File: moglFDF.m

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (1609 lines) | stat: -rw-r--r-- 66,051 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
function varargout = moglFDF(cmd, varargin)
% moglFDF(cmd [, arg1][, arg2][, ...]) - "MOGL FormlessDotFields"
%
% Implementation of Sheinberg et al. inspired random dot structure from motion
% rendering. This routine is a fast implementation of "Formless dot field
% structure-from-motion stimuli". It is based on - and very similar in
% behaviour, although not identical in implementation - the algorithm
% proposed by Jedediah M. Singer and David L. Sheinberg in their
% Journal of Vision paper "A method for the real-time rendering of
% formless dot field structure-from-motion stimuli" (Journal of Vision, 8,
% 1-8)
%
% This algorithm takes the idea of the above mentioned paper and pushes it
% one step further by moving nearly all stimulus computation onto the GPU.
%
% All compute intense tasks are carried out by vertex- and fragment-shaders
% on the GPU and all heavy data structures are stored within the GPU's fast
% local VRAM memory, reducing the amount of communication between host
% system and graphics card to an absolute minimum. The Matlab code on the
% CPU only controls the flow of operations on the GPU and generates a
% matrix with random numbers to update the sample distribution. This should
% provide a significant speedup beyond what the Singer et al. algorithm
% achieves, at least for complex and demanding stimuli.
%
%
% The algorithm makes heavy use of GPU based image processing for maximum
% speed, so it needs at least NVidia Geforce 6000 series or ATI Radeon
% X1000 series graphics hardware (and any later models or equivalent
% hardware) to work. It also needs the PTB imaging pipeline enabled, at
% least fast offscreen window support. You do this, e.g., by replacing a
% call to ...
%
% [win, winRect] = Screen('OpenWindow', screenid, 0);
%
% ... with a call sequence like this ...
%
% PsychImaging('PrepareConfiguration');
% PsychImaging('AddTask', 'General', 'UseFastOffscreenWindows');
% [win , winRect] = PsychImaging('OpenWindow', screenid, 0);
%
%
% A minimal example of how to use moglFDF to render a "dotfield"
% representation of a rotating 3D sphere can be found in the FDFDemo.m
% file.
%
%
% Subcommands, their syntax & meaning:
% ====================================
%
% [oldflag, oldgain] = moglFDF('DebugFlag', flag [, debugGain]);
% - Set debug flag to value 'flag'. Default is zero. Non-zero values enable
% different visualizations that may aid debugging non-working setups.
% 1 = Show silhouette buffer, 2 = Show trackbuffer, 3 = Show random noise
% sampling texture, 4 = Show sampleBuffer, 5 = Show FGDots buffer. A
% setting of -1 shows the real rendered image, instead of the random dot
% visualization. A value of -2 disables any kind of textual warnings.
%
% The optional 'debugGain' parameter must be a 4 component [R G B A] color
% vector with modulation gains for the drawn "debug images" - simply to
% scale each color channel in intensity to allow for display of values
% outside the standard displayable range between zero and one.
%
%
% context = moglFDF('CreateContext', window, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime [,zThreshold=Off] [,BGSilhouetteAcceptanceProbability=0.0]); 
% - Create a "rendercontext" for a single 3D object. Returns a 'context'
% handle to it which needs to be passed in to all other functions as
% reference. All following parameters are required and don't have any
% defaults:
%
% 'window' Handle of masterwindow - The onscreen window used for rendering.
% This is not neccessarily the window to which final stimulus will be drawn
% to, but it is needed as a "parent" for all ressources.
%
% 'rect' A Psychtoolbox rectangle [left top right bottom] that describes
% the size and shape of the final stimulus window. This rect must have the
% same size as the 3D window and final stimulus window -- Lots of internal
% calculations depend on this geometry spec.
%
% 'texCoordMin' Two element vector which contains the minimum texture
% coordinate values contained in the 3D scene for x- resp. y-direction.
%
% 'texCoordMax' Two element vector which contains the maximum texture
% coordinate values contained in the 3D scene for x- resp. y-direction.
%
% 'texResolution' Two element vector which contains the internal resolution
% for x- resp. y-direction of the 3D object surface. Higher values mean finer
% resolution and less aliasing, but also higher storage requirements and
% longer processing times.
%
% 'maxFGDots' Maximum number of foreground (object shape) dots to use for
% random shape sampling. This must be an integral multiple of
% 'dotLifetime'. If it isn't, it will get adjusted to become an integral
% multiple.
%
% 'maxBGDots' Maximum number of background dots to use for random background
% sampling. This must be an integral multiple of 'dotLifetime'. If it
% isn't, it will get adjusted to become an integral multiple. If you don't
% want to have structure cues in your stimulus, you should set 'maxBGDots'
% equal to 'maxFGDots' to keep overall dot density on the display constant.
%
% 'dotLifetime' Lifetime of each foreground- or background dot in 'Update'
% cycles. Each dot is replace by a new random sample after that many
% invocations of the 'Update' function.
%
% 'zThreshold' Optional zThreshold for occlusion test: By default, it is
% 10.0 ie. occlusion test disabled. A value between 0.0 and 1.0 will enable
% occlusion testing -- Dots that would correspond to occluded surfaces are
% not drawn. Small numbers (close to zero) make the test more sensitive but
% can cause artifacts due to internal numeric roundoff errors. Bigger
% numbers (closer to one) make it more robust but less powerful. The
% "sweet-spot" depends on your hardware and 3D scene. Empirically a setting
% of 0.0001 is a good value for ATI Radeon X1000 series hardware.
% The default setting (bigger than 1.0) will disable occlusion test --
% "Hidden dots" are not hidden, but drawn.
%
% 'BGSilhouetteAcceptanceProbability' Optional BGSilhouetteAcceptanceProbability
% This is the probability with which a dot from the "background distribution" 
% will be drawn if it is actually located in the area of the objects
% silhouette. A value of 0.0 (which is the default) will not draw any
% background dots within the objects silhouette. Values between 0 and 1
% correspond to acceptance probabilities between 0% and 100%. If you want
% to keep the overall dot density of foreground dots and background dots
% constant (in order to not provide segmentation cues based on structure),
% you should set the 'maxFGDots' parameter like this:
%
% maxFGDots = (1 - BGSilhouetteAcceptanceProbability) * maxBGDots;
%
%
% context = moglFDF('SetRenderCallback', context, callbackEvalString);
% - Define the 'eval' string for this context to be used as rendercallback.
% Pass in a Matlab command string (for evaluation via eval() function in the
% Workspace of the calling function). This string is called/executed during
% each 'Update' cycle. It has to contain the code that performs the actual
% rendering of the 3D scene or object.
%
% The called rendering code *must not* glClear() the framebuffer or mess
% around with alpha-blending state or depth-buffer/depth-test settings, nor
% should it bind any shaders! It makes sense to disable any kind of
% lighting or texture mapping, as no photorealistic image is rendered, so
% it would be a waste of computation time.
%
%
% context = moglFDF('ReinitContext', context, rect, texCoordMin, texCoordMax, texResolution, maxFGDots, maxBGDots, dotLifetime [,zThreshold=Off] [,BGSilhouetteAcceptanceProbability=0.0]); 
% - Reinitialize an already existing context with new stimulus parameters.
% The parameters are identical to the ones in 'CreateContext', except for
% the first one: You don't pass a windowhandle of a parent window, as this
% stays the same for the reinitialized context. Instead you pass the handle
% of the 'context' to reinitialize.
%
% 'ReinitContext' is the same as a sequence of 'DestroyContext', followed
% by a new 'CreateContext', except that it is optimized for speed --
% Reinitialization with new parameters is typically at least 3 times faster
% than a full destroy & recreate operation.
%
%
% context = moglFDF('DestroyContext', context);
% - Destroy a processing context, release all of its ressources.
%
%
% context = moglFDF('ResetState', context);
% - Reset processing contexts state to initial state, just as if it was
% just created. Useful at start of a new trial. Another way to start a new
% trial, but with a full distribution already initialized, is to use the
% moglFDF('Update') call with the 'instantOn' flag set to 1 for the first
% iteration of your stimulus loop, instead of the default of zero.
%
%
% context = moglFDF('SetColorTexture', context, textureId, textureTarget);
% - Assign a regular color texture map with handle 'textureId' and texture
% mapping target 'textureTarget' to 'context'. This will enable assignment
% of colors to drawn 2D dots (in moglFDF('Render',...);) and fetch the
% relevant per-dot colors from the assigned texture map 'textureId'.
%
% Assigning an empty or negative textureId will disable texture mapping.
% Texture mapping is disabled by default, i.e. at context creation time.
%
%
% context = moglFDF('SetDrawShader', context, fgShaderId [, bgShaderId] [, needSprites]);
% - Assign a GLSL shader with handle 'fgShaderId' during 2D drawing of
% foreground dots in moglFDF('Render',...); Passing a 'fgShaderId' which is
% empty or negative disables shading. Shading is disabled by default.
%
% The optional 'bgShaderId' assigns potential shaders for drawing of
% background dots.
%
% The optional flag 'needSprites' if set to 1, will enable generation of
% point-sprite texture coordinates on texture unit 1 while using a shader
% with point-smoothing enabled. A setting of 0 disables point sprites.
% Point sprites plus special code within your drawing fragment shader are
% needed if you want to draw nicely anti-aliased dots on GPUs that don't
% support simultaneous use of fragment shaders and anti-aliased dots. On
% such systems you can roll your own anti-aliasing via point-sprites.
% Please note that almost all consumer class GPU's don't support
% anti-aliased dots in conjunction with fragment shaders.
%
%
% context = moglFDF('Update', context [, instantOn=0]);
% - Perform an 'update' cycle for given context. A new "3D frame" is rendered
% via the rendercallback function, then analysed, resampled etc. to create
% a new complete distribution of 2D random dots, ready for drawing or
% readback. If the optional 'instantOn' flag is provided and non-zero, then
% the whole distribution is generated at once for a quick start at the
% beginning of a new trial, otherwise only one batch of samples is updated.
% By default, only one batch is updated, as required for the algorithm to
% work.
%
%
% context = moglFDF('Render', context [, targetWindow] [, drawSpec=[1,1]]);
% - Render current 2D random dot cloud (as defined by processing of last
% 'Update' call) quickly and efficiently into window 'targetWindow'.
% 'targetWindow' can be any onscreen- or offscreen window and is allowed to
% change at each invocation of 'Render'. By default, the 'window' from the
% 'CreateContext' call is used.
%
% 'drawSpec' is an optional two-element vector to select if only foreground
% dots should be rendered [1 0], only background dots should be rendered [0 1],
% or both [1 1] -- which is the default.
%
% Before calling 'Render' you can define dot sizes, colors, alpha-blending
% state, texture coordinates, anti-aliasing settings, or define texture
% mapping, point-sprite modes or texture mapping setups however you like.
% The internal 'Render' routine just defines 2D point locations, then
% invokes the render op.
%
%
% [xyFGdots, xyBGdots, uvFGdots] = moglFDF('GetResults', context); - Returns a 2 row
% by n columns vector of all random dot positions, for processing within
% Matlab/Octave. Row 1 is x-locations, Row 2 is y-locations of dots, each
% column defines one dot. The 'xyFGDots' contains all foreground dots which
% define the object, whereas the 'xyBGdots' vector contains the background
% dots. These vectors are suitable for direct drawing via
% Screen('DrawDots'); However, invocation of moglFDF('Render',...); is a
% more efficient method of rendering these dot fields, unless you have very
% special needs.
%
% The optional 'uvFGdots' argument returns 2D texture coordinates as
% assigned to the rendered 3D object.
%

