is expressed wrt.
%      to the left eye image buffer, ie. the one selected via
%      Screen('SelectStereoDrawBuffer', win, 0);. state.gazePos{2} refers
%      to the right eye image buffer (Screen('SelectStereoDrawBuffer', win, 0);).
%      state.gazePos{3} for a potential synthetic "cyclops eye" gaze will
%      reference the left eye image buffer again.
%
%      3D - 3D scene geometry referenced:
%
%      state.gazeRayLocal{i} = encodes the subjects gaze direction / line
%      of sight within a HMD fixed reference frame:
%
%      state.gazeRayLocal{i}.gazeC = a [x,y,z] 3D vector denoting the
%      estimated position of the optical center of the subjects eye balls,
%      relative to the origin of the head-fixed reference frame.
%
%      state.gazeRayLocal{i}.gazeD = a [dx,dy,dz] 3D vector denoting the
%      gaze direction in the head-fixed x, y and z axis.
%
%      The values in gazeRayLocal therefore define a 3D line equation
%      denoting the users line of sight, a "gaze ray" so to speak:
%
%      For all scalar values t from zero to infinity, p(t) with
%      p(t) = state.gazeRayLocal{i}.gazeC + t * state.gazeRayLocal{i}.gazeD
%      defines 3D points along the looking direction / gaze vector / gaze
%      ray of the subject, in a head-fixed reference frame.
%
%      Mathematical intersection of such a defined line equation p(t) with 3D
%      scene geometry in 3D rendering mode that is fixed wrt. to the users head
%      allows you to figure out where the user is looking in 3D space.
%
%      For a typical 3D head tracked VR / AR / MR rendering scenario, where
%      you would also set the the 'reqmask' flag +1 to retrieve head
%      tracking information and state.modelView matrices for 3D rendering,
%      the function also provides state.gazeRayGlobal{i} of the same
%      format. In this case the HMD head tracking information is used to
%      locate the subjects head position and orientation in a 3D rendered
%      scene and the gaze ray is transformed accordingly, so mathematical
%      intersection of rendered 3D geometry with the 3D line equation ...
%      p(t) = state.gazeRayGlobal{i}.gazeC + t * state.gazeRayGlobal{i}.gazeD
%      ... allows to find the point of fixation in a 3D world even if the
%      subject is moving their head or walking around.
%
%
%      Some of the supported eye tracking implementations may provide the
%      following additional optional information for each gaze index i. If
%      the information is not available for a given implementation, either
%      an empty vector [] or the scalar value NaN is returned:
%
%      state.gazeConfidence(i) = A scalar value of confidence, ie. how
%      certain is the gaze tracker that reported data is trustworthy and
%      accurate. Currently unsupported on all trackers, returns NaN.
%
%      state.gazeEyeOpening(i) = A scalar value of how far the subjects
%      eyes are open, in a normalized range 0 for closed to 1 for fully
%      open. This can be used, e.g., as another confidence measure, or for
%      eye blink detection. Supported for i=1,2 with HTC SRAnipal gaze
%      tracking on suitable HTC HMDs like the HTC Vive Pro Eye.
%
%      state.gazeEyePupilDiameter(i) = The estimated diameter of the
%      subjects pupil, presumably in millimeters. Supported for i=1,2 with
%      HTC SRAnipal gaze tracking on suitable HTC HMDs like the HTC Vive Pro Eye.
%
%      state.gazeEyeConvergenceDistance = For binocular gaze tracking, this
%      may be a scalar estimate of eye convergence distance, ie. the
%      distance of the fixation point from the eyes. May be supported on
%      some HTC HMDs under SRAnipal, but has not been confirmed to work in
%      practice on the tested HTC Vive Pro Eye.
%
% +8 = Request return of articulated hand tracking information on suitable OpenXR
%      systems.
%
%      NOTE: This feature is NOT YET IMPLEMENTED in current Psychtoolbox releases!
%
%      Returned information may represent the latest available measured hand and
%      finger configuration data, or it may be predicted configuration information
%      for the specified 'targetTime', computed via interpolation or extrapolation
%      from actual previously tracked configurations. This is dependent on the
%      specific hand tracker implementation of your XR system.
%
%      The following fields are mandatory as part of the returned state struct,
%      if hand tracking is supported and enabled and requested:
%
%      TODO
%
%      The following constants allow to index the returned set of 26 hand joints
%      by symbolic names for the different parts of the fingers and hand, or you
%      can use the numbers behind each symbolic name:
%
%        OVR.XR_HAND_JOINT_PALM = 0 + 1;
%        OVR.XR_HAND_JOINT_WRIST = 1 + 1;
%        OVR.XR_HAND_JOINT_THUMB_METACARPAL = 2 + 1;
%        OVR.XR_HAND_JOINT_THUMB_PROXIMAL = 3 + 1;
%        OVR.XR_HAND_JOINT_THUMB_DISTAL = 4 + 1;
%        OVR.XR_HAND_JOINT_THUMB_TIP = 5 + 1;
%        OVR.XR_HAND_JOINT_INDEX_METACARPAL = 6 + 1;
%        OVR.XR_HAND_JOINT_INDEX_PROXIMAL = 7 + 1;
%        OVR.XR_HAND_JOINT_INDEX_INTERMEDIATE = 8 + 1;
%        OVR.XR_HAND_JOINT_INDEX_DISTAL = 9 + 1;
%        OVR.XR_HAND_JOINT_INDEX_TIP = 10 + 1;
%        OVR.XR_HAND_JOINT_MIDDLE_METACARPAL = 11 + 1;
%        OVR.XR_HAND_JOINT_MIDDLE_PROXIMAL = 12 + 1;
%        OVR.XR_HAND_JOINT_MIDDLE_INTERMEDIATE = 13 + 1;
%        OVR.XR_HAND_JOINT_MIDDLE_DISTAL = 14 + 1;
%        OVR.XR_HAND_JOINT_MIDDLE_TIP = 15 + 1;
%        OVR.XR_HAND_JOINT_RING_METACARPAL = 16 + 1;
%        OVR.XR_HAND_JOINT_RING_PROXIMAL = 17 + 1;
%        OVR.XR_HAND_JOINT_RING_INTERMEDIATE = 18 + 1;
%        OVR.XR_HAND_JOINT_RING_DISTAL = 19 + 1;
%        OVR.XR_HAND_JOINT_RING_TIP = 20 + 1;
%        OVR.XR_HAND_JOINT_LITTLE_METACARPAL = 21 + 1;
%        OVR.XR_HAND_JOINT_LITTLE_PROXIMAL = 22 + 1;
%        OVR.XR_HAND_JOINT_LITTLE_INTERMEDIATE = 23 + 1;
%        OVR.XR_HAND_JOINT_LITTLE_DISTAL = 24 + 1;
%        OVR.XR_HAND_JOINT_LITTLE_TIP = 25 + 1;
%
%      TODO, IMPLEMENTATION OF FEATURE NOT YET FINISHED.
%
%
% More flags to follow...
%
%
% eyePose = PsychOpenXR('GetEyePose', hmd, renderPass [, userTransformMatrix][, targetTime]);
% - Return a struct 'eyePose' which contains various useful bits of information
% for 3D stereoscopic rendering of the stereo view of one eye, based on head or
% eye tracking data. This function provides essentially the same information as
% the 'PrepareRender' function, but only for one eye. Therefore you will need
% to call this function twice, once for each of the two renderpasses, at the
% beginning of each renderpass. NOTE: The function only exists for backwards
% compatibility with existing older VR/AR/XR scripts. It does *not* provide any
% benefit on OpenXR VR/AR/XR devices, but instead may cause a performance decrease
% when used! It is recommended to not use it in new scripts.
%
% 'hmd' is the handle of the device which delivers tracking data and receives the
% rendered content for display.
%
% 'renderPass' defines if information should be returned for the 1st renderpass
% (renderPass == 0) or for the 2nd renderpass (renderPass == 1). The driver will
% decide for you if the 1st renderpass should render the left eye and the 2nd
% pass the right eye, or if the 1st renderpass should render the right eye and
% then the 2nd renderpass the left eye. The ordering depends on the properties
% of the video display of your device, specifically on the video scanout order:
% Is it right to left, left to right, or top to bottom? For each scanout order
% there is an optimal order for the renderpasses to minimize perceived lag.
%
% 'targetTime' is the expected time at which the rendered frame will display.
% This could potentially be used by the driver to make better predictions of
% camera/eye/head pose for the image. Omitting the value will use a target time
% that is implementation specific, but known to give generally good results.
%
% 'userTransformMatrix' is an optional 4x4 right hand side (RHS) transformation
% matrix. It gets applied to the tracked head pose as a global transformation
% before computing results based on head pose like, e.g., camera transformations.
% You can use this to translate the "virtual head" and thereby the virtual eyes/
% cameras in the 3D scene, so observer motion is not restricted to the real world
% tracking volume of your headset. A typical 'userTransformMatrix' would be a
% combined translation and rotation matrix to position the observer at some
% 3D location in space, then define his/her global looking direction, aka as
% heading angle, yaw orientation, or rotation around the y-axis in 3D space.
% Head pose tracking results would then operate relative to this global transform.
% If 'userTransformMatrix' is left out, it will default to an identity transform,
% in other words, it will do nothing.
%
% Return values in struct 'eyePose':
%
% 'eyeIndex' The eye for which this information applies. 0 = Left eye, 1 = Right eye.
%            You can pass 'eyeIndex' into Screen('SelectStereoDrawBuffer', win, eyeIndex)
%            to select the proper eye target render buffer.
%
% 'modelView' is a 4x4 RHS OpenGL matrix which can be directly used as OpenGL
%             GL_MODELVIEW matrix for rendering the scene.
%
% 'cameraView' contains a 4x4 RHS camera matrix which describes position and
%              orientation of the "eye camera" relative to the world reference
%              frame. It is the inverse of eyePose.modelView. This matrix can
%              be directly used to define the camera for rendering of complex
%              3D scenes with the Horde3D 3D engine or other engines which want
%              absolute camera pose instead of the inverse matrix.
%
%
% oldType = PsychOpenXR('TrackingOriginType', hmd [, newType]);
% - Specify the type of tracking origin for OpenXR device 'hmd'.
% This returns the current type of tracking origin in 'oldType'.
% Optionally you can specify a new tracking origin type as 'newType'.
% Type must be either:
% 0 = Origin is at eye height (device height).
% 1 = Origin is at floor height.
% The eye height or floor height gets defined by the system during
% sensor calibration, possibly guided by some OpenXR GUI control application.
%
%
% PsychOpenXR('SetupRenderingParameters', hmd [, basicTask='Tracked3DVR'][, basicRequirements][, basicQuality=0][, fov=[HMDRecommended]][, pixelsPerDisplay=1])
% - Query the device 'hmd' for its properties and setup internal rendering
% parameters in preparation for opening an onscreen window with PsychImaging
% to display properly on the device. See section about 'AutoSetupHMD' above for
% the meaning of the optional parameters 'basicTask', 'basicRequirements'
% and 'basicQuality'.
%
% 'fov' Optional field of view in degrees, from line of sight: [leftdeg, rightdeg,
% updeg, downdeg]. If 'fov' is omitted, the device runtime will be asked for a
% good default field of view and that will be used. The field of view may be
% dependent on the settings in the device user profile of the currently selected
% user. Note: This parameter is ignored with the current driver in 3D mode, ie.
% basicTask '3DVR' or 'Tracked3DVR' on any standard OpenXR 1.0 backend, as the
% driver auto-selects optimal field of view for 3D perspective correct rendering.
% In the 2D modes 'Monoscopic' or 'Stereoscopic', or in 3D mode with stopped loop,
% the specified field of view will be used for calculating position and size of the
% 2D views in use. If omitted the driver will try to auto-detect a meaningful field
% of view. If that is impossible, it will use the hard-coded values of an Oculus
% Rift CV-1 HMD as fallback. In all these cases, the 'PerEyeFOV' keyword will alter
% the method of default view setup from one that only takes the minimal vertical
% field of view min(updeg, downdeg) into account and calculates horizontal size to
% preserve stimulus image aspect ratio, to one that takes all field of view parameters
% into account, even if it causes distortions of shapes.
%
% 'pixelsPerDisplay' Ratio of the number of render target pixels to display pixels
% at the center of distortion. Defaults to 1.0 if omitted. Lower values can
% improve performance, at lower quality.
%
%
% PsychOpenXR('SetBasicQuality', hmd, basicQuality);
% - Set basic level of quality vs. required GPU performance.
%
%
% oldSetting = PsychOpenXR('SetFastResponse', hmd [, enable]);
% - Return old setting for 'FastResponse' mode in 'oldSetting',
% optionally disable or enable the mode via specifying the 'enable'
% parameter as 0 or greater than zero.
%
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%
% oldSetting = PsychOpenXR('SetTimeWarp', hmd [, enable]);
% - Return old setting for 'TimeWarp' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0.
%
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%
% oldSetting = PsychOpenXR('SetLowPersistence', hmd [, enable]);
% - Return old setting for 'LowPersistence' mode in 'oldSetting',
% optionally enable or disable the mode via specifying the 'enable'
% parameter as 1 or 0.
%
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%
% oldSettings = PsychOpenXR('PanelOverdriveParameters', hmd [, newparams]);
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%
% PsychOpenXR('SetHSWDisplayDismiss', hmd [, dismissTypes=1+2+4]);
% - Set how the user can dismiss the "Health and safety warning display".
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%
% [bufferSize, imagingFlags, stereoMode] = PsychOpenXR('GetClientRenderingParameters', hmd);
% - Retrieve recommended size in pixels 'bufferSize' = [width, height] of the client
% renderbuffer for each eye for rendering to the device. Returns parameters
% previously computed by PsychOpenXR('SetupRenderingParameters', hmd).
%
% Also returns 'imagingFlags', the required imaging mode flags for setup of
% the Screen imaging pipeline. Also returns the needed 'stereoMode' for the
% pipeline.
%
%
% needPanelFitter = PsychOpenXR('GetPanelFitterParameters', hmd);
% - 'needPanelFitter' is 1 if a custom panel fitter task is needed, and the 'bufferSize'
% from the PsychVRHMD('GetClientRenderingParameters', hmd); defines the size of the
% clientRect for the onscreen window. 'needPanelFitter' is 0 if no panel fitter is
% needed.
%
%
% [winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample, screenid] = PsychOpenXR('OpenWindowSetup', hmd, screenid, winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample);
% - Compute special override parameters for given input/output arguments, as needed
% for a specific device. Take other preparatory steps as needed, immediately before the
% Screen('OpenWindow') command executes. This is called as part of PsychImaging('OpenWindow'),
% with the user provided hmd, screenid, winRect etc.
%
%
% isOutput = PsychOpenXR('IsHMDOutput', hmd, scanout);
% - Returns 1 (true) if 'scanout' describes the video output to which the
% device 'hmd' is connected. 'scanout' is a struct returned by the Screen
% function Screen('ConfigureDisplay', 'Scanout', screenid, outputid);
% This allows probing video outputs to find the one which feeds the device.
% Deprecated: This function does nothing. It just exists for (backwards)
% compatibility with PsychVRHMD.
%
%

% Global GL handle for access to OpenGL constants needed in setup:
global GL; %#ok<*GVMIS>
global OVR;

persistent firsttime;
persistent fmonado;
persistent oldShieldingLevel;
persistent hmd;

if nargin < 1 || isempty(cmd)
  help PsychOpenXR;
  fprintf('\n\nAlso available are functions from PsychOpenXRCore:\n');
  PsychOpenXRCore;
  return;
end

% Fast-Path function 'PresentFrame' - Present frame to VR compositor,
% wait for present completion, inject present completion timestamps:
if cmd == 1
  handle = varargin{1};
  tWhen = varargin{2};

  % Actual stimulus onset target time provided by user-script? And we know
  % that we need MT for proper timing, but this is the first time we get
  % evidence we actually need proper timing?
  if (tWhen ~= 0) && (hmd{handle}.multiThreaded == 1) && ...
     (hmd{handle}.needMTForTiming == -1 || hmd{handle}.needMTForTimestamping == -1)
    % Yes! Let's define the remainder of the session as needing full MT,
    % and enable full MT:
    if hmd{handle}.needMTForTiming == -1
      hmd{handle}.needMTForTiming = 1;
    end

    if hmd{handle}.needMTForTimestamping == -1
      hmd{handle}.needMTForTimestamping = 1;
    end

    hmd{handle}.multiThreaded = 2;
    if ~PsychOpenXRCore('PresenterThreadEnable', hmd{handle}.handle)
      PsychOpenXRCore('PresenterThreadEnable', hmd{handle}.handle, 1);
    end
    fprintf('PsychOpenXR-INFO: Need for proper timing and timestamping detected. Enabling multi-threading for remainder of session\n');
    fprintf('PsychOpenXR-INFO: to facilitate this. Performance will be reduced in exchange for better timing/timestamping.\n');
  end

  % Present and timestamp:
  [predictedOnset, hmd{handle}.predictedFutureOnset] = PsychOpenXRCore('PresentFrame', hmd{handle}.handle, tWhen);

  % Assign return values for vblTime and stimulusOnsetTime for Screen('Flip'):
  Screen('Hookfunction', hmd{handle}.win, 'SetOneshotFlipResults', '', predictedOnset, predictedOnset);

  % PresentFrame successfull and not skipped?
  if predictedOnset >= 0
    % Get fresh set of backing textures for next Screen() post-flip drawing/render
    % cycle from the OpenXR texture swap chains:
    texLeft = PsychOpenXRCore('GetNextTextureHandle', hmd{handle}.handle, 0);
    if hmd{handle}.StereoMode > 0
      texRight = PsychOpenXRCore('GetNextTextureHandle', hmd{handle}.handle, 1);
    else
      texRight = [];
    end

    if ~hmd{handle}.multiThreaded || ~hmd{handle}.needWinThreadingWa1
      % Attach them as new backing textures, detach the previously bound ones, so they
      % are ready for submission to the VR compositor:
      Screen('Hookfunction', hmd{handle}.win, 'SetDisplayBufferTextures', '', texLeft, texRight);
    end
  end

  % Workaround for SteamVR bug on Linux needed? TODO: Is this still needed?
  if hmd{handle}.steamXROpenGLWa
    % SteamVR leaves our OpenGL context in a disabled state after
    % 'EndFrameRender' aka xrReleaseSwapchainImages(), which would
    % cause OpenGL errors. The following 'GetWindowInfo' forces our
    % OpenGL context back on to resolve the problem:
    Screen('GetWindowInfo', hmd{handle}.win, -1);
  end

  return;
end

% Fast-Path function 'Cleanup' - Cleans up before onscreen window close/GL shutdown:
if cmd == 2
  handle = varargin{1};

  % Workaround for Oculus runtime on Windows, at least for NVidia gpu's, possibly others:
  while glGetError()
  end

  % Reattach old backing textures, so onscreen window can get properly destroyed:
  Screen('Hookfunction', hmd{handle}.win, 'SetDisplayBufferTextures', '', hmd{handle}.oldglLeftTex, hmd{handle}.oldglRightTex);
  hmd{handle}.oldglLeftTex = [];
  hmd{handle}.oldglRightTex = [];

  return;
end

% Check if Monado metrics support is available for our Monado timestamping hack:
if isempty(fmonado)
  fmonado = 0;

  % On Linux our own custom version of Monado can support metrics based
  % timestamping under the right conditions:
  if IsLinux
    % Does the metrics fifo file exist at the expected location? And monado-service is running?
    monadometricsfile = getenv('XRT_METRICS_FILE');
    [rc, ~] = system('pidof monado-service');
    if exist(monadometricsfile, 'file') && (rc == 0)
      % Yes. Try to open it. monado-service must have been launched with proper
      % launch options, ie.:
      % XRT_METRICS_FILE=/tmp/monado.protobuf XRT_COMPOSITOR_FORCE_GPU_INDEX=1 monado-service
      fprintf('PsychOpenXR-INFO: Waiting for monado-service connection to become ready...\n');
      fmonado = fopen(monadometricsfile, 'rb');
      if fmonado == -1
        % Failed to open file - No Monado metrics support in this session.
        fmonado = 0;
        warning('PsychOpenXR-INFO: monado-service is running and Monado metrics file exists, but can not be opened! Metrics timestamping disabled!');
      elseif isempty(getenv('MONADO_STARTED'))
        % If this is the first invocation since monado-service was launched, the
        % service may have blocked until our fopen(), so it will only now commence
        % its startup. Give it plenty seconds to get fully up and running:
        WaitSecs(10);

        % Make sure we skip this wait on a future invocation, to not make
        % the citizens restless:
        setenv('MONADO_STARTED', '1');
      end
    end

    if ~fmonado
        % No Monado metrics support - clear the marker env var, so PsychOpenXRCore
        % knows not to bother:
        setenv('XRT_METRICS_FILE', '');
    end
  end
end

if strcmpi(cmd, 'PrepareRender')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:PrepareRender: Specified handle does not correspond to an open device!');
  end

  % Make local working copy of current hmd total state:
  myhmd = hmd{myhmd.handle};

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    userTransformMatrix = varargin{2};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Valid: Get request mask of information to return:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    reqmask = varargin{3};
  else
    % Default to: Provide basic tracking status flags, and directly useable
    % GL_MODELVIEW matrices for the cameras for rendering the left- and right-eye:
    reqmask = 1;
  end

  % Get target time for predicted camera poses, head poses etc.:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    targetTime = varargin{4};
  else
    % Default: Provide predicted value for the midpoint of the next video frame:
    targetTime = [];
  end

  % Eyetracking data via SRAnipalMex requested?
  if bitand(reqmask, 4) && bitand(myhmd.eyeTrackingSupported, 1024)
    % Get latest sample from SRAnipalMex:
    srLastSample = [];
    srCalibNeeded = 0;
    [srSample, srNeedCalib, srImprove] = SRAnipalMex(5);
    srCalibNeeded = srCalibNeeded + srNeedCalib;
    while ~isempty(srSample)
      srLastSample = srSample;
      [srSample, srNeedCalib, srImprove] = SRAnipalMex(5);
      srCalibNeeded = srCalibNeeded + srNeedCalib;
    end

    while isempty(srLastSample)
      [srLastSample, srNeedCalib, srImprove] = SRAnipalMex(5);
      srCalibNeeded = srCalibNeeded + srNeedCalib;
    end

    if PsychOpenXRCore('Verbosity') > 2
      if srCalibNeeded
        fprintf('PsychOpenXR-INFO: At time %f seconds - SRAnipal eyetracker suggests a calibration might be needed.\n', GetSecs);
      end

      for i=1:length(srImprove)
        fprintf('PsychOpenXR-INFO: SRAnipal eyetracker suggests tracking improvement %i\n', srImprove(i));
      end
    end

    % Convert time in msecs to GetSecs time in seconds:
    [gaze(1).Time, gaze(2).Time, gaze(3).Time] = deal(srLastSample(2) / 1000);

    % Map eye openess to tracked status:
    if srLastSample(9) > 0 && norm(srLastSample(3:5)) > 0.1
        gaze(1).Status = 3; %#ok<*AGROW>
    else
        gaze(1).Status = 1;
    end

    if srLastSample(19) > 0 && norm(srLastSample(13:15)) > 0.1
        gaze(2).Status = 3; %#ok<*AGROW>
    else
        gaze(2).Status = 1;
    end

    if gaze(1).Status == 3 && gaze(2).Status == 3
        gaze(3).Status = 3; %#ok<*AGROW>
    else
        gaze(3).Status = 1;
    end

    if 1
      % Swap eye center / translation between left eye and right eye, to compensate
      % for a bug in the SRAnipal runtime on at least HTC Vive Pro Eye:
      gaze(1).GazePose = [srLastSample(16:18) / 1000, srLastSample(3:5)];
      gaze(2).GazePose = [srLastSample(6:8) / 1000, srLastSample(13:15)];
      % Need to switch sign of x-axis position of cyclops eye due to HTC eye switching bug above!
      srLastSample(26) = -srLastSample(26);
    else
      % Normal assignment for left and right eye:
      gaze(1).GazePose = [srLastSample(6:8) / 1000, srLastSample(3:5)]; %#ok<UNRCH> 
      gaze(2).GazePose = [srLastSample(16:18) / 1000, srLastSample(13:15)];
    end

    gaze(3).GazePose = [srLastSample(26:28) / 1000, srLastSample(23:25)];

    gaze(1).gazeEyeOpening = srLastSample(9);
    gaze(2).gazeEyeOpening = srLastSample(19);
    gaze(3).gazeEyeOpening = srLastSample(29);

    gaze(1).gazeEyePupilDiameter = srLastSample(10);
    gaze(2).gazeEyePupilDiameter = srLastSample(20);
    gaze(3).gazeEyePupilDiameter = srLastSample(30);

    % Pupil position in normalized 2D sensor space:
    gaze(1).sensor2D = srLastSample(11:12);
    gaze(2).sensor2D = srLastSample(21:22);
    gaze(3).sensor2D = srLastSample(31:32);

    % Get predicted tracking state and hand controller poses (if supported) for targetTime:
    [state, touch, ~, hands] = PsychOpenXRCore('GetTrackingState', myhmd.handle, targetTime, reqmask - 4);
  else
    % Get predicted eye pose, tracking state and hand controller poses (if supported) for targetTime:
    [state, touch, gaze, hands] = PsychOpenXRCore('GetTrackingState', myhmd.handle, targetTime, reqmask);
  end

  hmd{myhmd.handle}.state = state;

  % Always return basic tracking status:
  result.tracked = state.Status;
  result.SessionState = state.SessionState;

  if bitand(state.SessionState, 8)
    % DisplayLost condition! This is an unrecoverable error. Trigger a forced session shutdown:
    error('OpenXR runtime reports loss of hardware (disconnected?) or serious malfunction. Forcing abort of this session.');
  end

  % As a bonus we return the raw eye pose vectors, given that we have them anyway:
  result.rawEyePose7{1} = state.EyePoseLeft;
  result.rawEyePose7{2} = state.EyePoseRight;

  % Want matrices which take a usercode supplied global transformation into account?
  if bitand(reqmask, 1)
    % Yes: We need tracked + predicted head pose, so we can apply the user
    % transform, and then per-eye transforms:

    % Compute per-eye global pose matrices:
    result.cameraView{1} = userTransformMatrix * eyePoseToCameraMatrix(state.EyePoseLeft);
    result.cameraView{2} = userTransformMatrix * eyePoseToCameraMatrix(state.EyePoseRight);

    % Compute inverse matrices, useable as OpenGL GL_MODELVIEW matrices for rendering:
    result.modelView{1} = inv(result.cameraView{1});
    result.modelView{2} = inv(result.cameraView{2});

    % Convert both eye poses into a head pose, both as 7-component local vector and
    % as 4x4 OpenGL right handed reference frame matrix. This is tricky or mildly wrong.
    % As head position we use the mid-point between the eye locations, ie. half-distance
    % [norm(dv(1:3)) * 0.5, 0, 0]. As orientation we use the orientation of the left eye
    % state.EyePoseLeft quaternion components 4-7. Iow. we define head pose as a copy of left eye,
    % shifted half-way along the line segment connecting the optical center of left and
    % right eye. For devices without gaze tracking, this is a reasonable approximation, as
    % they track device position and derive eye pose from device pose, so we just undo that. For
    % a device with gaze tracking that would use gaze info to compute different eye orientation
    % for each eye, this would go wrong, and something more clever would be needed, to at
    % least get a roughly correct approximation of device orientation, although an exactly
    % correct result is impossible to obtain from the two eye poses...
    dv = state.EyePoseRight - state.EyePoseLeft;
    [result.localHeadPoseMatrix, result.headPose] = eyePoseToCameraMatrix(state.EyePoseLeft, [norm(dv(1:3)) * 0.5, 0, 0]);

    % Premultiply usercode provided global transformation matrix for globalHeadPoseMatrix:
    result.globalHeadPoseMatrix = userTransformMatrix * result.localHeadPoseMatrix;
  end

  % Want matrices with tracked position and orientation of touch controllers ~ users hands?
  if bitand(reqmask, 2)
    % Yes: We need tracked + predicted hand pose, so we can apply the user
    % transform, and then per-eye transforms:

    % OpenXR 1.x SDK/runtime supports exactly 2 tracked touch controllers atm. to track users hands:
    for i=1:2
      result.handStatus(i) = touch(i).Status;

      % Bonus feature: HandPoses as 7 component translation + orientation quaternion vectors:
      result.handPose{i} = touch(i).HandPose;

      % Convert hand pose vector to 4x4 OpenGL right handed reference frame matrix:
      result.localHandPoseMatrix{i} = eyePoseToCameraMatrix(touch(i).HandPose);

      % Premultiply usercode provided global transformation matrix:
      result.globalHandPoseMatrix{i} = userTransformMatrix * result.localHandPoseMatrix{i};

      % Compute inverse matrix, maybe useable for collision testing / virtual grasping of virtual bjects:
      % Provides a transform that maps absolute geometry into geometry as "seen" from the pov of the hand.
      result.globalHandPoseInverseMatrix{i} = inv(result.globalHandPoseMatrix{i});
    end
  end

  if bitand(reqmask, 4)
    % Store raw gaze data provided by eyetracker driver in gazeRaw, can be empty:
    result.gazeRaw = gaze;

    if ~isempty(gaze)
      % Process each entry:
      for i = 1:length(gaze)
        result.gazeStatus(i) = gaze(i).Status;
        % TODO FIXME: Replacing 0 by NaN should be done in PsychOpenXRCore. Fix
        % after initial release in PTB 3.0.19.5!
        if gaze(i).Time > 0
          result.gazeTime(i) = gaze(i).Time;
        else
          result.gazeTime(i) = NaN;
        end
        result.gazeConfidence(i) = NaN;
        result.gazeEyeOpening(i) = NaN;
        result.gazeEyePupilDiameter(i) = NaN;
        result.gazeEyeConvergenceDistance = NaN;

        % Gaze tracked for this eye?
        if (gaze(i).Status == 3) && ~bitand(myhmd.eyeTrackingSupported, 1024)
          % Compute and return local gaze orientation matrix, encoding an
          % eye local reference frame, within the reference frame of the
          % XR display device (HMD):
          gazeM = eyePoseToCameraMatrix(gaze(i).GazePose);
        else
          % Not tracked or 3rd party eyetracker api. Init to a neutral identity matrix:
          gazeM = diag([1 1 1 1]);
        end