% History:
%  05/02/08  Initial "proof of concept" implementation (MK).
% -05/10/08  Various improvements (MK).
%  11/03/08  Documentation update, preparation for public release (MK).
%  11/15/08  Improvements: New 'instantOn' mode for 'Update' method, new
%            'ReinitContext' function (MK).

% Need OpenGL constants:
global GL;

% Internal state:
global moglFDF_OriginalContext;
persistent contextcount;
persistent debug;
persistent debugGain;

if nargin < 1
    error('You must provide a "cmd" subcommand to execute!');
end

if isempty(contextcount)
    contextcount = 0;
    moglFDF_OriginalContext = [];
    debug = 0;
    
    if isempty(GL)
        % If OpenGL not initialized, do a full init for 3D mode:
        error('OpenGL mode not initialized! You *must* call InitializeMatlabOpenGL before the first call to this routine or any Screen() function!')
    end
end

% Subcommand dispatch:

% Initialization of a new context: Allocate and setup all ressources:
if strcmpi(cmd, 'CreateContext') || strcmpi(cmd, 'ReinitContext')
    % Fetch all arguments - They are all required.
    if nargin < 9
        error(sprintf('Some mandatory input arguments to "%s" are missing. Please provide them!', cmd)); %#ok<SPERR>
    end
    
    if strcmpi(cmd, 'CreateContext')
        createContext = 1;
    else
        createContext = 0;
    end
    
    % First time init? I.e. is this the first context to be created?
    if contextcount == 0
        % Yes. Perform all one-time initialization work and create a
        % template context from which all other contexts can be derived:
        
    end

    % Type of expected first argument depends if this is a 'CreateContext'
    % call or a 'ReinitContext' call:
    if createContext
        % Parent window: Provides OpenGL master-/slave- contexts for our
        % operations, shaders and buffers, as well as reference for
        % rendertarget size:
        ctx.parentWin = varargin{1};

        if ~isscalar(ctx.parentWin) || ~ismember(ctx.parentWin, Screen('Windows'))
            disp(ctx.parentWin);
            error('Invalid "window" argument provided to "CreateContext" - No such window (see above)!');
        end
    else
        % Old 'ctx' handle of context to reparameterize / reinit:
        ctx = varargin{1};
        
        % Make sure we've got a valid handle:
        if ~isstruct(ctx)
            disp(ctx);
            error('Invalid "context" argument provided to "ReinitContext" - This is not a valid moglFDF context handle!');
        end
        
        if ~isfield(ctx, 'moglFDFMagic')
            disp(ctx);
            error('Invalid "context" argument provided to "ReinitContext" - This is not a valid moglFDF context handle!');
        end

        % Release all buffers, but not the shaders!
        % Delete all offscreen windows, gloperators and buffers like IBO's
        % VBO's, PBO's, FBO's etc, so they can get recreated, based on the
        % new context parameters:
        deleteContextBuffers(ctx);
        RestoreGL;
        
        % Decrement contextcount, so it can be reincremented at end of this
        % function:
        contextcount = max(contextcount - 1, 0);
    end
    
    % Assign our magic cookie...
    ctx.moglFDFMagic = 'Funky magic-cookie';
    
    % Get all other arguments and perform parameter type and range checks:
    ctx.rect = varargin{2};
    if ~isnumeric(ctx.rect) || length(ctx.rect)~=4
        disp(ctx.rect);
        error('Invalid "rect" argument provided to "CreateContext" - Must be a 4 component vector that describes the size and shape of the target rectangle [left top right bottom]');        
    end
    
    ctx.rect = double(ctx.rect);
    if IsEmptyRect(ctx.rect)
        disp(ctx.rect);
        error('Invalid "rect" argument provided to "CreateContext" - Must be a non-empty rect that describes the size and shape of the target rectangle [left top right bottom]');        
    end
    
    ctx.texCoordMin = varargin{3};
    if ~isnumeric(ctx.texCoordMin) || length(ctx.texCoordMin)~=2
        disp(ctx.texCoordMin);
        error('Invalid "texCoordMin" argument provided to "CreateContext" - Must be a 2 component vector of minimal texture coordinates in x- and y- direction!');
    end
    
    ctx.texCoordMax = varargin{4};
    if ~isnumeric(ctx.texCoordMax) || length(ctx.texCoordMax)~=2
        disp(ctx.texCoordMax);
        error('Invalid "texCoordMax" argument provided to "CreateContext" - Must be a 2 component vector of maximal texture coordinates in x- and y- direction!');
    end
    
    ctx.texResolution = varargin{5};
    if ~isnumeric(ctx.texResolution) || length(ctx.texResolution)~=2
        disp(ctx.texResolution);
        error('Invalid "texResolution" argument provided to "CreateContext" - Must be a 2 component vector of integral numbers with processing resolution in x- and y- direction!');
    end
   
    if round(ctx.texResolution) ~= ctx.texResolution
        disp(ctx.texResolution);
        error('Invalid "texResolution" argument provided to "CreateContext" - Must be integral numbers for resolution in x- and y- direction!');
    end

    if min(ctx.texResolution) < 2
        disp(ctx.texResolution);
        error('Invalid "texResolution" argument provided to "CreateContext" - Each component must be at least 2 units!');
    end
    