        % Valid, tracked sample from SRAnipalMex available?
        if bitand(myhmd.eyeTrackingSupported, 1024)
          if gaze(i).Status == 3
            % Override gazeM matrix with a fake matrix, based on SRAnipal data.
            % Only columns 3 and 4 for z-axis and position are valid, just enough:
            gazeM(1:3, 4) = gaze(i).GazePose(1:3);
            gazeM(1:3, 3) = gaze(i).GazePose(4:6);

            % Mysterious negation hack needed with SRAnipal:
            gazeM(1:3, 3) = -gazeM(1:3, 3);
          end

          % Store estimated eye opening and pupil diameter:
          result.gazeEyeOpening(i) = gaze(i).gazeEyeOpening;
          result.gazeEyePupilDiameter(i) = gaze(i).gazeEyePupilDiameter;

          % Distance to point of eye convergence - ie. to point of fixation:
          result.gazeEyeConvergenceDistance = srLastSample(33);
        end

        % Invert the y-Rotation subvector: Why? I don't know! But without
        % it, vertical gaze vector is wrong with the HTC Vive Pro Eye.
        % Maybe a HTC SRAnipal runtime bug?
        if myhmd.needEyeTrackingYSwitch
          gazeM(2, 1:3) = -gazeM(2, 1:3);
        end

        % Disabled, as impossible to make compatible with other implementations:
        % result.gazeLocalMatNonPortable{i} = gazeM;

        % Compute gaze ray in XR device (HMD) local reference frame:
        result.gazeRayLocal{i}.gazeC = gazeM(1:3, 4);
        result.gazeRayLocal{i}.gazeD = gazeM(1:3, 3);

        % XR display device (HMD) tracking info available?
        if bitand(reqmask, 1)
          % Compute global gaze orientation matrix and gaze ray:
          gazeM = result.globalHeadPoseMatrix * gazeM;
          % Disabled, see gazeLocalMatNonPortable result.gazeGlobalMatNonPortable{i} = gazeM;
          result.gazeRayGlobal{i}.gazeC = gazeM(1:3, 4);
          result.gazeRayGlobal{i}.gazeD = gazeM(1:3, 3);
        end

        % Try to compute 2D gaze points in onscreen window coordinates:
        handle = myhmd.handle;
        use2DViews = PsychOpenXRCore('ViewType', hmd{handle}.handle) == 0;
        [winw, winh] = Screen('WindowSize', hmd{handle}.win);

        if use2DViews
          % Map gaze vectors to 2D views, which are symetric:

          % Get local gaze ray definition:
          tv = result.gazeRayLocal{i}.gazeC;
          dv = result.gazeRayLocal{i}.gazeD;

          % Get view parameters and compute definition matrix for quadView plane:
          if hmd{handle}.StereoMode > 0 && i == 2
            % Right eye in stereo mode - Choose right eye view:
            [vpos, vsize, vorient] = PsychOpenXRCore('View2DParameters', hmd{handle}.handle, 1);
          else
            % Left eye or cyclops eye in stereo mode, or pure mono mode - Choose left eye / mono view:
            [vpos, vsize, vorient] = PsychOpenXRCore('View2DParameters', hmd{handle}.handle, 0);
          end

          MV = eyePoseToCameraMatrix([vpos, vorient]);
          % Solve ray - plane intersection between gaze ray and quadView plane:
          GM = [MV(1:3, 1), MV(1:3, 2), -dv];
          GB = tv - MV(1:3, 4);
          gaze3D = (GM \ GB)'; % Faster and more accurate implementation of gaze3D = (inv(GM) * GB)';

          % Map to normalized 2D (x,y) position in view, range [0;1] inside views area:
          gaze2D = (((gaze3D(1:2) ./ (vsize / 2)) / 2) + 0.5);
          gaze2D(1) = gaze2D(1) * winw;
          gaze2D(2) = (1 - gaze2D(2)) * winh;

          % Assign as output:
          result.gazePos{i} = gaze2D;
        elseif bitand(reqmask, 1)
          % Map gaze vectors to 3D projection layers, which are often asymetric:

          % Get local gaze ray definition:
          tv = result.gazeRayGlobal{i}.gazeC;
          dv = result.gazeRayGlobal{i}.gazeD;

          % MT defines shift of 10 meters along negative z-axis of camera
          % reference frame:
          clipNear = 10;
          MT = diag([1 1 1 1]);
          MT(3,4) = -clipNear;

          % Define plane of projectionLayer to be -10 meters away from the
          % optical center of the virtual camera, ie. translated by MT. Why
          % 10 meters? Because small values give numerical instability and
          % wrong results:

          % Left eye view, mono view or cyclops view - anything other than right eye?
          if i ~= 2
            % Left eye/projectionLayer field of view:
            fov = hmd{handle}.fovL;
            MV = result.cameraView{1} * MT;
          else
            % Right eye/projectionLayer field of view:
            fov = hmd{handle}.fovR;
            MV = result.cameraView{2} * MT;
          end

          % Solve ray - plane intersection between gaze ray and projectionLayer plane:
          GM = [MV(1:3, 1), MV(1:3, 2), -dv];
          GB = tv - MV(1:3, 4);
          gaze3D = (GM \ GB)'; % Faster and more accurate implementation of gaze3D = (inv(GM) * GB)';

          % Compute left/right/up/down distance in projectionLayer plane
          % away from (0,0) 2D center, in meters. Instead of the real
          % plane, we use a bigger plane that is 10 meters shifted away, to
          % avoid numerical problems down the road. This takes the
          % asymetric view frustum of projectionLayers into account:
          lw = tan(fov(1)) * clipNear;
          rw = tan(fov(2)) * clipNear;
          th = tan(fov(3)) * clipNear;
          bh = tan(fov(4)) * clipNear;

          % Width and height of plane in meters:
          aw = rw - lw;
          ah = th - bh;

          % Map to normalized 2D (x,y) position in view, range [0;1] inside views area:
          gaze2D = (gaze3D(1:2) - [lw, bh]) ./ [aw, ah];
          gaze2D(1) = gaze2D(1) * winw;
          gaze2D(2) = (1 - gaze2D(2)) * winh;

          % Assign as output:
          result.gazePos{i} = gaze2D;
        else
          % Assign empty output:
          result.gazePos{i} = [];
        end
      end
    else
      warning('PsychOpenXR:PrepareRender: Eye gaze tracking data requested, but gaze tracking not supported or enabled!');
    end
  end

  % Articulated hand tracking data requested?
  if bitand(reqmask, 8)
    if ~hmd{myhmd.handle}.needHandTracking
      error('PsychOpenXR:PrepareRender: Articulated hand tracking data requested, but not supported or enabled!');
    end

    global tHandsMsecs
    handy = tic;
    % Store raw data returned from driver:
    result.handTrackingRaw = hands;

    for hand = 1:length(hands)
      result.trackedHandStatus(hand) = hands(hand).Tracked;
      jointsMatrix = hands(hand).Joints;
      result.trackedJoints(hand, :) = jointsMatrix(1, :) == 3;
      result.trackedJointsRadius(hand, :) = jointsMatrix(2, :);
      result.trackedJointsPosition(hand, 1:3, :) = jointsMatrix(3:5, :);
      result.trackedJointsOrientationQuat(hand, 1:4, :) = jointsMatrix(6:9, :);

      % Iterate over all joints:
      for j = 1:size(jointsMatrix, 2)
        % Joint tracked and valid?
        if result.trackedJoints(hand, j)
          % Convert j'th joint pose vector to 4x4 OpenGL right handed reference frame matrix:
          result.localJointPoseMatrix{hand, j} = eyePoseToCameraMatrix(jointsMatrix(3:9, j)');

          % Premultiply usercode provided global transformation matrix:
          result.globalJointPoseMatrix{hand, j} = userTransformMatrix * result.localJointPoseMatrix{hand, j};
        else
          % Nope: Assign identity matrices:
          result.localJointPoseMatrix{hand, j} = diag([1,1,1,1]);
          result.globalJointPoseMatrix{hand, j} = diag([1,1,1,1]);
        end
      end
    end
    % tHandsMsecs(end+1) = 1000 * toc(handy);
  end

  varargout{1} = result;

  return;
end

if strcmpi(cmd, 'GetEyePose')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:GetEyePose: Specified handle does not correspond to an open device!');
  end

  % Valid: Get view render pass for which to return information:
  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenXR:GetEyePose: Required ''renderPass'' argument missing.');
  end
  renderPass = varargin{2};

  % Get 'userTransformMatrix' if any:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    userTransformMatrix = varargin{3};
  else
    % Default: Identity transform to do nothing:
    userTransformMatrix = diag([1 1 1 1]);
  end

  % Get target time for predicted camera poses, head poses etc.:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    targetTime = varargin{4};
  else
    % Default: Choose predicted value for onset of the next presentation frame,
    % under the assumption that we hit the flip deadline for the next video frame:
    targetTime = [];
  end

  % No preferred order of eyes wrt. renderPass - use 1:1 mapping:
  result.eyeIndex = renderPass;

  % Use general tracking function to get eye poses:
  eyes = PsychOpenXRCore('GetTrackingState', myhmd.handle, targetTime, 1);

  % Select the proper eye pose vector, depending on renderPass:
  if renderPass == 0
    result.eyePose = eyes.EyePoseLeft;
  else
    result.eyePose = eyes.EyePoseRight;
  end

  % Convert eye pose vector to 4x4 right handed camera frame matrix:
  result.localEyePoseMatrix = eyePoseToCameraMatrix(result.eyePose);

  % Premultiply usercode provided global transformation matrix for per-eye global pose matrix for this eyeIndex:
  result.cameraView = userTransformMatrix * result.localEyePoseMatrix;

  % Compute inverse matrix, useable as OpenGL GL_MODELVIEW matrix for rendering:
  result.modelView = inv(result.cameraView);

  varargout{1} = result;

  return;
end

%if strcmpi(cmd, 'GetTrackersState')
%  myhmd = varargin{1};
%  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
%    error('PsychOpenXR:GetTrackersState: Specified handle does not correspond to an open device!');
%  end
%
%  varargout{1} = PsychOpenXRCore('GetTrackersState', myhmd.handle);
%
%  return;
%end

if strcmpi(cmd, 'GetInputState')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:GetInputState: Specified handle does not correspond to an open device!');
  end

  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenXR:GetInputState: Required ''controllerType'' argument missing.');
  end

  % Get input state from OpenXR:
  state = PsychOpenXRCore('GetInputState', myhmd.handle, double(varargin{2}));

  % Add some fields which are unsupported by OpenXR, but required for (backwards)
  % compatibility with PsychVRHMD. Make them simply copies of what we actually
  % get from the driver:
  state.TriggerNoDeadzone = state.Trigger;
  state.TriggerRaw = state.Trigger;
  state.GripNoDeadzone = state.Grip;
  state.GripRaw = state.Grip;
  state.ThumbstickNoDeadzone = state.Thumbstick;
  state.ThumbstickRaw = state.Thumbstick;

  varargout{1} = state;

  return;
end

if strcmpi(cmd, 'HapticPulse')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:HapticPulse: Specified handle does not correspond to an open device!');
  end

  if length(varargin) < 2 || isempty(varargin{2})
    error('PsychOpenXR:HapticPulse: Required ''controllerType'' argument missing.');
  end

  varargout{1} = PsychOpenXRCore('HapticPulse', myhmd.handle, double(varargin{2}), varargin{3:end});

  return;
end

if strcmpi(cmd, 'Start')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:Start: Specified handle does not correspond to an open device!');
  end

  if hmd{myhmd.handle}.switchTo2DViewsOnStop
      % Switch back to 3D projectionLayers, now that tracking is started in 3D mode:
      PsychOpenXRCore('ViewType', hmd{myhmd.handle}.handle, 1);
  end

  % Use of multi-threading only in stopped 3D mode? Then we need to stop thread now.
  if (hmd{myhmd.handle}.multiThreaded == 1) && PsychOpenXRCore('PresenterThreadEnable', hmd{myhmd.handle}.handle)
    % Stop thread:

    % Need Windows runtimes workaround?
    if hmd{myhmd.handle}.needWinThreadingWa1 && false
      texLeft = PsychOpenXRCore('GetNextTextureHandle', hmd{myhmd.handle}.handle, 0);
      if hmd{myhmd.handle}.StereoMode > 0
        texRight = PsychOpenXRCore('GetNextTextureHandle', hmd{myhmd.handle}.handle, 1);
      else
        texRight = [];
      end
    end

    % Shutdown thread, wait for it to be done:
    PsychOpenXRCore('PresenterThreadEnable', hmd{myhmd.handle}.handle, 0);

    if hmd{myhmd.handle}.needWinThreadingWa1 && false
      % Switch back to OpenXR swapchain backing textures:
      Screen('Hookfunction', hmd{myhmd.handle}.win, 'SetDisplayBufferTextures', '', texLeft, texRight);
    end
  end

  % Mark userscript driven tracking as active:
  PsychOpenXRCore('Start', hmd{myhmd.handle}.handle);

  return;
end

if strcmpi(cmd, 'Stop')
  % Get and validate handle - fast path open coded:
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:Stop: Specified handle does not correspond to an open device!');
  end

  % Use 2D quad views in 'Stop' mode?
  if hmd{myhmd.handle}.switchTo2DViewsOnStop
      % Switch to 2D quadView layers, now that tracking is stopped in 3D mode:
      PsychOpenXRCore('ViewType', hmd{myhmd.handle}.handle, 0);
  end

  % Use of multi-threading needed in stopped 3D mode? Either if we use
  % projection layers and they need MT updates, or if we switch to quad
  % views but they also need MT updates.
  if (hmd{myhmd.handle}.multiThreaded == 1) && hmd{myhmd.handle}.use3DMode && ...
     ((PsychOpenXRCore('NeedLocateForProjectionLayers', hmd{myhmd.handle}.handle) && ~hmd{myhmd.handle}.switchTo2DViewsOnStop) || ...
      (hmd{myhmd.handle}.switchTo2DViewsOnStop && hmd{myhmd.handle}.needMTFor2DQuadViews)) && ...
     ~PsychOpenXRCore('PresenterThreadEnable', hmd{myhmd.handle}.handle)

    % Need Windows runtimes workaround?
    if hmd{myhmd.handle}.needWinThreadingWa1 && false
      % Switch back to Screen's own backing textures:
      Screen('Hookfunction', hmd{myhmd.handle}.win, 'SetDisplayBufferTextures', '',hmd{myhmd.handle}.oldglLeftTex, hmd{myhmd.handle}.oldglRightTex);
    end

    % Start thread:
    PsychOpenXRCore('PresenterThreadEnable', hmd{myhmd.handle}.handle, 1);
  end

  % Mark userscript driven tracking as inactive:
  PsychOpenXRCore('Stop', hmd{myhmd.handle}.handle);

  return;
end

if strcmpi(cmd, 'VRAreaBoundary')
  myhmd = varargin{1};
  if ~PsychOpenXR('IsOpen', myhmd)
    error('VRAreaBoundary: Passed in handle does not refer to a valid and open device.');
  end

  % Query size of play area, build bounding rect of a valid area, otherwise return []:
  [~, spaceSize] = PsychOpenXRCore('ReferenceSpaceType', myhmd.handle);
  if ~isempty(spaceSize)
    rw = spaceSize(1);
    rh = spaceSize(2);
    playAreaBounds = [[-rw/2; 0; rh/2], [-rw/2; 0; -rh/2], [rw/2; 0; -rh/2], [rw/2; 0; rh/2]];
  else
    playAreaBounds = [];
  end

  % Return 0 for isVisible, because we simply don't know:
  [varargout{1}, varargout{2}, varargout{3}] = deal(0, playAreaBounds, playAreaBounds);
  return;
end

if strcmpi(cmd, 'TrackingOriginType')
  myhmd = varargin{1};
  if ~((length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open)
    error('PsychOpenXR:TrackingOriginType: Specified handle does not correspond to an open device!');
  end

  varargout{1} = PsychOpenXRCore('TrackingOriginType', myhmd.handle, varargin{2:end});

  return;
end

if strcmpi(cmd, 'Supported')
  % Check if the OpenXR runtime 1+ is supported and active on this
  % installation, so it can be used to open connections to real HMDs,
  % or at least to emulate a device for simple debugging purposes:
  try
    if exist('PsychOpenXRCore', 'file') && PsychOpenXRCore('GetCount') > 0
      varargout{1} = 1;
    else
      varargout{1} = 0;
    end
  catch
    varargout{1} = 0;
  end
  return;
end

% Autodetect first connected device and open a connection to it. Open a
% emulated one, if none can be detected. Perform basic setup with
% default configuration, create a proper PsychImaging task.
if strcmpi(cmd, 'AutoSetupHMD')
  % Do we have basic runtime support?
  if ~PsychOpenXR('Supported')
    % Nope: Game over.
    fprintf('PsychOpenXR:AutoSetupHMD: Could not initialize OpenXR driver. Game over!\n');

    % Return an empty handle to signal lack of XR device support to caller,
    % so caller can cope with it somehow:
    varargout{1} = [];
    return;
  end

  % Basic task this device should fulfill:
  if length(varargin) >= 1 && ~isempty(varargin{1})
    basicTask = varargin{1};
  else
    basicTask = '';
  end

  % Basic basicRequirements to choose:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicRequirements = varargin{2};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicQuality = varargin{3};
  else
    basicQuality = [];
  end

  % XR device selection:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    deviceIndex = varargin{4};
    newhmd = PsychOpenXR('Open', deviceIndex);
  else
    % Check if at least one OpenXR device is connected and available:
    if PsychOpenXR('GetCount') > 0
      % Yes. Open and initialize connection to first detected device:
      fprintf('PsychOpenXR: Opening the first connected OpenXR device.\n');
      newhmd = PsychOpenXR('Open', 0);
    else
      % Device emulation not possible:
      fprintf('PsychOpenXR: No OpenXR device detected. Game over.\n');
      varargout{1} = [];
      return;
    end
  end

  % Trigger an automatic device close at onscreen window close for the device display window:
  PsychOpenXR('SetAutoClose', newhmd, 1);

  % Setup default rendering parameters:
  PsychOpenXR('SetupRenderingParameters', newhmd, basicTask, basicRequirements, basicQuality);

  % Add a PsychImaging task to use this device with the next opened onscreen window:
  PsychImaging('AddTask', 'General', 'UseVRHMD', newhmd);

  % Return the device handle:
  varargout{1} = newhmd;

  % Ready.
  return;
end

if strcmpi(cmd, 'SetAutoClose')
  myhmd = varargin{1};

  if ~PsychOpenXR('IsOpen', myhmd)
    error('PsychOpenXR:SetAutoClose: Specified handle does not correspond to an open device!');
  end

  % Assign autoclose flag:
  hmd{myhmd.handle}.autoclose = varargin{2};

  return;
end

if strcmpi(cmd, 'SetHSWDisplayDismiss')
  myhmd = varargin{1};

  if ~PsychOpenXR('IsOpen', myhmd)
    error('PsychOpenXR:SetHSWDisplay: Specified handle does not correspond to an open device!');
  end

  % Method of dismissing HSW display:
  if length(varargin) < 2 || isempty(varargin{2})
    % Default is keyboard, mouse click, or device tap:
    hmd{myhmd.handle}.hswdismiss = 1 + 2 + 4;
  else
    hmd{myhmd.handle}.hswdismiss = varargin{2};
  end

  return;
end

% Open a device:
if strcmpi(cmd, 'Open')
  if isempty(firsttime)
    firsttime = 1;
    fprintf('Copyright (c) 2022-2024 Mario Kleiner. Licensed to you under the MIT license.\n');
    fprintf('Our underlying PsychOpenXRCore mex driver builds against the Khronos OpenXR SDK public\n');
    fprintf('headers, and links against the OpenXR open-source dynamic loader, to implement the\n');
    fprintf('interface to a system-installed OpenXR runtime. These components are dual-licensed by\n');
    fprintf('Khronos under Apache 2.0 and MIT license: SPDX license identifier “Apache-2.0 OR MIT”\n\n');
  end

  [handle, modelName, runtimeName, hasEyeTracking, hasHandTracking] = PsychOpenXRCore('Open', varargin{:});

  newhmd.handle = handle;
  newhmd.driver = @PsychOpenXR;
  newhmd.type   = 'OpenXR';
  newhmd.subtype = runtimeName;
  newhmd.open = 1;
  newhmd.modelName = modelName;
  newhmd.separateEyePosesSupported = 0;
  newhmd.videoRefreshDuration = 0;
  newhmd.win = [];
  newhmd.handTrackingSupported = 1;
  newhmd.hapticFeedbackSupported = 1;
  newhmd.VRControllersSupported = 1;
  newhmd.controllerTypes = 0;
  newhmd.eyeTrackingSupported = hasEyeTracking;
  newhmd.needEyeTracking = 0;
  newhmd.articulatedHandTrackingSupported = hasHandTracking;
  newhmd.needHandTracking = 0;

  % Usually HMD tracking also works for mono display mode:
  newhmd.noTrackingInMono = 0;

  % Default to multiThreaded allowed:
  newhmd.multiThreaded = 1;

  % No need for MT for pure 2D mode either, aka use of quadViews, by default:
  newhmd.needMTFor2DQuadViews = 0;

  % No need for MT by default for Monado as long as Metrics logging is not used:
  newhmd.needMTForMonadoMetricsFifo = 0;

  % SteamVR OpenXR runtime needs a workaround for not properly
  % managing its OpenGL context sometimes. Needed on Linux with
  % SteamVR 1.24.6, but not on Windows:
  if IsLinux && strcmp(runtimeName, 'SteamVR/OpenXR')
    newhmd.steamXROpenGLWa = 1;
  else
    newhmd.steamXROpenGLWa = 0;
  end

  % Windows OpenXR runtimes need a special workaround in multi-threaded
  % mode to deal with severe limitations of MS-Windows OpenGL-DirectX
  % interop extension (WGL_NV_DX_interop) wrt. use of Direct3D interop
  % textures shared across multiple OpenGL contexts. Essentially, only one
  % OpenGL context at a time can lock and use such a texture, but we don't
  % have any control over locking, as this is hidden inside the OpenXR
  % runtimes (xrAcquire/Wait/ReleaseSwapchainImage implementations). With
  % the "OpenXR OpenGL work context on one thread only at a time" - which
  % is neccessarily the presenterThread in multi-threaded mode, makes it
  % almost impossible to also use such a OpenXR swapchain image texture as
  % finalizedFBO backing for Screen's stimulus rendering and post-
  % processing --> Resource locking disasters and other monsters will come
  % out! We work around this by keeping the XrSwapchain textures away from
  % Screen: Instead we use Screen's own backing textures for the
  % finalizedFBO's, only use OpenXR textures in the presenterThread, and
  % then inside the presenterThreads releaseImages function, we copy the
  % rendered stimulus from Screen's finalizedFBO texture to the OpenXR
  % swapchain texture -- one extra full stimulus image copy per present!
  % Not good for performance, but this way Screen does not have to touch
  % OpenXR stuff, and the OpenXR thread's bound OpenXR work OpenGL context
  % can read from the texture shared with Screen, and write to the OpenXR
  % textures. Cfe. special code in PsychOpenXRCore's releaseTextureHandles()
  % routine. Here we need delicate switching between the two modes of
  % operation.
  %
  % So far the theory: In practice, this only fixes mayhem on the OculusVR
  % runtime, but SteamVR still shits itself when using a secondary OpenGL
  % userspace rendering context via Screen('Begin/EndOpenGL'). May be a
  % related bug or not, but this is not it yet...
  %
  % Therefore use the workaround on OculusVR for now, but not on SteamVR:
  if IsWin && strcmp(runtimeName, 'Oculus')
    % The land of awful OpenGL-Direct3D interactions and buggy runtimes...
    newhmd.needWinThreadingWa1 = 1;
    % HMD tracking does not work for mono display mode as of OculusVR runtime 1.81.0.
    newhmd.noTrackingInMono = 1;
  else
    % Linux, where things are better, due to use of OpenGL-Vulkan interop,
    % or no need for interop at all, if XR compositors are written in
    % OpenGL. Also for SteamVR on Windows, where the workaround does not
    % help at all:
    newhmd.needWinThreadingWa1 = 0;
  end

  % Monado OpenXR runtime does not need frequent tracking to keep
  % projection layers stable and free of jitter/jerk/timeout warnings.
  if ~isempty(strfind(runtimeName, 'Monado'))
    % Monado or similar advanced: No need for this - Shaves off some
    % millisecond from a multi-threaded / not client-tracked loop and gives
    % extra visual stability:
    PsychOpenXRCore('NeedLocateForProjectionLayers', handle, 0);

    % Also no need for MT for timing (bravo Monado, you are great!):
    newhmd.needMTForTiming = 0;

    % We need MT for timestamping if we can't use tracy/metrics hacks, or a proper
    % to-be-drafted-and-prototyped Monado specifc XR timestamping extension:
    newhmd.needMTForTimestamping = -1;

    % Metrics timestamping available?
    if fmonado > 0
      % Got the file opened. That means Monado is running and properly set up for
      % Metrics logging into our fifo file and we can use the special Metrics
      % timestamping. Unfortunately when monado-service has been started with
      % Metrics output to our fifo file, we need to read data from that fifo
      % pretty much constantly, as otherwise the fifo - which has a limited capacity
      % of 1 MB - will get full and block quite quickly and things to sideways! The
      % only way to guarantee frequent enough reads is to drive this with our MT
      % thread, so we need MT at all time as soon as Monado metrics mode is active:
      newhmd.needMTForTimestamping = 0;
      newhmd.needMTForMonadoMetricsFifo = 1;
    end
  else
    % Less advanced: Need tracking update, and multi-threading if the
    % client does not use active fast tracking:
    PsychOpenXRCore('NeedLocateForProjectionLayers', handle, 1);

    % Also need multi-threading MT for timing or timestamping:
    newhmd.needMTForTiming = -1;
    newhmd.needMTForTimestamping = -1;
  end

  % SteamVR on Windows, with Oculus VR backend for Oculus HMDs?
  if IsWin && strcmpi(newhmd.modelName, 'SteamVR/OpenXR : oculus')
    % Even 2D modes with quadViews need a thread to keep them stable!
    newhmd.needMTFor2DQuadViews = -1;
  end

  % Switch of y rotation axis needed for gaze tracking math? Not by default, but
  % at least for the HTC Vive Pro Eye under Windows, with both SRAnipal native and
  % XR_EXT_eye_gaze_interaction, both based on HTC SRAnipal eye tracking. Let's
  % assume all SRAnipal eye tracked devices need this workaround:
  newhmd.needEyeTrackingYSwitch = 0;
  if IsWin && ~isempty(strfind(newhmd.modelName, 'SRanipal'))
    newhmd.needEyeTrackingYSwitch = 1;
  end

  % Default autoclose flag to "no autoclose":
  newhmd.autoclose = 0;

  % By default allow user to dismiss HSW display via key press,
  % mouse click, or device tap:
  newhmd.hswdismiss = 1 + 2 + 4;

  % Setup basic task/requirement/quality specs to "nothing":
  newhmd.basicQuality = 0;
  newhmd.basicTask = '';
  newhmd.basicRequirements = '';

  % Start with invalid future timestamps or debug timestamp:
  newhmd.predictedFutureOnset = NaN;

  if isempty(OVR)
    % Define global OVR.XXX constants:
    OVR.ControllerType_LTouch = hex2dec('0001');
    OVR.ControllerType_RTouch = hex2dec('0002');
    OVR.ControllerType_Touch = OVR.ControllerType_LTouch + OVR.ControllerType_RTouch;
    OVR.ControllerType_Remote = hex2dec('0004');
    OVR.ControllerType_XBox = hex2dec('0010');
    OVR.ControllerType_Object0 = hex2dec('0100');
    OVR.ControllerType_Object1 = hex2dec('0200');
    OVR.ControllerType_Object2 = hex2dec('0400');
    OVR.ControllerType_Object3 = hex2dec('0800');
    OVR.ControllerType_Active = hex2dec('ffffffff');

    OVR.Button_A = 1 + log2(hex2dec('00000001'));
    OVR.Button_B = 1 + log2(hex2dec('00000002'));
    OVR.Button_RThumb = 1 + log2(hex2dec('00000004'));
    OVR.Button_RShoulder = 1 + log2(hex2dec('00000008'));
    OVR.Button_X = 1 + log2(hex2dec('00000100'));
    OVR.Button_Y = 1 + log2(hex2dec('00000200'));
    OVR.Button_LThumb = 1 + log2(hex2dec('00000400'));
    OVR.Button_LShoulder = 1 + log2(hex2dec('00000800'));
    OVR.Button_Up = 1 + log2(hex2dec('00010000'));
    OVR.Button_Down = 1 + log2(hex2dec('00020000'));
    OVR.Button_Left = 1 + log2(hex2dec('00040000'));
    OVR.Button_Right = 1 + log2(hex2dec('00080000'));
    OVR.Button_Enter = 1 + log2(hex2dec('00100000'));
    OVR.Button_Back = 1 + log2(hex2dec('00200000'));
    OVR.Button_VolUp = 1 + log2(hex2dec('00400000'));
    OVR.Button_VolDown = 1 + log2(hex2dec('00800000'));
    OVR.Button_Home = 1 + log2(hex2dec('01000000'));
    OVR.Button_Private = [OVR.Button_VolUp, OVR.Button_VolDown, OVR.Button_Home];
    OVR.Button_RMask = [OVR.Button_A, OVR.Button_B, OVR.Button_RThumb, OVR.Button_RShoulder];
    OVR.Button_LMask = [OVR.Button_X, OVR.Button_Y, OVR.Button_LThumb, OVR.Button_LShoulder, OVR.Button_Enter];
    OVR.Button_MicMute = 1 + log2(hex2dec('02000000')); % PTB extension, not in original OVR spec.