    ctx.maxFGDots = round(varargin{6});
    if ~isscalar(ctx.maxFGDots)
        disp(ctx.maxFGDots);
        error('Invalid "maxFGDots" argument provided to "CreateContext" - Must be a positive integral number of maximum foreground dots!');
    end
    
    if ctx.maxFGDots < 1
        disp(ctx.maxFGDots);
        fprintf('Invalid "maxFGDots" argument provided to "CreateContext" - Must be at least 1! Changed to 1.\n');
        ctx.maxFGDots = 1;
    end
    
    ctx.maxBGDots = round(varargin{7});
    if ~isscalar(ctx.maxBGDots)
        disp(ctx.maxBGDots);
        error('Invalid "maxBGDots" argument provided to "CreateContext" - Must be a positive integral number of maximum background dots!');
    end
    
    if ctx.maxBGDots < 1
        disp(ctx.maxBGDots);
        fprintf('Invalid "maxBGDots" argument provided to "CreateContext" - Must be at least 1! Changed to 1.\n');
        ctx.maxBGDots = 1;
    end

    ctx.dotLifetime = round(varargin{8});
    if ~isscalar(ctx.dotLifetime)
        disp(ctx.dotLifetime);
        error('Invalid "dotLifetime" argument provided to "CreateContext" - Must be a positive integral number of how many update cycles a dot lives before replacement!');
    end
    
    if ctx.dotLifetime < 1
        disp(ctx.dotLifetime);
        error('Invalid "dotLifetime" argument provided to "CreateContext" - Must be at least 1!');
    end

    % Basic checks passed: Now check for inter-parameter consistency:
    if rem(ctx.maxFGDots, ctx.dotLifetime)
        % Doesn't divide without remainder.
        if debug ~= -2
            fprintf('In moglFDF:%s:\n', cmd);
            fprintf('maxFGDots=%i , dotLifetime=%i --> remainder of maxFGDots / dotLifetime is not zero, as required!\n', ctx.maxFGDots, ctx.dotLifetime);
        end

        % Modify it to satisfy condition:
        ctx.maxFGDots = max(ceil(ctx.maxFGDots / ctx.dotLifetime) * ctx.dotLifetime, ctx.dotLifetime);

        if debug ~= -2
            fprintf('"maxFGDots" must be an integral multiple of "dotLifetime". Changed "maxFGDots" to a value of %i to satisfy this condition.\n', ctx.maxFGDots);
        end
    end

    if rem(ctx.maxBGDots, ctx.dotLifetime)
        % Doesn't divide without remainder.
        if debug ~= -2
            fprintf('In moglFDF:%s:\n', cmd);
            fprintf('maxBGDots=%i , dotLifetime=%i --> remainder of maxBGDots / dotLifetime is not zero, as required!\n', ctx.maxBGDots, ctx.dotLifetime);
        end

        % Modify it to satisfy condition:
        ctx.maxBGDots = max(ceil(ctx.maxBGDots / ctx.dotLifetime) * ctx.dotLifetime, ctx.dotLifetime);

        if debug ~= -2
            fprintf('"maxBGDots" must be an integral multiple of "dotLifetime". Changed "maxBGDots" to a value of %i to satisfy this condition.\n', ctx.maxBGDots);
        end
    end
    
    if nargin >= 10
        ctx.zThreshold = varargin{9};
        if ~isscalar(ctx.zThreshold)
            disp(ctx.zThreshold);
            error('Invalid "zThreshold" argument provided to "CreateContext" - Must be a positive number in range 0.0 - 1.0 for z-Test, and bigger for z-Test disabled!');
        end
    else
        % Default: z-Test disabled:
        ctx.zThreshold = 10.0;
    end
    
    if nargin >= 11
        ctx.BGSilhouetteAcceptanceProbability = varargin{10};
        if ~isscalar(ctx.BGSilhouetteAcceptanceProbability)
            disp(ctx.BGSilhouetteAcceptanceProbability);
            error('Invalid "BGSilhouetteAcceptanceProbability" argument provided to "CreateContext" - Must be a positive number in range 0.0 - 1.0!');
        end        
    else
        ctx.BGSilhouetteAcceptanceProbability = 0.0;
    end
    
    % Backup current GL context binding:
    BackupGL;
    
    % Make sure our Screen context is active:
    SwitchToPTB;
    
    % Retrieve info about our hosting window. This will implicitely enable
    % our parents OpenGL context, so we can do GL query commands safely:
    winfo = Screen('GetWindowInfo', ctx.parentWin);
    
    % Retrieve maximum width or height of textures and offscreen windows
    % supported by this GL implementation:
    maxtexsize = glGetIntegerv(GL.MAX_RECTANGLE_TEXTURE_SIZE_EXT);
    
    % Width of a line in samplebuffer:
    ctx.samplesPerLine = min(maxtexsize, 2048);
    ctx.samplesPerLine = min(ctx.samplesPerLine, round(ctx.maxFGDots / ctx.dotLifetime));
    
    % Check requested internal resolution against hw-limit:
    if max(ctx.texResolution) > maxtexsize
        disp(ctx.texResolution)
        error(sprintf('Requested "texResolution" parameter too big in at least one dimension - Your graphics card can not handle that! Maximum is %i\n', maxtexsize)); %#ok<SPERR>
    end

    % Need these checks only on original context creation:
    if createContext
        % Imaging pipeline active in at least minimum configuration?
        if ~bitand(winfo.ImagingMode, mor(kPsychNeedFastBackingStore, kPsychNeedFastOffscreenWindows))
            % Neither basic pipeline, nor fast offscreen window support
            % activated in parent window. This is a no-go!
            error('In "CreateContext": The PTB imaging pipeline is not active for provided parent window - this will not work! Need at least support for fast offscreen windows.');
        end

        if winfo.GLSupportsFBOUpToBpc < 32 || winfo.GLSupportsTexturesUpToBpc < 32
            error('In "CreateContext": Your gfx-hardware is not capable of handling textures and buffers with the required precision - this function will not work on your hardware!');
        end

        % Check for all required extensions:
        if ~(~isempty(findstr(glGetString(GL.EXTENSIONS), '_vertex_buffer_object')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), '_pixel_buffer_object')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), '_framebuffer_object')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_shading_language')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_shader_objects')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_fragment_shader')) && ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_ARB_vertex_shader')) && ...
                (~isempty(findstr(glGetString(GL.EXTENSIONS), 'GL_APPLE_float_pixels')) || ...
                ~isempty(findstr(glGetString(GL.EXTENSIONS), '_color_buffer_float'))))
            % At least one of the required extensions is missing!
            error('In "CreateContext": Your gfx-hardware does not support all required OpenGL extensions - this function will not work on your hardware!');
        end
    end
    
    % Ok, all checks passed.
    
    % Create all relevant FBO buffers, aka Offscreen windows:

    % Sample buffer: Contains all foreground random dot samples.
    % The buffer is split into ctx.dotLifetime blocks, each
    % ctx.samplesPerLine wide and ctx.sampleLinesperBatch high. Each
    % pixel in the buffer encodes one foreground sampe - and thereby one
    % potential foreground dot in the next rendered frame.
    %
    % The algorithm will at each update cycle replace one of these blocks
    % or "batches" with a new distribution of samples -- the old dots in
    % that batch will die and get replaced by new samples from the
    % foreground distribution iff they actually hit the silhouette of the
    % 3D object to be "visualized" - otherwise that samples will be invalid
    % and inactive. Each update cycle a different batch is selected for
    % update in a round-robin fashion, so each sample has a lifetime of
    % ctx.dotLifetime update cycles as requested.
    %
    % Each pixel codes as follows: Red channel == x position of 3D object
    % surface to which the sample is attached, encoded as 32 bit float --
    % technically it is the s-texture coordinate of the 3D surface at the
    % point of impact of our sample. Green channel == y position, aka
    % t-texture coordinate on objects surface. Blue channel == "Valid"
    % flag: Non-zero means: Visualize this samples final tracked position
    % -- draw corresponding dot. Zero means: Ignore this sample.
    %
    % Our buffer is implemented as a FBO backed floating point offscreen
    % window with a pixel size of 128 bits, aka 32 bpc float.
    ctx.sampleLinesPerBatch = ceil((round(ctx.maxFGDots / ctx.dotLifetime)) / ctx.samplesPerLine);
    ctx.sampleLinesTotal = ctx.sampleLinesPerBatch * ctx.dotLifetime;
    ctx.sampleBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], double([0 0 ctx.samplesPerLine ctx.sampleLinesTotal]), 128, 32);
    ctx.maxFGDots = ctx.sampleLinesTotal * ctx.samplesPerLine;
    