    OVR.Touch_A = OVR.Button_A;
    OVR.Touch_B = OVR.Button_B;
    OVR.Touch_RThumb = OVR.Button_RThumb;
    OVR.Touch_RThumbRest = 1 + log2(hex2dec('00000008'));
    OVR.Touch_RIndexTrigger = 1 + log2(hex2dec('00000010'));
    OVR.Touch_RButtonMask = [OVR.Touch_A, OVR.Touch_B, OVR.Touch_RThumb, OVR.Touch_RThumbRest, OVR.Touch_RIndexTrigger];
    OVR.Touch_X = OVR.Button_X;
    OVR.Touch_Y = OVR.Button_Y;
    OVR.Touch_LThumb = OVR.Button_LThumb;
    OVR.Touch_LThumbRest = 1 + log2(hex2dec('00000800'));
    OVR.Touch_LIndexTrigger = 1 + log2(hex2dec('00001000'));
    OVR.Touch_LButtonMask = [OVR.Touch_X, OVR.Touch_Y, OVR.Touch_LThumb, OVR.Touch_LThumbRest, OVR.Touch_LIndexTrigger];
    OVR.Touch_RIndexPointing = 1 + log2(hex2dec('00000020'));
    OVR.Touch_RThumbUp = 1 + log2(hex2dec('00000040'));
    OVR.Touch_LIndexPointing = 1 + log2(hex2dec('00002000'));
    OVR.Touch_LThumbUp = 1 + log2(hex2dec('00004000'));
    OVR.Touch_RPoseMask =  [OVR.Touch_RIndexPointing, OVR.Touch_RThumbUp];
    OVR.Touch_LPoseMask = [OVR.Touch_LIndexPointing, OVR.Touch_LThumbUp];

    OVR.TrackedDevice_HMD        = hex2dec('0001');
    OVR.TrackedDevice_LTouch     = hex2dec('0002');
    OVR.TrackedDevice_RTouch     = hex2dec('0004');
    OVR.TrackedDevice_Touch      = OVR.TrackedDevice_LTouch + OVR.TrackedDevice_RTouch;

    OVR.TrackedDevice_Object0    = hex2dec('0010');
    OVR.TrackedDevice_Object1    = hex2dec('0020');
    OVR.TrackedDevice_Object2    = hex2dec('0040');
    OVR.TrackedDevice_Object3    = hex2dec('0080');

    OVR.TrackedDevice_All        = hex2dec('FFFF');

    OVR.KEY_USER = 'User';
    OVR.KEY_NAME = 'Name';
    OVR.KEY_GENDER = 'Gender';
    OVR.KEY_DEFAULT_GENDER = 'Unknown';
    OVR.KEY_PLAYER_HEIGHT = 'PlayerHeight';
    OVR.KEY_EYE_HEIGHT = 'EyeHeight';
    OVR.KEY_NECK_TO_EYE_DISTANCE = 'NeckEyeDistance';
    OVR.KEY_EYE_TO_NOSE_DISTANCE = 'EyeToNoseDist';

    % Define hand joint name to index mappings from OpenXR XR_EXT_hand_tracking
    % extension. This is the default set with 26 joints per hand. We add 1 to each
    % index value, as Matlab/Octave are 1-based, whereas OpenXR is 0-based:
    OVR.XR_HAND_JOINT_PALM = 0 + 1;
    OVR.XR_HAND_JOINT_WRIST = 1 + 1;
    OVR.XR_HAND_JOINT_THUMB_METACARPAL = 2 + 1;
    OVR.XR_HAND_JOINT_THUMB_PROXIMAL = 3 + 1;
    OVR.XR_HAND_JOINT_THUMB_DISTAL = 4 + 1;
    OVR.XR_HAND_JOINT_THUMB_TIP = 5 + 1;
    OVR.XR_HAND_JOINT_INDEX_METACARPAL = 6 + 1;
    OVR.XR_HAND_JOINT_INDEX_PROXIMAL = 7 + 1;
    OVR.XR_HAND_JOINT_INDEX_INTERMEDIATE = 8 + 1;
    OVR.XR_HAND_JOINT_INDEX_DISTAL = 9 + 1;
    OVR.XR_HAND_JOINT_INDEX_TIP = 10 + 1;
    OVR.XR_HAND_JOINT_MIDDLE_METACARPAL = 11 + 1;
    OVR.XR_HAND_JOINT_MIDDLE_PROXIMAL = 12 + 1;
    OVR.XR_HAND_JOINT_MIDDLE_INTERMEDIATE = 13 + 1;
    OVR.XR_HAND_JOINT_MIDDLE_DISTAL = 14 + 1;
    OVR.XR_HAND_JOINT_MIDDLE_TIP = 15 + 1;
    OVR.XR_HAND_JOINT_RING_METACARPAL = 16 + 1;
    OVR.XR_HAND_JOINT_RING_PROXIMAL = 17 + 1;
    OVR.XR_HAND_JOINT_RING_INTERMEDIATE = 18 + 1;
    OVR.XR_HAND_JOINT_RING_DISTAL = 19 + 1;
    OVR.XR_HAND_JOINT_RING_TIP = 20 + 1;
    OVR.XR_HAND_JOINT_LITTLE_METACARPAL = 21 + 1;
    OVR.XR_HAND_JOINT_LITTLE_PROXIMAL = 22 + 1;
    OVR.XR_HAND_JOINT_LITTLE_INTERMEDIATE = 23 + 1;
    OVR.XR_HAND_JOINT_LITTLE_DISTAL = 24 + 1;
    OVR.XR_HAND_JOINT_LITTLE_TIP = 25 + 1;

    newhmd.OVR = OVR;
    evalin('caller','global OVR');
  end

  % Store in internal array:
  hmd{handle} = newhmd;

  % Return device struct:
  varargout{1} = newhmd;
  varargout{2} = modelName;

  return;
end

if strcmpi(cmd, 'Controllers')
  myhmd = varargin{1};
  if ~PsychOpenXR('IsOpen', myhmd)
    error('Controllers: Passed in handle does not refer to a valid and open device.');
  end

  hmd{myhmd.handle}.controllerTypes = PsychOpenXRCore('Controllers', myhmd.handle);
  varargout{1} = hmd{myhmd.handle}.controllerTypes;

  return;
end

if strcmpi(cmd, 'IsOpen')
  myhmd = varargin{1};
  if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
    varargout{1} = 1;
  else
    varargout{1} = 0;
  end
  return;
end

if strcmpi(cmd, 'GetInfo')
  % Ok, cheap trick: We just return the passed in 'hmd' struct - the up to date
  % internal copy that is:
  if ~PsychOpenXR('IsOpen', varargin{1})
    error('GetInfo: Passed in handle does not refer to a valid and open device.');
  end

  myhmd = varargin{1};
  varargout{1} = hmd{myhmd.handle};

  return;
end

if strcmpi(cmd, 'Close')
  if ~isempty(varargin) && ~isempty(varargin{1})
    % Close a specific hmd device:
    myhmd = varargin{1};

    % This function can be called with the raw index handle by
    % the autoclose code path. In that case, map index back into
    % full handle struct:
    if ~isstruct(myhmd)
      if length(hmd) >= myhmd
        myhmd = hmd{myhmd};
      else
        return;
      end
    end

    if (length(hmd) >= myhmd.handle) && (myhmd.handle > 0) && hmd{myhmd.handle}.open
      PsychOpenXRCore('Close', myhmd.handle);
      hmd{myhmd.handle}.open = 0;

      % Was SRAnipalMex eyetracking active?
      if bitand(hmd{myhmd.handle}.eyeTrackingSupported, 1024) && hmd{myhmd.handle}.needEyeTracking
        % Stop tracking:
        SRAnipalMex(3);
        % Shutdown tracker connection
        SRAnipalMex(1);
      end
    end
  else
    % Shutdown whole driver:
    PsychOpenXRCore('Close');
    hmd = [];
  end

  return;
end

if strcmpi(cmd, 'IsHMDOutput')
  % This does not make much sense on OpenXR, as that runtime only supports direct
  % output mode, ie. an output completely separate from the regular desktop and
  % windowing system display space.
  varargout{1} = 0;

  return;
end

if strcmpi(cmd, 'SetBasicQuality')
  myhmd = varargin{1};
  handle = myhmd.handle;
  basicQuality = varargin{2};
  basicQuality = min(max(basicQuality, 0), 1);
  hmd{handle}.basicQuality = basicQuality;
  return;
end

if strcmpi(cmd, 'SetFastResponse')
  myhmd = varargin{1};
  if ~PsychOpenXR('IsOpen', myhmd)
    error('SetFastResponse: Passed in handle does not refer to a valid and open device.');
  end

  % FastResponse has no meaningful implementation on the OpenXR runtime, so just
  % return a constant old value of 1 for "fast response always enabled":
  varargout{1} = 1;

  return;
end

if strcmpi(cmd, 'SetTimeWarp')
  myhmd = varargin{1};
  if ~PsychOpenXR('IsOpen', myhmd)
    error('SetTimeWarp: Passed in handle does not refer to a valid and open device.');
  end

  % SetTimeWarp determined use of GPU accelerated 2D texture sampling
  % warp on the Oculus Rift DK1/DK2 with old OculusVR v0.5 SDK. On OpenXR we no
  % longer have any programmatic control over timewarping,so leave this
  % in place as dummy.

  % Return constant old setting of "TimeWarp always on":
  varargout{1} = 1;

  return;
end

if strcmpi(cmd, 'SetLowPersistence')
  myhmd = varargin{1};
  if ~PsychOpenXR('IsOpen', myhmd)
    error('SetLowPersistence: Passed in handle does not refer to a valid and open device.');
  end

  % SetLowPersistence defined the use of low persistence mode on the Rift DK2 with
  % the OculusVR v0.5 SDK and the original PsychOculusVR driver. We don't have control
  % over this on OpenXR, so for backwards compatibility, always return constant old
  % setting "Always low persistence":
  varargout{1} = 1;

  return;
end

if strcmpi(cmd, 'GetStaticRenderParameters')
  myhmd = varargin{1};

  if ~PsychOpenXR('IsOpen', myhmd)
    error('GetStaticRenderParameters: Passed in handle does not refer to a valid and open HMD.');
  end

  % Retrieve projL and projR and FoV's from driver when supported:
  if (hmd{myhmd.handle}.StereoMode > 0) || ~hmd{myhmd.handle}.noTrackingInMono
    [varargout{1}, varargout{2}] = PsychOpenXRCore('GetStaticRenderParameters', myhmd.handle, varargin{2:end});
  else
    % Fallback! Get dummy "do nothing" unity projection matrices:
    varargout{1} = diag([1 1 1 1]);
    varargout{2} = diag([1 1 1 1]);
  end

  % Get cached values of fovL and fovR:
  varargout{3} = hmd{myhmd.handle}.fovL;
  varargout{4} = hmd{myhmd.handle}.fovR;

  return;
end

if strcmpi(cmd, 'SetupRenderingParameters')
  myhmd = varargin{1};

  % Basic task this device should fulfill:
  if length(varargin) >= 2 && ~isempty(varargin{2})
    basicTask = varargin{2};
  else
    basicTask = 'Tracked3DVR';
  end

  % Basic requirements to choose:
  if length(varargin) >= 3 && ~isempty(varargin{3})
    basicRequirements = varargin{3};
  else
    basicRequirements = '';
  end

  % Basic quality/performance tradeoff to choose:
  if length(varargin) >= 4 && ~isempty(varargin{4})
    basicQuality = varargin{4};
  else
    basicQuality = 0;
  end

  if length(varargin) >= 5 && ~isempty(varargin{5})
    fov = varargin{5};
  else
    fov = [];
  end

  % Cache, so we can use (in default 2D quad view setup) or return it in
  % 'GetStaticRenderParameters':
  if ~isempty(fov)
    if ~isvector(fov) || size(fov, 2) ~= 4 || ~isnumeric(fov)
      error('SetupRenderingParameters: Invalid field of view fov specified. Not a 4 component row vector with angles in degrees.');
    end

    % Convert from absolute angles to angles with proper signs (negative
    % for leftward and downward angles) and to radians as internal unit for
    % storage and processing:
    fov = deg2rad([-fov(1), fov(2), fov(3), -fov(4)]);
  end

  hmd{myhmd.handle}.fovL = fov;
  hmd{myhmd.handle}.fovR = fov;

  if length(varargin) >= 6 && ~isempty(varargin{6})
    pixelsPerDisplay = varargin{6};
  else
    pixelsPerDisplay = 1;
  end

  hmd{myhmd.handle}.basicTask = basicTask;
  hmd{myhmd.handle}.basicRequirements = basicRequirements;

  PsychOpenXR('SetBasicQuality', myhmd, basicQuality);

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for left eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.recMSAASamples, hmd{myhmd.handle}.maxMSAASamples, hmd{myhmd.handle}.maxrbwidth, hmd{myhmd.handle}.maxrbheight] = PsychOpenXRCore('GetFovTextureSize', myhmd.handle, 0);

  % Get optimal client renderbuffer size - the size of our virtual framebuffer for right eye:
  [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight, hmd{myhmd.handle}.recMSAASamples, hmd{myhmd.handle}.maxMSAASamples, hmd{myhmd.handle}.maxrbwidth, hmd{myhmd.handle}.maxrbheight] = PsychOpenXRCore('GetFovTextureSize', myhmd.handle, 1);

  if pixelsPerDisplay <= 0
    sca;
    error('PsychOpenXR:SetupRenderingParameters(): Invalid ''pixelsPerDisplay'' specified! Must be greater than zero.');
  end

  % Scale runtime recommended renderbuffer width x height with
  % pixelsPerDisplay, clamp values to be at least 1 pixel and no more than
  % maximum runtime supported renderbuffer size:
  hmd{myhmd.handle}.rbwidth = min(ceil(hmd{myhmd.handle}.rbwidth * pixelsPerDisplay), hmd{myhmd.handle}.maxrbwidth);
  hmd{myhmd.handle}.rbheight = min(ceil(hmd{myhmd.handle}.rbheight * pixelsPerDisplay), hmd{myhmd.handle}.maxrbheight);

  % Forced override size of framebuffer provided?
  rbOvrSize = strfind(basicRequirements, 'ForceSize=');
  if ~isempty(rbOvrSize)
    rbOvrSize = sscanf(basicRequirements(min(rbOvrSize):end), 'ForceSize=%ix%i');
    if length(rbOvrSize) ~= 2 || ~isvector(rbOvrSize) || ~isreal(rbOvrSize)
      sca;
      error('SetupRenderingParameters(): Invalid ''ForceSize='' string in ''basicRequirements'' specified! Must be of the form ''ForceSize=widthxheight'' pixels.');
    end

    % Clamp to valid range and assign:
    hmd{myhmd.handle}.rbwidth = max(1, min(ceil(rbOvrSize(1) * pixelsPerDisplay), hmd{myhmd.handle}.maxrbwidth));
    hmd{myhmd.handle}.rbheight = max(1, min(ceil(rbOvrSize(2) * pixelsPerDisplay), hmd{myhmd.handle}.maxrbheight));
    if hmd{myhmd.handle}.rbwidth ~= rbOvrSize(1) || hmd{myhmd.handle}.rbheight ~= rbOvrSize(2)
      warning('SetupRenderingParameters(): Had to clamp ''ForceSize=widthxheight'' requested pixelbuffer size to fit into valid range! Result may look funky.');
    end
  end