    % Silhouette buffer: Contains the "perspective correct image space"
    % image of the rendered 3D object. The object is rendered "normally" in
    % a first render pass to get its silhouette, except that the color of
    % each rendered pixel is not a shaded/lit color, but its encoded
    % interpolated surface texture coordinate. This will be done by a
    % proper fragment shader during render pass.
    % The buffer is an FBO backed offscreen window the same size as the
    % parent window, but with 32bpc float format to store accurate texture
    % coordinates in the pixel colors. Red channel encodes s-coord, Green
    % channel encodes t-coord of 2D texture coordinate, blue encodes
    % interpolated z-buffer depths.
    [ctx.silhouetteWidth, ctx.silhouetteHeight] = RectSize(ctx.rect);
    ctx.silhouetteBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], [0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight], 128, 32);

    % Retrieve OpenGL texture handle for the sihouetteBuffer:
    ctx.silhouetteTexture = Screen('GetOpenGLTexture', ctx.parentWin, ctx.silhouetteBuffer);
        
    % Tracking buffer: Contains the unwarped/flattened image of the 3D
    % objects surface, created by a 2nd rendering pass of the 3D object,
    % but with special vertex-/fragment shaders attached.
    %
    % Pixel location (x,y) encodes for object surface texture coordinate
    % (s,t): Its R, G and B channels encode interpolated X, Y, Z coordinate
    % of the unwarped object surface. This way a lookup at position (s,t)
    % provides the image space 3D coordinate of surface point (s,t) in
    % "normal" camera centered and projected (X,Y,Z) space -- (X,Y) are
    % projected image coordinates, (Z) is depths component. This allows to
    % lookup the tracked/updated (X,Y) image position of a sample dot.
    %
    % Again a 32bpc float offscreen window FBO, but the resolution is
    % chosen per user spec to be fine enough in texture coordinate space to
    % avoid aliasing artifacts as good as possible:
    ctx.trackingBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], [0, 0, ctx.texResolution(1), ctx.texResolution(2)], 128, 32);

    % Final buffer with foreground dot positions. This one will get filled
    % by the createFGDotShader. It will later get either read back to
    % Matlab on usercode request, or converted to a VBO and then rendered.
    ctx.FGDotsBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], Screen('Rect', ctx.sampleBuffer), 128, 32);
    

    % Final buffer with background dot positions. This one will get filled
    % by the createBGDotShader. It will later get either read back to
    % Matlab on usercode request, or converted to a VBO and then rendered.
    
    % Width of a line in buffer:
    ctx.BGsamplesPerLine = min(maxtexsize, 2048);
    ctx.BGsamplesPerLine = min(ctx.BGsamplesPerLine, round(ctx.maxBGDots / ctx.dotLifetime));
    ctx.BGsampleLinesPerBatch = ceil((round(ctx.maxBGDots / ctx.dotLifetime)) / ctx.BGsamplesPerLine);
    ctx.BGsampleLinesTotal = ctx.BGsampleLinesPerBatch * ctx.dotLifetime;
    ctx.BGDotsBuffer = Screen('OpenOffscreenWindow', ctx.parentWin, [0 0 0 0], double([0 0 ctx.BGsamplesPerLine ctx.BGsampleLinesTotal]), 128, 32);
    ctx.maxBGDots = ctx.BGsampleLinesTotal * ctx.BGsamplesPerLine;
    ctx.BGSampleSet = zeros(ctx.BGsampleLinesTotal, ctx.BGsamplesPerLine, 3);

    % Load all our shaders - Need to do this only on original context
    % creation, as shaders are recycled across context reinits. However, we
    % can only recycle shaders from one existing context, not across
    % different contexts, because each shader object also encapsulates
    % per-context state like the settings of all Uniforms etc. and we can't
    % share these!
    if createContext
        % Basepath to shaders:
        % shaderpath = [fileparts(mfilename('fullpath')) filesep ];
        shaderpath = '';

        % Shader for 1st object renderpass: Encode texcoords and depths into
        % color channel -- to fill silhouetteBuffer:
        ctx.silhouetteRenderShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFSilhouetteRenderShader'], 1);

        % Shader for 2nd object renderpass: Fill trackingBuffer
        ctx.trackingRenderShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFTrackingRenderShader'], 1);

        % Shader for update of distribution in sampleBuffer:
        ctx.samplingShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFSamplingShader'], 1);

        % Shader for final creation of foreground dots VBO spec from
        % distribution in sampleBuffer and trackingBuffer:
        ctx.createFGDotsShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFForegroundDotsRenderShader'], 1);
    
        % Shader for creation of background dots VBO spec:
        ctx.createBGDotsShader = LoadGLSLProgramFromFiles([shaderpath 'moglFDFBackgroundDotsRenderShader'], 1);
        
        % Setup default coloring mode: No textures, no texture mapping:
        ctx.colorTexId = -1;
        ctx.colorTexTarget = -1;

        % Also disable 2D dot drawing shaders by default:
        ctx.draw2DShaderFG = -1;
        ctx.draw2DShaderBG = -1;
        ctx.needSprites = 0;
    end
    
    % Setup trackingRenderShader:
    glUseProgram(ctx.trackingRenderShader)

    % Compute texture coordinate offset and multiplier to apply in order to
    % remap the real texture coordinate range into the normalized [-1:+1]
    % interval that can pass through vertex clipping:
    glUniform4f(glGetUniformLocation(ctx.trackingRenderShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), 2.0/(ctx.texCoordMax(1) - ctx.texCoordMin(1)), 2.0/(ctx.texCoordMax(2) - ctx.texCoordMin(2)));

    % Bind texunit 1 to object coordinates texture:
    glUniform4f(glGetUniformLocation(ctx.trackingRenderShader, 'Viewport'), 0, 0, ctx.silhouetteWidth/2, ctx.silhouetteHeight/2);
    
    % Setup shader for update of distribution in sampleBuffer:
    glUseProgram(ctx.samplingShader);

    % Bind texunit 0 to random sample position texture:
    glUniform1i(glGetUniformLocation(ctx.samplingShader, 'SilSamplePositions'), 0);

    % Bind texunit 1 to silhouette image texture:
    glUniform1i(glGetUniformLocation(ctx.samplingShader, 'Silhouette'), 1);

    % Define remapping of texture coordinates into range 0-texResolution --
    % The size of the trackingBuffer:
    glUniform4f(glGetUniformLocation(ctx.samplingShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), ctx.texResolution(1)/(ctx.texCoordMax(1) - ctx.texCoordMin(1)), ctx.texResolution(2)/(ctx.texCoordMax(2) - ctx.texCoordMin(2)));
    
    % Setup shader for final creation of foreground dots VBO spec from
    % distribution in sampleBuffer and trackingBuffer:
    glUseProgram(ctx.createFGDotsShader)

    % Bind texunit 0 to Samplebuffer texture:
    glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'SampleBuffer'), 0);

    % Bind texunit 1 to object coordinates texture:
    glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'GeometryBuffer'), 1);

    % Bind texunit 2 to silhouette texture for last rendered frame:
    glUniform1i(glGetUniformLocation(ctx.createFGDotsShader, 'Silhouette'), 2);
    
    % Assign zThreshold for depths testing of foreground dots before
    % output to handle occlusions correctly:
    glUniform1f(glGetUniformLocation(ctx.createFGDotsShader, 'zThreshold'), ctx.zThreshold);

    % Assign height of final output window + 1 to allow shader to invert
    % y-coordinate of final dots properly to account for difference in
    % y-axis direction of Screen()'s reference frame vs. OpenGL default
    % frame:
    glUniform1f(glGetUniformLocation(ctx.createFGDotsShader, 'ViewportHeight'), ctx.silhouetteHeight + 1);
    
    % Define size of GeometryBuffer -- wrapAround values for interpolated
    % texture lookup coordinates:
    glUniform2f(glGetUniformLocation(ctx.createFGDotsShader, 'texWrapAround'), ctx.texResolution(1), ctx.texResolution(2));

    % Define inverse remapping of texture coordinates into range
    % 0-texResolution -- The size of the trackingBuffer. N.B.: A neutral
    % mapping would be (0, 0, 1, 1) - That would pass trackingBuffer
    % texture coordinates instead of object texture coordinates.
    glUniform4f(glGetUniformLocation(ctx.createFGDotsShader, 'TextureOffsetBias'), ctx.texCoordMin(1), ctx.texCoordMin(2), 1 / (ctx.texResolution(1)/(ctx.texCoordMax(1) - ctx.texCoordMin(1))), 1 / (ctx.texResolution(2)/(ctx.texCoordMax(2) - ctx.texCoordMin(2))));
    
    % Set default 'clipVertex' position to (x,y,u,v) = (-1, 0, 0, 0): This
    % will prevent any vertex to which this is applied from drawing,
    % because it is clipped away due to its negative x-location outside viewport:
    glUniform4f(glGetUniformLocation(ctx.createFGDotsShader, 'clipVertex'), -1, 0, 0, 0);

    glUseProgram(0);
    
    % Create gloperator from shader for later use by Screen('TransformTexture'):
    ctx.createFGDotsoperator = CreateGLOperator(ctx.parentWin, [], ctx.createFGDotsShader, 'Create foreground dots.');
    
    % Setup shader for creation of background dots VBO spec:
    glUseProgram(ctx.createBGDotsShader)

    % Bind texunit 0 to random sample position texture:
    glUniform1i(glGetUniformLocation(ctx.createBGDotsShader, 'SilSamplePositions'), 0);

    % Bind texunit 1 to silhouette image texture:
    glUniform1i(glGetUniformLocation(ctx.createBGDotsShader, 'Silhouette'), 1);

    % Assign height of final output window + 1 to allow shader to invert
    % y-coordinate of final dots properly to account for difference in
    % y-axis direction of Screen()'s reference frame vs. OpenGL default
    % frame:
    glUniform1f(glGetUniformLocation(ctx.createBGDotsShader, 'ViewportHeight'), ctx.silhouetteHeight + 1);
    
    % Assign [0;1] acceptance threshold value for accepting a background
    % distribution dot which lies within the objects silhouette:
    glUniform1f(glGetUniformLocation(ctx.createBGDotsShader, 'SilAcceptThreshold'), ctx.BGSilhouetteAcceptanceProbability);
    
    glUseProgram(0);
    
    % Ok, all PTB managed buffers and shaders loaded and set up.
    % Lets create the VBO that we need to actually render anything in the
    % end. VBO's are not supported yet by PTB's Screen, so we need to
    % switch to our GL context for setup:
    SwitchToGL(ctx.parentWin);
    
    ctx.FGvbo = glGenBuffers(1);
    glBindBuffer(GL.ARRAY_BUFFER, ctx.FGvbo);

    % Calculate size of VBO in bytes: Number of potential foreground dots
    % times 4 components per dot (RGBA == xyzw) times 4 Bytes per float
    % component:
    buffersize = ctx.maxFGDots * 4 * 4;
            
    % Allocate but don't initialize it, ie NULL pointer == 0
    glBufferData(GL.ARRAY_BUFFER, buffersize, 0, GL.STREAM_COPY);
            
    % Done.
    glBindBuffer(GL.ARRAY_BUFFER, 0);
            
    % Setup another VBO for the vertex indices:
    ctx.FGibo = glGenBuffers(1);
    glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.FGibo);

    % Allocate buffer for number of vertex indices,
    % each taking up 4 Bytes (== sizeof(uint32)) of memory.
    % Initialize immediately with indices and tell
    % OpenGL that this won't change at all during operation
    % (STATIC_DRAW):
    fgdotindices = uint32(0:ctx.maxFGDots-1);
    glBufferData(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.maxFGDots * 4, fgdotindices, GL.STATIC_DRAW);
    glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);

    ctx.BGvbo = glGenBuffers(1);
    glBindBuffer(GL.ARRAY_BUFFER, ctx.BGvbo);

    % Calculate size of VBO in bytes: Number of potential background dots
    % times 4 components per dot (RGBA == xyzw) times 4 Bytes per float
    % component:
    buffersize = ctx.maxBGDots * 4 * 4;
            
    % Allocate but don't initialize it, ie NULL pointer == 0
    glBufferData(GL.ARRAY_BUFFER, buffersize, 0, GL.STREAM_COPY);
            
    % Done.
    glBindBuffer(GL.ARRAY_BUFFER, 0);
            
    % Setup another VBO for the vertex indices:
    ctx.BGibo = glGenBuffers(1);
    glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.BGibo);

    % Allocate buffer for number of vertex indices,
    % each taking up 4 Bytes (== sizeof(uint32)) of memory.
    % Initialize immediately with indices and tell
    % OpenGL that this won't change at all during operation
    % (STATIC_DRAW):
    bgdotindices = uint32(0:ctx.maxBGDots-1);
    glBufferData(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.maxBGDots * 4, bgdotindices, GL.STATIC_DRAW);
    glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);
    
    % Done with VBO setup.
    
    % Restore previous GL context binding:
    RestoreGL;

    % Set batch zero as starting batch:
    ctx.currentBatch = 0;

    % Clear vbosready state:
    ctx.vbosready = 0;
    
    % We're ready for the show!
    contextcount = contextcount + 1;

    % Init for this 'ctx' context done: Return it to usercode:
    varargout{1} = ctx;
    
    return;
end

% Assign color texture handle and target to context, enable texture mapping
% during 2D dot drawing:
if strcmpi(cmd, 'SetColorTexture')
    if nargin < 4
        error('In "SetColorTexture": You must provide the "context", "textureId" and "textureTarget"!');
    end

    % Get context object:
    ctx = varargin{1};
    
    % Get texture handle and target:
    ctx.colorTexId = varargin{2};
    ctx.colorTexTarget = varargin{3};
    
    % Empty or negative assignment resets to "no texture assigned":
    if isempty(ctx.colorTexId) || ctx.colorTexId < 0
        ctx.colorTexId = -1;
        ctx.colorTexTarget = -1;
    end

    % Return updated 'ctx' to usercode:
    varargout{1} = ctx;
    
    return;
end

% Assign shader handle for application of a GLSL shader during 2D dot
% drawing:
if strcmpi(cmd, 'SetDrawShader')
    if nargin < 3
        error('In "SetDrawShader": You must provide the "context" and shader handle!');
    end

    % Get context object:
    ctx = varargin{1};
    
    % Get texture handle and target:
    ctx.draw2DShaderFG = varargin{2};
    
    if nargin >= 4
        ctx.draw2DShaderBG = varargin{3};
    end
    
    % Optional sprite enable flag provided?
    if nargin >= 5 && ~isempty(varargin{4})
        ctx.needSprites = varargin{4};

        if ctx.needSprites ~= 1
            ctx.needSprites = 0;
        end
        
        % Enable or disable point-sprite coord generation on texture unit
        % 1, depending if point sprites shall be enabled or disabled:
        glActiveTexture(GL.TEXTURE1);
        
        if ctx.needSprites == 1
            % Enable point sprite coordinate generation on unit 1:
            glTexEnvi(GL.POINT_SPRITE, GL.COORD_REPLACE, GL.TRUE);
        else
            % Disable point sprite coordinate generation on unit 1:
            glTexEnvi(GL.POINT_SPRITE, GL.COORD_REPLACE, GL.FALSE);
        end

        glActiveTexture(GL.TEXTURE0);
    end
    
    % Empty or negative assignment resets to "no shader assigned":
    if isempty(ctx.draw2DShaderFG) || ctx.draw2DShaderFG <= 0
        % Detach shader:
        ctx.draw2DShaderFG = -1;
    end

    if isempty(ctx.draw2DShaderBG) || ctx.draw2DShaderBG <= 0
        % Detach shader:
        ctx.draw2DShaderBG = -1;
    end

    % Return updated 'ctx' to usercode:
    varargout{1} = ctx;
    
    return;
end

% Destroy processing context -- Release all ressources and shaders:
if strcmpi(cmd, 'DestroyContext')
    if nargin < 2
        error('In "DestroyContext": You must provide the "context" to destroy!');
    end

    % Get context object:
    ctx = varargin{1};
    
    % Delete all offscreen windows, gloperators and buffers like IBO's
    % VBO's, PBO's, FBO's etc...
    deleteContextBuffers(ctx);
        