  % Debug display of device output into onscreen window requested?
  if isempty(strfind(basicRequirements, 'DebugDisplay')) && isempty(oldShieldingLevel) %#ok<*STREMP>
    % No. Set to be created onscreen window to be invisible:
    oldShieldingLevel = Screen('Preference', 'WindowShieldingLevel', -1);
  end

  % Eye gaze tracking requested?
  if ~isempty(strfind(basicRequirements, 'Eyetracking'))
    if ~hmd{myhmd.handle}.eyeTrackingSupported
      warning('PsychOpenXR:SetupRenderingParameters: ''Eyetracking'' requested in ''basicRequirements'', but this XR system does not support eye tracking!');
      hmd{myhmd.handle}.needEyeTracking = 0;
    else
      hmd{myhmd.handle}.needEyeTracking = 1;
    end
  end

  % Hand tracking requested?
  if ~isempty(strfind(basicRequirements, 'Handtracking'))
    if ~hmd{myhmd.handle}.articulatedHandTrackingSupported
      warning('PsychOpenXR:SetupRenderingParameters: Articulated ''Handtracking'' requested in ''basicRequirements'', but this XR system does not support it!');
      hmd{myhmd.handle}.needHandTracking = 0;
    else
      hmd{myhmd.handle}.needHandTracking = 1;
    end
  end

  return;
end

if strcmpi(cmd, 'GetClientRenderingParameters')
  myhmd = varargin{1};
  varargout{1} = [hmd{myhmd.handle}.rbwidth, hmd{myhmd.handle}.rbheight];

  % We need fast backing store support for the imaging pipeline with virtual framebuffers,
  % also output redirection for providing final output to us, instead of displaying
  % into the standard onscreen window. The OpenXR runtime generates its own swapchain
  % textures to be used as externally injected color buffer backing textures:
  imagingMode = mor(kPsychNeedFastBackingStore, kPsychNeedFinalizedFBOSinks, kPsychUseExternalSinkTextures);

  % Usercode wants a 16 bpc half-float rendering pipeline?
  if ~isempty(strfind(hmd{myhmd.handle}.basicRequirements, 'Float16Display'))
    % Request a 16 bpc float framebuffer from Psychtoolbox:
    imagingMode = mor(imagingMode, kPsychNeed16BPCFloat);
  else
    % Standard RGBA8 images: Use sRGB format for rendering/blending/compositing/display:
    imagingMode = mor(imagingMode, kPsychEnableSRGBRendering);
  end

  % Tell imaging pipeline if OpenXR compositor can receive/provide MSAA
  % textures. We claim we can if we can, and imaging pipeline wants MSAA
  % and the OpenXR compositor is capable of providing MSAA with the MSAA
  % level requested by pipeline. If the pipeline asks for a higher MSAA
  % than what the OpenXR compositor can accept/handle, then we do not claim
  % any MSAA capability. This way Screen's imaging pipeline will perform
  % MSAA internally at the wanted level and resolve down to single-sample
  % before passing the already anti-aliased content to the OpenXR
  % compositor. This way we will do the MSAA whenever we can for maximum
  % efficiency, but fallback to slow Screen MSAA if needed to fulfill the
  % user codes wishes - "quality first", at the expense of an extra framebuffer
  % copy for MSAA resolve between drawBufferFBOs and finalizedFBOs. If
  % 'DebugDisplay' mode for mirroring of device content to the onscreen window
  % is requested then we also always fallback to Screen() MSAA, instead of
  % using OpenXR MSAA, because the image mirroring code can not cope with
  % MSAA finalizedFBO's / color attachment textures, ie. glBlitFramebuffer
  % fails. Using the fallback costs performance, but makes mirroring work
  % all times:
  if (hmd{myhmd.handle}.maxMSAASamples > 1) && (hmd{myhmd.handle}.requestedScreenMSAASamples > 0) && ...
     (hmd{myhmd.handle}.requestedScreenMSAASamples <= hmd{myhmd.handle}.maxMSAASamples) && ...
     isempty(strfind(hmd{myhmd.handle}.basicRequirements, 'DebugDisplay'))
    imagingMode = mor(imagingMode, kPsychSinkIsMSAACapable);
  end

  if ~strcmpi(hmd{myhmd.handle}.basicTask, 'Monoscopic')
    % We must use stereomode 12, so we get separate draw buffers for left and
    % right eye, and separate stream processing into our XR runtime provided
    % separate backing textures / texture swapchains per eye, with all internal
    % buffers of a size that is at least full VR compositor input resolution.
    stereoMode = 12;
  else
    % Monoscopic presentation will do:
    stereoMode = 0;
  end

  varargout{2} = imagingMode;
  varargout{3} = stereoMode;
  return;
end

if strcmpi(cmd, 'GetPanelFitterParameters')
  % We don't need a custom PanelFitter task for OpenXR:
  varargout{1} = 0;
  return;
end

% [winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample, screenid] = PsychOpenXR('OpenWindowSetup', hmd, screenid, winRect, ovrfbOverrideRect, ovrSpecialFlags, ovrMultiSample);
if strcmpi(cmd, 'OpenWindowSetup')
  myhmd = varargin{1};
  screenid = varargin{2}; %#ok<NASGU>
  winRect = varargin{3};
  ovrfbOverrideRect = varargin{4}; %#ok<NASGU>
  ovrSpecialFlags = varargin{5};
  if isempty(ovrSpecialFlags)
    ovrSpecialFlags = 0;
  end

  % Get wanted MSAA level from caller:
  ovrMultiSample = varargin{6};

  % As the onscreen window is not used for displaying on the device, but
  % either not at all, or just for debug output, make it a regular GUI
  % window, managed by the window manager, so user can easily get it out
  % of the way:
  ovrSpecialFlags = mor(ovrSpecialFlags, kPsychGUIWindow + kPsychGUIWindowWMPositioned);

  % Prevent use of any functionality that requires Screen's background flipperthread,
  % e.g., Screen('AsyncFlipBegin',...) async flips, framesequential stereomode 11 and
  % of certain VRR scheduling modes for fine-grained stimulus timing. Stereomodes and
  % VRR are the domain of the OpenXR compositor in OpenXR mode, and async flips are
  % not possible because we use resources of the flipperthread for OpenGL<->OpenXR
  % interop, so the thread can't use them concurrently.
  ovrSpecialFlags = mor(ovrSpecialFlags, kPsychDontUseFlipperThread);

  % Did usercode not request a specific MSAA level?
  if isempty(ovrMultiSample)
    % No, dealers choice. Assign recommended MSAA setting from OpenXR runtime:
    if hmd{myhmd.handle}.recMSAASamples > 1
      % MSAA recommended - Assign optimal sample count:
      ovrMultiSample = hmd{myhmd.handle}.recMSAASamples;
    else
      % MSAA not recommended - Use zero value for MSAA off in Screen():
      ovrMultiSample = 0;
    end
  end

  % At this point, ovrMultiSample is either our recommended choice, or the
  % user-forced choice already passed in. We assume that our caller
  % PsychImaing will use the ovrMultiSample value, so that it will be the
  % effective minimum choice for MSAA. Store the value internally for use
  % in 'GetClientRenderingParameters' as called by PsychImaging
  % FinalizeConfiguration, to make the decision about imagingMode flags:
  hmd{myhmd.handle}.requestedScreenMSAASamples = ovrMultiSample;

  % The current design iteration requires the PTB parent onscreen windows
  % effective backbuffer (from the pov of the imaging pipeline) to have the
  % same size (width x height) as the renderbuffer for one eye, so enforce
  % that constraint by setting ovrfbOverrideRect accordingly.

  % Get required output buffer size:
  clientRes = myhmd.driver('GetClientRenderingParameters', myhmd);

  % Set as fbOverrideRect for window:
  ovrfbOverrideRect = [0, 0, clientRes(1), clientRes(2)];

  fprintf('PsychOpenXR-INFO: Overriding onscreen window framebuffer size to %i x %i pixels for use with XR device direct output mode.\n', ...
          clientRes(1), clientRes(2));

  % Skip all visual timing sync tests and calibrations, as display timing
  % of the onscreen window doesn't matter, only the timing on the device direct
  % output matters - and that can't be measured by our standard procedures:
  Screen('Preference', 'SkipSyncTests', 2);

  varargout{1} = winRect;
  varargout{2} = ovrfbOverrideRect;
  varargout{3} = ovrSpecialFlags;
  varargout{4} = ovrMultiSample;
  varargout{5} = screenid;

  return;
end

if strcmpi(cmd, 'PerformPostWindowOpenSetup')
  % Must have global GL constants:
  if isempty(GL)
    varargout{1} = 0;
    warning('PTB internal error in PsychOpenXR: GL struct not initialized?!?');
    return;
  end

  % OpenXR device handle:
  myhmd = varargin{1};
  handle = myhmd.handle;

  % Onscreen window handle:
  win = varargin{2};
  winfo = Screen('GetWindowInfo', win);
  hmd{handle}.StereoMode = winfo.StereoMode;

  % Keep track of window handle of associated onscreen window:
  hmd{handle}.win = win;

  % Restore shielding level for new windows after "our" onscreen window is now open:
  if ~isempty(oldShieldingLevel)
    Screen('Preference', 'WindowShieldingLevel', oldShieldingLevel);
    oldShieldingLevel = [];
  end

  % Need to know user selected clearcolor:
  clearcolor = varargin{3};

  % Create texture swap chains to provide textures to be used for
  % frame submission to the VR compositor:
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'Float16Display'))
    % Linear RGBA16F half-float textures as target framebuffers:
    floatFlag = 1;
  else
    % sRGB RGBA8 textures as target framebuffers:
    floatFlag = 0;
  end

  if ~isempty(strfind(hmd{handle}.basicTask, '3D'))
    % 3D rendering task:
    hmd{handle}.use3DMode = 1;
  else
    % No 3D rendering, just monoscopic or stereoscopic display of stimuli:
    hmd{handle}.use3DMode = 0;
  end

  % SteamVR runtime on MS-Windows in 3D mode needs fp16 buffers for some
  % absurd reason, most likely some bug in handling of projection layers.
  % This workaround is not needed in 2D mode where quad layers are used.
  % This at least as of December 2022 with SteamVR version 1.24.7, when using
  % OculusVR as backend to drive Oculus devices. Not clear if also needed for
  % other vendors HMDs. Go figure!
  if IsWin && hmd{handle}.use3DMode && strcmpi(hmd{handle}.modelName, 'SteamVR/OpenXR : oculus')
    fprintf('PsychOpenXR-INFO: Using floating point textures for SteamVR runtime with Oculus devices in 3D mode on MS-Windows.\n');
    fprintf('PsychOpenXR-INFO: This is a workaround for some SteamVR bug. It may cause reduced performance, sorry.\n');
    floatFlag = 1;
  end

  % Now for the decision making if we always/never/conditionally need
  % multi-threading (MT) during this session. MT can have a substantial
  % impact on performance, and with some buggy OpenXR runtimes on
  % stability, so we want to avoid it whenever possible.

  % Does user want us to not care about visual glitch prevention in 'Stop' mode or slow running
  % scripts? If so, we can avoid all use of multi-threading for such purposes.
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'DontCareAboutVisualGlitchesWhenStopped'))
    % Don't use MT for 3D projection layers when 'Stop'ed:
    if PsychOpenXRCore('NeedLocateForProjectionLayers', handle) || (hmd{handle}.needMTFor2DQuadViews ~= 0)
      fprintf('PsychOpenXR-INFO: Avoiding use of multi-threading for stopped or slow 2D/3D animation loops on this runtime,\n');
      fprintf('PsychOpenXR-INFO: as requested via DontCareAboutVisualGlitchesWhenStopped keyword. Visual glitches may occur.\n');
    end

    PsychOpenXRCore('NeedLocateForProjectionLayers', handle, 0);
    hmd{handle}.needMTFor3DViews = 0;
    hmd{handle}.needMTFor2DQuadViews = 0;
  end

  % User wants us to switch to 2D quad views in 'Stop' mode?
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'Use2DViewsWhen3DStopped')) && hmd{handle}.use3DMode
    hmd{handle}.switchTo2DViewsOnStop = 1;
  else
    hmd{handle}.switchTo2DViewsOnStop = 0;
  end

  % 3D mode with projectionLayers, and need continuous tracking updates when stopped?
  if PsychOpenXRCore('NeedLocateForProjectionLayers', handle) && hmd{handle}.use3DMode && ...
     isempty(strfind(hmd{handle}.basicRequirements, 'Use2DViewsWhen3DStopped'))
    hmd{handle}.needMTFor3DViews = -1;
    fprintf('PsychOpenXR-INFO: Will need multi-threading for stopped 3D animation loops on this runtime. Performance will be mildly reduced throughout the session.\n');
    if hmd{handle}.needMTFor2DQuadViews == 0
      fprintf('PsychOpenXR-INFO: Consider using the keyword Use2DViewsWhen3DStopped in the basicRequirements parameter for possibly optimized performance.\n');
    end
  else
    hmd{handle}.needMTFor3DViews = 0;
  end

  % Will 2D quadViews be needed in this session, and do they need
  % multi-threading to stay stable?
  if hmd{handle}.needMTFor2DQuadViews ~= 0
    % 2D mode active, which needs permanent MT in this case?
    if ~hmd{handle}.use3DMode
      % Yes. Make it so:
      hmd{handle}.needMTFor2DQuadViews = 1;
      fprintf('PsychOpenXR-INFO: Will need multi-threading even for 2D Monoscopic/Stereoscopic mode on this runtime. Performance will be reduced throughout the session.\n');
    elseif ~isempty(strfind(hmd{handle}.basicRequirements, 'Use2DViewsWhen3DStopped'))
      % 3D mode: Only need MT for quadViews if PsychVRHMD('Stop'):
      hmd{handle}.needMTFor2DQuadViews = -1;
      fprintf('PsychOpenXR-INFO: Will need multi-threading for stopped 3D animation loops on this runtime. Performance will be mildly reduced throughout the session.\n');
    else
      % No need at all, as we are in 3D mode and user doesn't want to use quadViews when stopped:
      hmd{handle}.needMTFor2DQuadViews = 0;
    end
  end

  % Specific NoTimingSupport or TimingSupport requested for this session?
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'NoTimingSupport'))
    % Absolutely no timing support needed -> Disable permanently:
    hmd{handle}.needMTForTiming = 0;
  elseif ~isempty(strfind(hmd{handle}.basicRequirements, 'TimingSupport'))
    % Timing support definitely needed -> Enable permanently on all
    % runtimes that need MT for it:
    if hmd{handle}.needMTForTiming ~= 0
      hmd{handle}.needMTForTiming = 1;
      fprintf('PsychOpenXR-INFO: Will need multi-threading for proper frame presentation timing on this runtime. Performance will be reduced throughout the session.\n');
    end
  elseif hmd{handle}.needMTForTiming ~= 0
    fprintf('PsychOpenXR-INFO: Need for multi-threading for proper frame presentation timing during this session unknown. Multi-threading will be enabled\n');
    fprintf('PsychOpenXR-INFO: if i can determine a need for it. Performance will be mildly reduced throughout the session. Please use the keywords\n');
    fprintf('PsychOpenXR-INFO: TimingSupport or NoTimingSupport in the basicRequirements parameter to give me a clue about what you want, for\n');
    fprintf('PsychOpenXR-INFO: both potentially higher reliability of timing and timestamping, and potentially better performance.\n');
  end