    % Delete all shaders:
    glDeleteProgram(ctx.createBGDotsShader);
    glDeleteProgram(ctx.createFGDotsShader);
    glDeleteProgram(ctx.samplingShader);
    glDeleteProgram(ctx.trackingRenderShader);
    glDeleteProgram(ctx.silhouetteRenderShader);

    RestoreGL;
    
    % Shutdown done.
    contextcount = max(contextcount - 1, 0);
    
    % Return destroyed context:
    ctx = [];
    varargout{1} = ctx;

    return;
end

% Set string to call via feval() to initiate a 3D render cycle for the 3D
% scene/object to be visualized:
if strcmpi(cmd, 'SetRenderCallback')
    if nargin < 3
        error('In "SetRenderCallback": You must provide the "context" and callback string!');
    end

    % Get context object:
    ctx = varargin{1};
    
    % Get the eval string:
    renderCallback = varargin{2};
    if ~ischar(renderCallback)
        error('In "SetRenderCallback": Callback string must be a string, nothing else!');
    end
    
    % Assign:
    ctx.renderCallback = renderCallback;
    
    varargout{1} = ctx;

    return;
end

% Set state of engine to initial setting for a trial:
if strcmpi(cmd, 'ResetState')
    if nargin < 2
        error('In "ResetState": You must provide the "context"!');
    end

    % Get context object:
    ctx = varargin{1};
    
    BackupGL;
        
    % Reset to starting batch zero:
    ctx.currentBatch = 0;
    
    % Zero-out background sample matrix:
    ctx.BGSampleSet(:, :, :) = 0;
    
    % Clear out all buffers:
    SwitchToPTB;
    Screen('FillRect', ctx.BGDotsBuffer, [0 0 0 0])
    Screen('FillRect', ctx.FGDotsBuffer, [0 0 0 0])
    Screen('FillRect', ctx.trackingBuffer, [0 0 0 0])
    Screen('FillRect', ctx.silhouetteBuffer, [0 0 0 0])
    Screen('FillRect', ctx.sampleBuffer, [0 0 0 0])

    % Clear vbosready state:
    ctx.vbosready = 0;
    
    RestoreGL;
    
    varargout{1} = ctx;    
    return;
end

% Update cycle, possibly followed by a render operation:
if strcmpi(cmd, 'Update')
    if nargin < 2
        error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
    end

    % Get context object:
    ctx = varargin{1};
    
    if nargin >= 3 && ~isempty(varargin{2})
        instantOn = varargin{2};
    else
        instantOn = 0;
    end
    
    BackupGL;
        
    % Switch to OpenGL rendering context to be used for 3D scene rendering,
    % and specifically for our silhouette render buffer:
    SwitchToPTB;
    
    Screen('BeginOpenGL', ctx.silhouetteBuffer);

    % Backup 3D context state:
    glPushAttrib(GL.ALL_ATTRIB_BITS);

    % Perform 1st 3D render pass:

    % Need zBuffer occlusion testing for silhouette rendering:
    glEnable(GL.DEPTH_TEST);
    
    % Need cleared buffer, including z buffer:
    glClearColor(0,0,0,0);
    glClear;

    % Bind shader for silhouette rendering:
    if debug~=-1
        % We skip this if debug flag == -1 -- In that case the user wants
        % to see the real rendered image instead of our silhouette
        % encoding.
        glUseProgram(ctx.silhouetteRenderShader);
    end
    
    % Set viewport and scissor to full target window area:
    glViewport(0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight);
    glScissor(0, 0, ctx.silhouetteWidth, ctx.silhouetteHeight);

    % Call the render callback function in workspace of our caller. We did
    % not touch the modelview- or projection matrices, so the projections
    % et al. should be ok...
    evalin('caller', ctx.renderCallback);

    % Don't need depth testing anymore:
    glDisable(GL.DEPTH_TEST);

    Screen('EndOpenGL', ctx.silhouetteBuffer);
    % Silhouette should be ready in silhouette buffer...

    if abs(debug) == 1
        Screen('DrawTexture', ctx.parentWin, ctx.silhouetteBuffer, [], [], [], [], [], debugGain);
    end
    
    % Perform 2nd "pseudo 3D" render pass into trackingBuffer. This will
    % again render the geometry, but with different encoding. A unwrapped
    % texture map will be output, where each pixel corresponds to a surface
    % point on the 3D object (aka texture coordinate). The color of each
    % pixel encodes interpolated screen space (x,y,z) coordinates:
    Screen('BeginOpenGL', ctx.trackingBuffer);
    
    % No depth test here, as fragment depths doesn't encode anything
    % meaningful during this pass:
    glDisable(GL.DEPTH_TEST);
    
    % Bind shader for tracking image rendering:
    glUseProgram(ctx.trackingRenderShader);
    
    % Set viewport and scissor to full trackbuffer window area:
    glViewport(0, 0, ctx.texResolution(1), ctx.texResolution(2));
    glScissor(0, 0, ctx.texResolution(1), ctx.texResolution(2));
    
    % Call the render callback function in workspace of our caller. We did
    % not touch the modelview- or projection matrices, so the projections
    % et al. should be ok...
    evalin('caller', ctx.renderCallback);
    
    % Unbind all shaders:
    glUseProgram(0);

    % Just to make sure it's still off:
    glDisable(GL.DEPTH_TEST);

    % Restore 3D context state:
    glPopAttrib;

    % Trackingbuffer should be ready:
    Screen('EndOpenGL', ctx.trackingBuffer);

    if debug == 2
        Screen('DrawTexture', ctx.parentWin, ctx.trackingBuffer, [], [], [], [], [], debugGain);
    end
    
    % We are in Screen()'s rendering context. Do the 2D image processing
    % stuff:

    % Need to attach the silhouette Buffers
    % color buffer texture to texture units 1 and 2: As the texture is part of a
    % color buffer attachment, it is set to nearest neighbour sampling -
    % which is what we want:
    glActiveTexture(GL.TEXTURE1);
    glBindTexture(GL.TEXTURE_RECTANGLE_EXT, ctx.silhouetteTexture);
    glActiveTexture(GL.TEXTURE2);
    glBindTexture(GL.TEXTURE_RECTANGLE_EXT, ctx.silhouetteTexture);
    glActiveTexture(GL.TEXTURE0);    
    
    % --- BACKGROUND DOTS COMPUTATION ---
    
    % Perform update of background sample buffer with random samples:
    % Compute random sample locations in image via Matlabs/Octaves uniform
    % random number generator:
    if instantOn
        % Create new samples for full set:
        randomSamples = rand(size(ctx.BGSampleSet, 1), ctx.BGsamplesPerLine, 3);
    else
        % Create new samples for current batch:
        randomSamples = rand(ctx.BGsampleLinesPerBatch, ctx.BGsamplesPerLine, 3);
    end
    
    % Layers 1 and 2 contain properly scaled (x,y) screen coordinates of
    % our random "darts":
    randomSamples(:,:,1) = randomSamples(:,:,1) * ctx.silhouetteWidth;
    randomSamples(:,:,2) = randomSamples(:,:,2) * ctx.silhouetteHeight;
    
    % Layer 3 contains a uniformly distributed number between 0 and 1 for
    % use as random per-sample variable by internal random sampling...
    
    if instantOn
        % Assign new samples for full set:
        ctx.BGSampleSet(:, :, :) = randomSamples;
    else
        % Assign new samples for current batch:
        sline = ctx.currentBatch * ctx.BGsampleLinesPerBatch + 1;
        eline = sline + ctx.BGsampleLinesPerBatch - 1;
        ctx.BGSampleSet(sline:eline, :, :) = randomSamples;
    end

    % Background batch in background sample buffer updated. Convert whole
    % buffer to texture, with background sampling shader bound:
    BGsampleTex = Screen('MakeTexture', ctx.parentWin, ctx.BGSampleSet, [], [], 2, 0, ctx.createBGDotsShader);

    % Blit to background dots buffer:
    Screen('DrawTexture', ctx.BGDotsBuffer, BGsampleTex, [], [], [], 0);

    % Release texture:
    Screen('Close', BGsampleTex);

    % --- FOREGROUND DOTS COMPUTATION ---
        
    % Perform update of current batch of sampleBuffer:
    
    % Compute random sample locations in image via Matlabs/Octaves uniform
    % random number generator:
    if instantOn
        randomSamples = rand(ctx.sampleLinesPerBatch * ctx.dotLifetime, ctx.samplesPerLine, 2);
    else
        randomSamples = rand(ctx.sampleLinesPerBatch, ctx.samplesPerLine, 2);
    end
    
    randomSamples(:,:,1) = randomSamples(:,:,1) * ctx.silhouetteWidth;
    randomSamples(:,:,2) = randomSamples(:,:,2) * ctx.silhouetteHeight;

    % Create 32bpc float texture (setting '2') with the random sample
    % locations. If we'd use the texture inside Screen('TransformTexture')
    % we could use textureOrientation setting '3' for isotropic random noise.
    % This settings would save some texture conversion time then. However,
    % as we're only 'DrawTexture'ing and the used blit shaders are position
    % invariant (isotropic), a setting of 0 or 1 also works with no speed
    % loss, as 'DrawTexture' does implicit optimization:
    sampleTex = Screen('MakeTexture', ctx.parentWin, randomSamples, [], [], 2, 0, ctx.samplingShader);
    
    if debug == 3
        Screen('DrawTexture', ctx.parentWin, sampleTex, [], [], [], [], [], debugGain);
    end
    
    % Blit sampleTex into the target batch rectangle of our sampleBuffer,
    % with the sampling shader bound.
    
    if instantOn
        % Blit texture into sampleBuffer. The secondary texture unit provides
        % access to the silhouette image, the shader does bilinear filtering
        % and conversion:
        Screen('DrawTexture', ctx.sampleBuffer, sampleTex, [], [], 0, 0);        
    else
        % Blit texture at target location into sampleBuffer, offset vertically
        % so the proper batch gets updated. The secondary texture unit provides
        % access to the silhouette image, the shader does bilinear filtering
        % and conversion:
        Screen('DrawTexture', ctx.sampleBuffer, sampleTex, [], OffsetRect(Screen('Rect', sampleTex), 0, double(ctx.currentBatch * ctx.sampleLinesPerBatch)), 0, 0);
    end
    
    % Release sampleTex for next cycle:
    Screen('Close', sampleTex);

    if debug == 4
        Screen('DrawTexture', ctx.parentWin, ctx.sampleBuffer, [], [], [], [], [], debugGain);
    end
    
    % Our total distribution of foreground samples in sampleBuffer is now
    % up to date. Use stored surface (texcoords) sample locations to read
    % out corresponding locations in trackingBuffer, convert them into
    % vertex location definitions and blit them to the final buffer of
    % foreground dot specs. Screen('TransformTexture') will do the blit and
    % bind sampleBuffer and trackingBuffer as input textures:
    ctx.FGDotsBuffer = Screen('TransformTexture', ctx.sampleBuffer, ctx.createFGDotsoperator, ctx.trackingBuffer, ctx.FGDotsBuffer);
    
    % Ok, the ctx.FGDotsBuffer should contain the encoded set of all
    % foreground dot positions. One can either read this buffer back into a
    % Matlab/Octave matrix for usercode processing, or convert it into a
    % VBO via PBO mechanism, then render it.
    
    % Clear out all intermediate result buffers in preparation of next update cycle:
    Screen('FillRect', ctx.trackingBuffer, [0 0 0 0])
    Screen('FillRect', ctx.silhouetteBuffer, [0 0 0 0])

    if debug == 5
        Screen('DrawTexture', ctx.parentWin, ctx.FGDotsBuffer, [], [], [], [], [], debugGain);
    end
    
    % Clear vbosready state to trigger a refill on next 'Render':
    ctx.vbosready = 0;
    
    RestoreGL;
    
    if instantOn
        % Reset batch counter to zero after this initial "instant on" update cycle:
        ctx.currentBatch = 0;
    else
        % Increment batch counter for next update cycle:
        ctx.currentBatch = mod(ctx.currentBatch+1, ctx.dotLifetime);
    end
    
    % Ready for render: Return updated context:
    varargout{1} = ctx;
    
    return;
end

% Render current result in ctx.FGDotsBuffer into parent window:
if strcmpi(cmd, 'Render')
    if nargin < 2
        error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
    end

    % Get context object:
    ctx = varargin{1};

    if nargin < 3 || isempty(varargin{2})
        targetWin = ctx.parentWin;
    else
        targetWin = varargin{2};
        if ~ismember(Screen('WindowKind', targetWin), [-1, 1])
            error('In "Render": Invalid "targetWindow" handle provided. Not an offscreen or onscreen window!');
        end
    end
    
    if nargin < 4
        drawspec = [1,1];
    else
        drawspec = varargin{3};
    end

    drawFG = drawspec(1);
    drawBG = drawspec(2);

    BackupGL;

    % Can do this in PTB's Screen 2D context, which is more convenient for
    % our 2D drawing operations, as long as we are careful to restore any
    % changed context state:
    SwitchToPTB;

    % Update of VBO's needed?
    if ~ctx.vbosready
        % Yes: Copy content of FGDotsBuffer into VBO, using PBO extension.
        % The 'GetWindowInfo' binds our ctx.FGDotsBuffer FBO so we can
        % glReadPixels() from it:
        Screen('GetWindowInfo', ctx.FGDotsBuffer);

        % There is a bug in the X1000 gfx-card driver on OS/X 10.4.11 which
        % causes glReadPixels() readback values to get clamped to 0-1 range
        % if alpha-blending is enabled. Therefore we need to disable alpha
        % blending during glReadPixels() readback and reenable later if
        % needed:
        alphaenabled = glIsEnabled(GL.BLEND);
        glDisable(GL.BLEND);
        
        glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, ctx.FGvbo);        
        glReadPixels(0, 0, ctx.samplesPerLine, ctx.sampleLinesTotal, GL.RGBA, GL.FLOAT, 0);
        glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, 0);
        
        Screen('GetWindowInfo', ctx.BGDotsBuffer);
        
        glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, ctx.BGvbo);        
        glReadPixels(0, 0, ctx.BGsamplesPerLine, ctx.BGsampleLinesTotal, GL.RGBA, GL.FLOAT, 0);
        glBindBuffer(GL.PIXEL_PACK_BUFFER_ARB, 0);

        % Reenable alpha blending if it was enabled:
        if alphaenabled
            glEnable(GL.BLEND);
        end
        
        % VBO's ready:
        ctx.vbosready = 1;        
    end
    
    % Setup render:

    % The 'GetWindowInfo' binds our ctx.parentWin so we can render to it:
    Screen('GetWindowInfo', targetWin);
        
    % Backup old 2D context state bits:    
    glPushAttrib(GL.ALL_ATTRIB_BITS);
    
    % Bind and enable vertex position VBO:
    glEnableClientState(GL.VERTEX_ARRAY);

    % Is point anti-aliasing enabled?
    pSmooth = glIsEnabled(GL.POINT_SMOOTH);
    
    if drawFG
        % Foreground render:
        glBindBuffer(GL.ARRAY_BUFFER, ctx.FGvbo);

        % Assign vertex pointer, setup proper stride for interleave with
        % texture coordinates from same VBO:
        glVertexPointer(2, GL.FLOAT, 4 * 4, 0);
        
        if ctx.colorTexId >= 0
            % Texture mapping for colored dot drawing:
            
            % Assign texture coord array, which is interleaved with vertex
            % coord array within FGvbo VBO: (x,y,tx,ty)....
            glEnableClientState(GL.TEXTURE_COORD_ARRAY);
            glTexCoordPointer(2, GL.FLOAT, 4 * 4, 2 * 4);
            
            % Enable texture mapping for proper target, and assign texture:
            glEnable(ctx.colorTexTarget);
            glBindTexture(ctx.colorTexTarget, ctx.colorTexId);
        end
        
        % Bind vertex index VBO:
        glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.FGibo);

        % Enable draw GLSL shader, if any:
        if ctx.draw2DShaderFG > -1
            glUseProgram(ctx.draw2DShaderFG);
            
            if pSmooth && ctx.needSprites
                glEnable(GL.POINT_SPRITE_ARB);
            end
        end
        
        % Perform draw operation: All vertices, each triggering render for a
        % single GL.POINT primitive. Colors, sizes, anti-aliasing flags etc.
        % can be set from external code as appropriate. Application of textures
        % or shaders is also possible:
        glDrawRangeElements(GL.POINTS, 0, ctx.maxFGDots-1, ctx.maxFGDots, GL.UNSIGNED_INT, 0);
        
        % Disable draw GLSL shader, if any:
        if ctx.draw2DShaderFG > -1
            glUseProgram(0);

            if pSmooth && ctx.needSprites
                glDisable(GL.POINT_SPRITE_ARB);
            end
        end

        if ctx.colorTexId >= 0
            % Disable interleaved texturecoord array:
            glDisableClientState(GL.TEXTURE_COORD_ARRAY);