  % Specific NoTimestampingSupport or TimestampingSupport requested for this session?
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'NoTimestampingSupport'))
    % Absolutely no timestamping support needed -> Disable permanently:
    hmd{handle}.needMTForTimestamping = 0;
  elseif ~isempty(strfind(hmd{handle}.basicRequirements, 'TimestampingSupport'))
    % Timestamping support definitely needed -> Enable permanently on all
    % runtimes that need MT for it:
    if hmd{handle}.needMTForTimestamping ~= 0
      hmd{handle}.needMTForTimestamping = 1;
      fprintf('PsychOpenXR-INFO: Will need multi-threading for proper frame timestamping on this runtime. Performance will be reduced throughout the session.\n');
    end
  elseif hmd{handle}.needMTForTimestamping ~= 0
    fprintf('PsychOpenXR-INFO: Need for multi-threading for better frame timestamping during this session unknown. Timestamps will be unreliable until i\n');
    fprintf('PsychOpenXR-INFO: can determine need for proper timing. Performance will be mildly reduced throughout the session. Please use the keywords\n');
    fprintf('PsychOpenXR-INFO: TimestampingSupport or NoTimestampingSupport in the basicRequirements parameter to give me a clue about what you want, for\n');
    fprintf('PsychOpenXR-INFO: both potentially higher timestamp trustworthiness and potentially better performance.\n');
  end

  if hmd{handle}.needMTForMonadoMetricsFifo
    fprintf('PsychOpenXR-INFO: Monado supports metrics timestamping in this session. Will need permanent multi-threading.\n');
  end

  % Derive initial master multiThreaded mode from current MT requirements:
  mtReqs = [hmd{handle}.needMTFor3DViews, hmd{handle}.needMTFor2DQuadViews, hmd{handle}.needMTForTiming, hmd{handle}.needMTForTimestamping, hmd{handle}.needMTForMonadoMetricsFifo];
  if ~any(mtReqs) || ~isempty(strfind(hmd{handle}.basicRequirements, 'ForbidMultiThreading'))
    % No need or want for multi-threading at all in this session -> Master
    % disable. We run only single-threaded for this session, which is
    % most trouble-free and efficient/high-perf:
    hmd{handle}.multiThreaded = 0;

    % Will this have downsides?
    if any(mtReqs)
      % Yep:
      fprintf('PsychOpenXR-WARNING: User script forbids any use of multi-threading for its use-case, but would be needed! Expect timing/timestamping/jitter/judder problems!\n');
    end
  else
    % Some potential need for MT. Ok to use?
    if hmd{handle}.multiThreaded == 0
      fprintf('PsychOpenXR-WARNING: User script needs multi-threading for its use-case, but multi-threading is disabled! Expect timing/timestamping/jitter/judder problems!\n');
    else
      % Special troublemakers? SteamVR on Windows, as of version 2.0.10
      % from November 2023 will cause Matlab to hang / fail / malfunction if
      % Screen('BeginOpenGL') is used for typical 3D rendering, unless
      % OpenGL context isolation is disabled, which is a troublemaker in
      % many other ways! Bug confirmed for both OculusVR backend with
      % Oculus Rift CV-1, and Vive backend with HTC Vive Pro Eye. Tested on
      % both AMD and NVidia graphics:
      if IsWin && hmd{handle}.use3DMode && strcmpi(hmd{handle}.subtype, 'SteamVR/OpenXR')
        fprintf('PsychOpenXR-WARNING: User script needs multi-threading for its use-case, but broken MS-Windows SteamVR OpenXR runtime in use!\n');
        % kPsychDisableContextIsolation in use?
        if bitand(Screen('Preference', 'ConserveVRAM'), 8)
          fprintf('PsychOpenXR-WARNING: I see you disabled OpenGL context isolation to work around the problem. Tread carefully, this\n');
          fprintf('PsychOpenXR-WARNING: may screw up rendering and Screen() operation badly if you don''t know exactly what you are doing!\n');
        else
          % This is an almost guaranteed crasher as of SteamVR 2.0.10 from
          % November 2023 - it will fail after a few seconds of 3D rendering
          % with a hard hang of Matlab and one needs to kill the
          % application via task manager etc.:
          fprintf('PsychOpenXR-WARNING: As of SteamVR version 2.0.10 from November 2023, this will almost certainly end in a Psychtoolbox hang or crash\n');
          fprintf('PsychOpenXR-WARNING: if your script calls Screen(''BeginOpenGL'') anywhere. Brace for impact! Report back if you do not experience any\n');
          fprintf('PsychOpenXR-WARNING: problems with a later/future SteamVR version.\n');
        end
      end
    end

    % Is there a definite request to use it throughout this session?
    if any(mtReqs > 0)
      % Yes, at least one mandatory user of permanent MT. Keep it on all time:
      hmd{handle}.multiThreaded = 2;
    else
      % No, only some conditional on-demand use. Keep it on dynamic/on-demand:
      hmd{handle}.multiThreaded = 1;
    end
  end

  % Create and startup XR session, based on the Screen() OpenGL interop info in 'gli':
  gli = Screen('GetWindowInfo', win, 9);

  % Multithreaded operation, with a separate OpenXR frame worker thread
  % inside PsychOpenXRCore? This would need a dedicated interop OpenGL
  % context assigned to that thread only:
  if hmd{handle}.multiThreaded
    % Use dedicated OpenGL context for OpenXR worker thread:
    openglContext = gli.OpenGLContext;

    if hmd{handle}.multiThreaded == 2
      fprintf('PsychOpenXR-INFO: Multithreaded mode permanently active due to timing/timestamping needs, or for some workaround, see above. Performance will be likely reduced.\n');
    else
      fprintf('PsychOpenXR-INFO: Multithreaded mode on-demand selected due to timing/timestamping needs, or for some workaround, see above. Performance can be reduced sometimes.\n');
    end
  else
    % Use Screen()'s main OpenGL context for everything, both Screen and OpenXR OpenGL ops:
    openglContext = gli.OpenGLContextScreen;

    fprintf('PsychOpenXR-INFO: Purely single-threaded mode active. Great for performance!\n');
  end

  % Query currently bound finalizedFBO backing textures, to keep them around as backups for restoration when closing down the session:
  [hmd{handle}.oldglLeftTex, hmd{handle}.oldglRightTex, textarget, texformat, texmultisample, texwidth, texheight, fboIds(1), fboIds(2)] = Screen('Hookfunction', win, 'GetDisplayBufferTextures');

  % The MS-Windows workaround needs this extra copy operation:
  if hmd{handle}.multiThreaded && hmd{handle}.needWinThreadingWa1
    bufferHandles = [hmd{handle}.oldglLeftTex, hmd{handle}.oldglRightTex, fboIds(1), fboIds(2)];
  else
    bufferHandles = [];
  end

  % Create and start OpenXR session:
  [hmd{handle}.videoRefreshDuration] = PsychOpenXRCore('CreateAndStartSession', hmd{handle}.handle, gli.DeviceContext, openglContext, gli.OpenGLDrawable, ...
                                                                                gli.OpenGLConfig, gli.OpenGLVisualId, hmd{handle}.use3DMode, hmd{handle}.multiThreaded, bufferHandles);

  % Set override window parameters with pixel size (color depth) and refresh interval as provided by the XR runtime:
  Screen('HookFunction', win, 'SetWindowBackendOverrides', [], 24, hmd{handle}.videoRefreshDuration);

  % Validate texture internal formats. Ideally something supportable by XR runtime, but
  % if not, it will simply trigger fbo unsharing and a slight performance loss:
  if ~ismember(texformat, [GL.RGBA8, GL.RGBA16F, GL.RGBA16, GL.RGBA16_SNORM, GL.RGBA32F])
    sca;
    error('Invalid Screen() backing textures required. Non-matching texture internal format.');
  end

  % Validate MSAA anti-aliasing support. If XR can not do MSAA then Screen
  % must not require that:
  if (hmd{handle}.maxMSAASamples <= 1 && (textarget ~= GL.TEXTURE_2D || texmultisample ~= 0))
    sca;
    error('Invalid Screen() backing textures required. Screen() assumes MSAA XR compositor target textures, but XR textures are only non-MSAA capable.');
  end

  % If XR can do MSAA, then Screen can use require MSAA or non-MSAA,
  % depending on user codes needs or imaging pipeline configuration. E.g.,
  % if complex panel-fitting or image post-processing is needed, then even
  % a MSAA configured Screen may do internal MSAA resolve and require
  % non-MSAA GL_TEXTURE_2D. For MSAA with no real image processing, Screen
  % will likely require XR to provide MSAA GL_TEXTURE_2D_MULTISAMPLE
  % instead for higher efficiency and zero-copy operation:
  if hmd{handle}.maxMSAASamples > 1 && ~ismember(textarget, [GL.TEXTURE_2D_MULTISAMPLE, GL.TEXTURE_2D])
    sca;
    error('Invalid Screen() backing textures required. Not GL_TEXTURE_2D or GL_TEXTURE_2D_MULTISAMPLE, which is incompatible.');
  end

  % External MSAA implies at least 2 samples per target texture texel:
  if textarget == GL.TEXTURE_2D_MULTISAMPLE && texmultisample < 2
    texmultisample = 2;
    fprintf('PsychOpenXR-WARNING: Invalid Screen() backing textures required: GL_TEXTURE_2D_MULTISAMPLE, but with less than 2 samples! Force-upgrading to 2 samples!\n');
  end

  % We have a valid MSAA or non-MSAA config. Lets see what Screen wants:
  if textarget == GL.TEXTURE_2D_MULTISAMPLE
    % Screen wants MSAA GL_TEXTURE_2D_MULTISAMPLE textures for texmultisample-MSAA
    % with zero-copy redirection for minimal overhead and best quality. See if
    % we can give it as many texmultisample samples as it ideally wants,
    % otherwise clamp to XR compositor supported maximum and warn about
    % slightly degraded quality:
    if texmultisample > hmd{handle}.maxMSAASamples
      fprintf('PsychOpenXR-INFO: Screen would like %i-MSAA backing textures, but OpenXR compositor can only do %i-MSAA.\n', texmultisample, hmd{handle}.maxMSAASamples);
      fprintf('PsychOpenXR-INFO: Clamping to compositor maximum of %i-MSAA. Quality could be slightly degraded.\n', hmd{handle}.maxMSAASamples);
      hmd{handle}.texmultisample = hmd{handle}.maxMSAASamples;
    else
      hmd{handle}.texmultisample = texmultisample;
    end
  else
    % Screen wants non-MSAA GL_TEXTURE_2D textures and either does not use
    % MSAA at all, or resolves down from MSAA to non-MSAA internally. We
    % need to provide single-sampled textures:
    hmd{handle}.texmultisample = 1;
  end

  if hmd{handle}.texmultisample > 1
    fprintf('PsychOpenXR-INFO: Using %i-MSAA anti-aliasing for XR compositor.\n', hmd{handle}.texmultisample);
  end

  if hmd{handle}.texmultisample ~= hmd{handle}.recMSAASamples
    fprintf('PsychOpenXR-INFO: Chosen %i-MSAA anti-aliasing for XR compositor does not match runtime recommended value %i-MSAA.\n', hmd{handle}.texmultisample, hmd{handle}.recMSAASamples);
    fprintf('PsychOpenXR-INFO: You may want to adjust that for an optimal performance vs. quality tradeoff.\n');
  end

  if hmd{handle}.oldglRightTex == 0
    hmd{handle}.oldglRightTex = [];
  end

  % Create left eye / mono OpenXr swapchain:
  [width, height, ~, texChainFormat] = PsychOpenXRCore('CreateRenderTextureChain', hmd{handle}.handle, 0, hmd{handle}.rbwidth, hmd{handle}.rbheight, floatFlag, hmd{handle}.texmultisample);

  % Create 2nd chain for right eye in stereo mode:
  if winfo.StereoMode > 0
    if winfo.StereoMode ~=12
      sca;
      error('Invalid Screen() StereoMode in use for OpenXR! Must be mode 12.');
    end
    [width, height, ~, texChainFormat] = PsychOpenXRCore('CreateRenderTextureChain', hmd{handle}.handle, 1, hmd{handle}.rbwidth, hmd{handle}.rbheight, floatFlag, hmd{handle}.texmultisample);
  end

  if (texwidth ~= width) || (texheight ~= height)
    sca;
    fprintf('PsychOpenXR-ERROR: Backing texture size mismatch: %i x %i != %i x %i!\n', texwidth, texheight, width, height);
    error('Invalid Screen() backing textures required. Non-matching width x height.');
  end

  % Check if requested swapchain format is supported by runtime:
  if floatFlag && ~ismember(texChainFormat, [GL.RGBA16F, GL.RGBA32F, GL.RGB16F])
      % No. Screen() will have to unshare the drawBufferFBO and
      % finalizedFBO to work around this and retain as much of the
      % precision and range of 16 bit float as possible. Output precision
      % will be reduced, and overhead for an extra blit will have to be
      % paid. Warn about this:
      fprintf('PsychOpenXR-WARNING: OpenXR runtime does not support the requested Float16Display basic requirement. Working around it, but precision and performance will suffer.\n');
  end

  % Make sure our OpenGL rendering context is bound for the window properly:
  Screen('GetWindowInfo', win);

  % Get first textures for actual use in PTB's imaging pipeline:
  texLeft = PsychOpenXRCore('GetNextTextureHandle', hmd{handle}.handle, 0);
  if hmd{handle}.StereoMode > 0
      texRight = PsychOpenXRCore('GetNextTextureHandle', hmd{handle}.handle, 1);
  else
      texRight = [];
  end

  % Assign them to Screen(), tell Screen the true texture format, so it can adapt if needed:
  if ~hmd{handle}.multiThreaded || ~hmd{handle}.needWinThreadingWa1
    Screen('Hookfunction', win, 'SetDisplayBufferTextures', '', texLeft, texRight, [], texChainFormat);
  end

  % Go back to user requested clear color, now that all our buffers
  % are cleared to black:
  Screen('FillRect', win, clearcolor);

  % Define parameters for the ongoing Psychtoolbox onscreen window flip operation:
  % Debug display of device output into onscreen window requested?
  if ~isempty(strfind(hmd{handle}.basicRequirements, 'DebugDisplay'))
    % Debug output of compositor mirror texture into PTB onscreen window requested.
    % - Ask to skip flip's regular OpenGL swap completion timestamping, but instead
    %   to accept future injected timestamps from us.
    %
    % - Ask to disable vsync of the OpenGL bufferswap for display of the mirror texture
    %   in the onscreen window. We don't want to get swap-throttled to the refresh rate
    %   of the operator desktop GUI display.
    Screen('Hookfunction', hmd{handle}.win, 'SetOneshotFlipFlags', '', kPsychDontAutoResetOneshotFlags + kPsychSkipWaitForFlipOnce + kPsychSkipVsyncForFlipOnce + kPsychSkipTimestampingForFlipOnce);
    hmd{handle}.debugDisplay = 1;
  else
    % Skip the OpenGL bufferswap for the onscreen window completely, ergo also skip
    % timestamping and allow timestamp injection from us instead:
    Screen('Hookfunction', hmd{handle}.win, 'SetOneshotFlipFlags', '', kPsychDontAutoResetOneshotFlags + kPsychSkipWaitForFlipOnce + kPsychSkipSwapForFlipOnce + kPsychSkipTimestampingForFlipOnce);
    hmd{handle}.debugDisplay = 0;
  end

  % Get size of onscreen window backbuffer for potential debug mirror blits:
  rect = Screen('GlobalRect', win);
  tw = RectWidth(rect);
  th = RectHeight(rect);

  if winfo.StereoMode > 0
    % In debug mode, setup mirror blit from left/right eye buffers to onscreen window OpenGL backbuffer:
    if hmd{handle}.debugDisplay
      copyString = sprintf('moglcore(''glBindFramebufferEXT'', 36009, 0); moglcore(''glBlitFramebufferEXT'', 0, 0, %i, %i, %i, 0, %i, %i, 16384, 9729);', width, height, 0, tw / 2, th);
      Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'OpenXR debug mirror blit left', copyString);
      Screen('HookFunction', win, 'Enable', 'LeftFinalizerBlitChain');
      copyString = sprintf('moglcore(''glBindFramebufferEXT'', 36009, 0); moglcore(''glBlitFramebufferEXT'', 0, 0, %i, %i, %i, 0, %i, %i, 16384, 9729);', width, height, tw / 2, tw, th);
      Screen('Hookfunction', win, 'AppendMFunction', 'RightFinalizerBlitChain', 'OpenXR debug mirror blit right', copyString);
      Screen('Hookfunction', win, 'Enable', 'RightFinalizerBlitChain');
    end
  else
    % In debug mode, setup mirror blit from mono buffer to onscreen window OpenGL backbuffer:
    if hmd{handle}.debugDisplay
      copyString = sprintf('moglcore(''glBindFramebufferEXT'', 36009, 0); moglcore(''glBlitFramebufferEXT'', 0, 0, %i, %i, 0, 0, %i, %i, 16384, 9729);', width, height, tw, th);
      Screen('Hookfunction', win, 'AppendMFunction', 'LeftFinalizerBlitChain', 'OpenXR debug mirror blit mono', copyString);
      Screen('Hookfunction', win, 'Enable', 'LeftFinalizerBlitChain');
    end
  end

  % Need to call the PsychOpenXR(1) callback at each Screen('Flip') to submit the output
  % frames to the XR-Compositor for presentation on the device. This gets called before an
  % OpenGL bufferswap (if any) + timestamping + validation will happen. It is supposed to
  % block until image presentation on the device has happened, and to inject proper Present
  % timestamps for 'Flip':
  % The kPsychSkipWaitForFlipOnce flag is set, so PreSwapbuffersOperations executes
  % immediately. We pass the tWhen timestamp to this fast-path callback, which will pass
  % it on to 'PresentFrame', and then on to the OpenXR runtime and OpenXR compositor to
  % present the image at the proper target time tWhen:
  cmdString = sprintf('PsychOpenXR(1, %i, IMAGINGPIPE_FLIPTWHEN);', handle);
  Screen('Hookfunction', win, 'AppendMFunction', 'PreSwapbuffersOperations', 'OpenXR Present Operation', cmdString);
  Screen('Hookfunction', win, 'Enable', 'PreSwapbuffersOperations');

  % Attach shutdown procedure on onscreen window close:
  cmdString = sprintf('PsychOpenXR(2, %i);', handle);
  Screen('Hookfunction', win, 'PrependMFunction', 'CloseOnscreenWindowPreGLShutdown', 'OpenXR cleanup', cmdString);
  Screen('Hookfunction', win, 'Enable', 'CloseOnscreenWindowPreGLShutdown');

  % Does usercode request auto-closing the device or driver when the onscreen window is closed?
  if hmd{handle}.autoclose > 0
    % Attach a window close callback for Device teardown at window close time:
    if hmd{handle}.autoclose == 2
      % Shutdown driver completely:
      Screen('Hookfunction', win, 'AppendMFunction', 'CloseOnscreenWindowPreGLShutdown', 'Shutdown window callback into PsychOpenXR driver.', 'PsychOpenXR(''Close'');');
    else
      % Only close this device:
      Screen('Hookfunction', win, 'PrependMFunction', 'CloseOnscreenWindowPreGLShutdown', 'Shutdown window callback into PsychOpenXR driver.', sprintf('PsychOpenXR(''Close'', %i);', handle));
    end
    Screen('HookFunction', win, 'Enable', 'CloseOnscreenWindowPreGLShutdown');
  end

  % Do "real" first connected controller query:
  hmd{handle}.controllerTypes = PsychOpenXRCore('Controllers', hmd{handle}.handle);

  % Query set of currently connected controllers:
  if strcmpi(hmd{handle}.subtype, 'Oculus') || strcmpi(hmd{handle}.subtype, 'SteamVR/OpenXR')
    % On at least the Oculus XR runtime on MS-Windows, and SteamVR on Windows and Linux,
    % we need this workaround, or 'Controllers' will not report connected controllers,
    % but only after multiple repeated queries. We don't want the 1st query
    % from a user-script to potentially fail, so lets do the failed queries
    % here already. Why? Nobody knows, but apparently somehow one needs to
    % sync up with the XR runtime, maybe in the xrWaitFrame() or
    % xrBeginFrame() calls inside Flip. Just calling 'Controllers' multiple
    % times did not help, despite that also executing xrSyncActions() and
    % XR event processing. Also the wait of at least this duration and
    % multiple repetitions are crucial. Just the normal nightmares of
    % dealing with proprietary runtimes...
    % SteamVR needs the extra 'Controllers' call below, or things will continue
    % to fail.
    for i = 1:3
      % Loop until we get a true flip through. This will spin-wait if device
      % is not detecting users presence, e.g., a VR device's proximity sensor
      % does not report "HMD firmly attached to users head". We break the
      % loop, once the user is ready.
      while Screen('Flip', win) == 0; end
      hmd{handle}.controllerTypes = PsychOpenXRCore('Controllers', hmd{handle}.handle);
      WaitSecs(0.5);
    end
  end

  % Set initial view layer type, depending if 3D perspective correct rendering
  % or pure 2D mono-/stereo drawing is used:
  if hmd{handle}.use3DMode
    % 3D: Default to projection layers:
    PsychOpenXRCore('ViewType', handle, 1);
  else
    % 2D: Default to quad view layers:
    PsychOpenXRCore('ViewType', handle, 0);
  end

  % Compute and assign default 2D quadView parameters:
  z = 1; % Default distance along optical axis / line of sight shall be 1 meter.
  za = z;

  % Forced override distance of 2D viewscreen provided?
  vOvrDist = strfind(hmd{handle}.basicRequirements, '2DViewDistMeters=');
  if ~isempty(vOvrDist)
    vOvrDist = sscanf(hmd{handle}.basicRequirements(min(vOvrDist):end), '2DViewDistMeters=%f');
    if ~isscalar(vOvrDist) || ~isnumeric(vOvrDist) || ~isreal(vOvrDist) || (vOvrDist <= 0)
      sca;
      error('Invalid ''2DViewDistMeters='' string in ''basicRequirements'' specified! Must be of the form ''2DViewDistMeters=2.1'' for example for 2.1 meters distance.');
    end

    % Override default distance: Values > 1 meter will shrink the view in
    % the field of view of the subject:
    za = vOvrDist;
  end

  if hmd{handle}.StereoMode > 0
    maxeye = 2;
  else
    maxeye = 1;
  end

  verbosefov = 0;
  if hmd{handle}.switchTo2DViewsOnStop || ~hmd{handle}.use3DMode
    verbosefov = 1;
  end

  % User override values for field of view specified in 'SetupRenderingParameters'?
  if ~isempty(hmd{handle}.fovL) && ~isempty(hmd{handle}.fovR)
    % Yes. Use userscript provided values:
    fov{1} = hmd{handle}.fovL;
    fov{2} = hmd{handle}.fovR;
    if verbosefov
      fprintf('PsychOpenXR-INFO: Using user-script provided identical field of view for both eyes for 2D view default parameter calculation.\n');
    end
  else
    % No. Need to find out ourselves:
    fov{1} = [];
    fov{2} = [];

    % Can we query values from OpenXR driver?
    if (hmd{myhmd.handle}.StereoMode > 0) || ~hmd{myhmd.handle}.noTrackingInMono
      % We can only query the XR device for field of view in stereo mode:
      [~, ~, fov{1}, fov{2}] = PsychOpenXRCore('GetStaticRenderParameters', handle);
    end

    % Results from driver now?
    if ~any(fov{1})
      % Nope, we have to make stuff up. Use the conservative field of view
      % settings from a Oculus Rift CV-1 when driven by the OculusXR runtime:
      fov{1} = [-0.6209, 0.6209, 0.7270, -0.8379];
      fov{2} = fov{1};
      if verbosefov
        fprintf('PsychOpenXR-INFO: No info about field of view available. Using hard-coded Oculus Rift CV-1 identical field of view for both eyes for 2D view default parameter calculation as a fallback.\n');
      end
    else
      if verbosefov
        fprintf('PsychOpenXR-INFO: Using OpenXR driver reported actual field of view for 2D view default parameter calculation.\n');
      end
    end
  end

  % Cache final fov values for use by 'GetStaticRenderParameters':
  hmd{handle}.fovL = fov{1};
  hmd{handle}.fovR = fov{2};

  for eye=1:maxeye
    % Get size as selected by driver to preserve square pixels for non-square window:
    [~, viewSize] = PsychOpenXRCore('View2DParameters', handle, eye - 1);

    % Aspect ratio:
    aspect = viewSize(1) / viewSize(2);

    % Use symmetric FoV calculations by default, as they give better results in practice:
    if isempty(strfind(hmd{handle}.basicRequirements, 'PerEyeFOV'))
      % Assume symmetric field of view. Rarely true in practice, but
      % gives much better results.

      % Total vertical field of view:
      % vfov = fov{eye}(3) - fov{eye}(4); %#ok<NASGU>

      % Minimal vertical field of view:
      mvfov = min(abs(fov{eye}(3:4)));

      % Total horizontal field of view:
      % hfov = fov{eye}(2) - fov{eye}(1); %#ok<NASGU>

      % Minimal horizontal field of view:
      % mhfov = 2 * min(abs(fov{eye}(1:2))); %#ok<NASGU>

      % Compute new vertical viewSize to fit into vertical field of view:
      viewSize(2) = z * 2 * tan(mvfov);

      % Compute matching horizontal viewSize for vertical viewSize, aspect ratio preserving:
      viewSize(1) = viewSize(2) * aspect;
      pos = [0, 0, -za];
      if verbosefov && eye == 1
        fprintf('PsychOpenXR-INFO: 2D view default setup uses minimum vertical field of view and aspect ratio for view size setup.\n');
      end
    else
      % Handle asymmetric field of view. Theoretically more correct, but
      % in practice much worse!

      % Width of components of asymetric horizontal field of view:
      wl = z * tan(abs(fov{eye}(1)));
      wr = z * tan(abs(fov{eye}(2)));

      % Total width:
      w = wl + wr;

      % Corrective x-shift to compensate for asymetry:
      x = (wl - wr) / 2;

      % Height of components of asymetric vertical field of view:
      hu = z * tan(abs(fov{eye}(3)));
      hd = z * tan(abs(fov{eye}(4)));

      % Total height:
      h = hu + hd;

      % Corrective x-shift to compensate for asymetry:
      y = (hu - hd) / 2;

      viewSize = [w, h];
      pos = [x, y, -za];
      if verbosefov && eye == 1
        fprintf('PsychOpenXR-INFO: 2D view default setup uses per-eye (asymmetrical) field of view for view size and position setup.\n');
      end
    end

    PsychOpenXRCore('View2DParameters', handle, eye - 1, pos, viewSize);
  end

  % Eye tracking wanted in this session and supported by system?
  if hmd{handle}.needEyeTracking && hmd{handle}.eyeTrackingSupported
    % Tracking api specific setup:

    % SRAnipalMex available for HTC Vive SRAnipal eye tracking?
    if IsWin && exist('SRAnipalMex', 'file') && ~isempty(strfind(hmd{handle}.modelName, 'SRanipal'))
      % Yes. Use this instead of standard PsychOpenXRCore provided eye tracking OpenXR extensions:
      fprintf('PsychOpenXR-INFO: Trying to enable HTC SRAnipal eye tracking for this session.\n');

      % Perform an eye gaze tracking query via OpenXR extensions. We don't
      % care about the actual result, but on HTC devices like this one,
      % this will force-load/link the SRanipal.dll which is contained /
      % bundled within HTC's installed driver software for Vive devices
      % into the Matlab/Octave process, as HTC's OpenXR gaze tracking
      % extension is just a thin wrapper around HTC's SRanipal api and
      % runtime, specifically their XR_EXT_eye_gaze_interaction extension
      % simply calls SRanipal's GetEyeData_v2() function, then translates
      % and returns the data in OpenXR format. As our SRAnipalMex file also
      % has a load-time dependency on SRanipal.dll, this should allow our
      % mex file to load and link without trouble - or so goes the theory:
      PsychOpenXRCore('GetTrackingState', handle, [], 4);

      % Initialize eyetracker connection:
      try
        if SRAnipalMex(0)
          % Start data acquisition:
          SRAnipalMex(2);

          % Upgrade eyeTrackingSupported:
          % +1 "Basic" monocular/single gazevector
          % +2 Binocular/separate left/right eye gaze
          % +1024 HTC SRAnipal eye tracking in use
          hmd{handle}.eyeTrackingSupported = 1 + 2 + 1024;
        else
          warning('HTC SRAnipal eye tracker startup failed! Trying more limited standard OpenXR eye tracking instead.');
        end
      catch
        fprintf('PsychOpenXR-INFO: HTC SRAnipal runtime interface DLL unavailable. Trying more limited standard OpenXR eye tracking instead.\n');
      end
    end
  end

  % Tracked operation requested?
  if ~isempty(strfind(hmd{handle}.basicTask, 'Tracked'))
    % 3D head tracked VR rendering task: Start tracking as a convenience:
    PsychOpenXRCore('Start', handle);
  end

  % Last step: Start presenter thread if always-on multi-threading is requested:
  if hmd{handle}.multiThreaded == 2
    if hmd{handle}.needWinThreadingWa1
      Screen('Hookfunction', hmd{handle}.win, 'SetDisplayBufferTextures', '', hmd{handle}.oldglLeftTex, hmd{handle}.oldglRightTex);
    end

    PsychOpenXRCore('PresenterThreadEnable', handle, 1);
  end

  % Return success result code 1:
  varargout{1} = 1;
  return;
end

% 'cmd' so far not dispatched? Let's assume it is a command
% meant for PsychOpenXRCore:
if (length(varargin) >= 1) && isstruct(varargin{1})
  myhmd = varargin{1};
  handle = myhmd.handle;
  [ varargout{1:nargout} ] = PsychOpenXRCore(cmd, handle, varargin{2:end});
else
  [ varargout{1:nargout} ] = PsychOpenXRCore(cmd, varargin{:});
end

return;

end