            % Disable texture mapping for proper target, and assign texture:
            glDisable(ctx.colorTexTarget);
            glBindTexture(ctx.colorTexTarget, 0);
        end        
    end
    
    if drawBG
        % Background render:
        glBindBuffer(GL.ARRAY_BUFFER, ctx.BGvbo);
        glVertexPointer(4, GL.FLOAT, 0, 0);

        % Bind vertex index VBO:
        glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, ctx.BGibo);

        % Enable draw GLSL shader, if any:
        if ctx.draw2DShaderBG > -1
            glUseProgram(ctx.draw2DShaderBG);

            if pSmooth && ctx.needSprites
                glEnable(GL.POINT_SPRITE_ARB);
            end
        end
        
        % Perform draw operation: All vertices, each triggering render for a
        % single GL.POINT primitive. Colors, sizes, anti-aliasing flags etc.
        % can be set from external code as appropriate. Application of textures
        % or shaders is also possible:
        glDrawRangeElements(GL.POINTS, 0, ctx.maxBGDots-1, ctx.maxBGDots, GL.UNSIGNED_INT, 0);
        
        % Disable draw GLSL shader, if any:
        if ctx.draw2DShaderBG > -1
            glUseProgram(0);

            if pSmooth && ctx.needSprites
                glDisable(GL.POINT_SPRITE_ARB);
            end        
        end
    end
    
    % Unbind our VBOs:
    glBindBuffer(GL.ELEMENT_ARRAY_BUFFER_ARB, 0);
    glBindBuffer(GL.ARRAY_BUFFER, 0);

    % Disable vertex array:
    glDisableClientState(GL.VERTEX_ARRAY);
    
    % Restore old 2D context state bits:
    glPopAttrib;
    
    % Render completed. Restore pre-render state:
    RestoreGL;
    
    % Rendering done: Return updated context:
    varargout{1} = ctx;
    
    return;
end

if strcmpi(cmd, 'GetResults')
    if nargin < 2
        error(sprintf('In "%s": You must provide the "context"!', cmd)); %#ok<SPERR>
    end

    % Get context object:
    ctx = varargin{1};

    BackupGL;
    
    % Readback as "image matrix":

    % Can do this in Screen-Mode:
    SwitchToPTB;
    
    % 'GetWindowInfo' selects ctx.FGDotsBuffer as active FBO, so we can
    % readback from it:
    Screen('GetWindowInfo', ctx.FGDotsBuffer);
    
    % There is a bug in the X1000 gfx-card driver on OS/X 10.4.11 which
    % causes glReadPixels() readback values to get clamped to 0-1 range
    % if alpha-blending is enabled. Therefore we need to disable alpha
    % blending during glReadPixels() readback and reenable later if
    % needed:
    alphaenabled = glIsEnabled(GL.BLEND);
    glDisable(GL.BLEND);

    % Readback to matrix: Cast from float aka single() type to double() type:
    readbackdata = double(glReadPixels(0, 0, ctx.samplesPerLine, ctx.sampleLinesTotal, GL.RGBA, GL.FLOAT));
    
    % Return readback (x,y) FG dot locations, reshaped into a 2 rows array
    % with one column per (x,y) dot:
    varargout{1} = [ reshape(readbackdata(:,:,1), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ; reshape(readbackdata(:,:,2), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ];

    % Optionally also return texture coordinates (u,v) of FG dots as 3rd output arg:
    if nargout > 2
        varargout{3} = [ reshape(readbackdata(:,:,3), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ; reshape(readbackdata(:,:,4), 1, ctx.samplesPerLine * ctx.sampleLinesTotal) ];
    end
    
    % Return optional readback (x,y) BG dot locations, reshaped into a 2 rows array
    % with one column per (x,y) dot as 2nd output arg:
    if nargout > 1
        Screen('GetWindowInfo', ctx.BGDotsBuffer);

        % Readback to matrix: Cast from float aka single() type to double() type:
        readbackdata = double(glReadPixels(0, 0, ctx.BGsamplesPerLine, ctx.BGsampleLinesTotal, GL.RGBA, GL.FLOAT));

        % Return readback (x,y) dot locations, reshaped into a 2 rows array
        % with one column per (x,y) dot:
        varargout{2} = [ reshape(readbackdata(:,:,1), 1, ctx.BGsamplesPerLine * ctx.BGsampleLinesTotal) ; reshape(readbackdata(:,:,2), 1, ctx.BGsamplesPerLine * ctx.BGsampleLinesTotal) ];
    end
    
    % Reenable alpha blending if it was enabled:
    if alphaenabled
        glEnable(GL.BLEND);
    end
    
    % Readback completed. Restore pre-readback state:
    RestoreGL;
    
    return;
end

if strcmpi(cmd, 'DebugFlag')
    if nargin < 2
        error('Must provide new setting for debug flag!');
    end
    
    varargout{1} = debug;
    varargout{2} = debugGain;
    
    debug = varargin{1};
    
    if nargin < 3
        debugGain = [];
    else
        if length(varargin{2})~=4
            error('In "DebugFlag": "debugGain" color modulation gain must be a 4 element [R,G,B,A] modulation color vector!');
        end
        
        debugGain = varargin{2};
    end
    return;
end

error(sprintf('Invalid subcommand ''%s'' specified!', cmd)); %#ok<SPERR>
return;

% Internal helper functions:
function SwitchToGL(win)

% Switch to our OpenGL context, but keep a backup of original
% drawstate. We do lazy switching if possible:
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');

if ~IsOpenGLRendering
    % PTB's context active: Switch to OpenGL rendering for our parent window:
    Screen('BeginOpenGL', win);
else
    % In rendering context. Is it ours? If yes, then there isn't anything
    % to do...
    if currentwin ~= win
        % No, a different windows context is active: First switch to PTB
        % mode, then switch to ours:
        
        % Switch to our parentWin's PTB context:
        Screen('EndOpenGL', currentwin);
        % Switch to our parentWin's GL context:
        Screen('BeginOpenGL', win);
    end
end
return;

function SwitchToPTB

% Switch from our OpenGL context, but keep a backup of original
% drawstate. We do lazy switching if possible:
[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');

if ~IsOpenGLRendering
    % PTB's context is already active: Nothing to do.
else
    % In rendering context. Switch back to PTB - and to our parentWin:
    Screen('EndOpenGL', currentwin);
end
return;

function BackupGL
global moglFDF_OriginalContext;

if ~isempty(moglFDF_OriginalContext)
    error('BackupGL called twice in succession without intermediate RestoreGL! Ordering inconsistency!');
end

[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');

if IsOpenGLRendering
    moglFDF_OriginalContext = currentwin;
end
return;

function RestoreGL
global moglFDF_OriginalContext;

[currentwin, IsOpenGLRendering] = Screen('GetOpenGLDrawMode');

if isempty(moglFDF_OriginalContext)
    % PTB was in Screen drawing mode: Switch to that mode, if not active:
    if IsOpenGLRendering
        Screen('EndOpenGL', currentwin);
    end
    return;
end

% Need to restore to GL context if not already active:
if ~IsOpenGLRendering
    Screen('BeginOpenGL', moglFDF_OriginalContext);
else
    % OpenGL context active. Ours? If so -> Nothing to do.
    if currentwin ~= moglFDF_OriginalContext
        % Nope. Need to switch:
        Screen('EndOpenGL', currentwin);
        Screen('BeginOpenGL', moglFDF_OriginalContext);        
    end
end

% Restore to default:
moglFDF_OriginalContext = [];

return;

function deleteContextBuffers(ctx)
    BackupGL;
    
    SwitchToGL(ctx.parentWin);
    
    % Delete VBO's:
    glDeleteBuffers(1, ctx.FGibo);
    glDeleteBuffers(1, ctx.FGvbo);
    glDeleteBuffers(1, ctx.BGibo);
    glDeleteBuffers(1, ctx.BGvbo);
    
    SwitchToPTB;
    
    % Close all offscreen windows and their associated textures:
    Screen('Close', [ctx.BGDotsBuffer, ctx.FGDotsBuffer, ctx.trackingBuffer, ctx.silhouetteBuffer, ctx.sampleBuffer]);
    
    % Close our operators:
    Screen('Close', ctx.createFGDotsoperator);
    
return;