File: HDRTest.m

package info (click to toggle)
psychtoolbox-3 3.0.19.14.dfsg1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 86,796 kB
  • sloc: ansic: 176,245; cpp: 20,103; objc: 5,393; sh: 2,753; python: 1,397; php: 384; makefile: 193; java: 113
file content (521 lines) | stat: -rw-r--r-- 21,198 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
function HDRTest(dotest, meterType, highprecision, screenid, filename)
% HDRTest([dotest=all][, meterType=7][, highprecision=0][, screenid=max][, filename='hdrmeasurements.mat'])
%
% Perform some basic correctness tests and evaluation for HDR display operation,
% using a Colorimeter.
%
% Test if HDR-10 display mode delivers sufficiently correct and precise results
% on a suitable HDR capable display setup and monitor.
%
% This test script requires a supported Photometer or Colorimeter to be connected
% for measurement of luminance and chromaticity, ie. XYZ tristimulus color values.
%
% Supported devices are the ones listed in "help MeasXYZ".
%
% 'dotest' Vector which selects which tests to perform. Defaults to "all tests":
% dotest = [luminance, redprimary, greenprimary, blueprimary], e.g., [1 0 0 0]
% only do luminance test, [0 1 0 0] only do red primary test, [1 1 1 1] do all tests.
%
% 'meterType' id code of the measurement device to use, as listed in "help MeasXYZ".
% Defaults to meterType 7 for the CRS ColorCal2. If you specify a meterType
% 0 then the test script will run through as fast as possible without
% measuring anything - a dry run if you want.
%
% A meterType of -1 requests manual measurement and data entry. The script
% will display a test stimulus, make a beep noise, and expect you to use
% some external manually operated colorimeter to measure, then press a key.
% After keypress a text will ask you to enter the measured luminance in
% nits on the keyboard and press ENTER to finish data entry. Then it will
% advance to the next measurement. The current measurement run can be
% aborted by typing q instead of the nits value. Invalid entry will be
% stored as NaN for "Not a number".
%
% If you don't own a colorimeter supported by CMCheckInit(), but that is
% controllable by Matlab/Octave code, please let us know. You can still
% automate measurement yourself by specifying a meterType of 3 and then
% providing the following functions in your Matlab/Octave function search
% path: CRSColorInit() to initialize your colorimeter, CRSColorClose() to
% shut it down again, and XYZ = CRSColorMeasXYZ() to perform a measurement
% of XYZ tristimulus values. This "hijacks" the builtin support for the CRS
% color toolbox for convenient use of your own colorimeter.
%
% 'highprecision' If set to 1, will request a fp16 16 bpc non-linear
% floating point framebuffer for output, instead of the default setting 0,
% which requests a 10 bpc linear framebuffer. This may be able to raise
% precision of the encoded signal from 10 bit to up to 12 bit. Please note
% that if used on MS-Windows, the test will print false warnings about
% mismatches between shader computed PQ values. That is normal at the
% moment, because on Windows PQ is not used for fp16 mode.
% If set to 2, will request a 16 bpc fixed point framebuffer, which allows for up
% to 16 bpc linear precision, but in reality on early 2021 hardware at most 12 bpc.
% On most operating-systems + driver + gpu combos this 16 bpc mode will fail.
%
% 'screenid' Screen to use. Defaults to maximum screen id.
%
% 'filename' Name of the file where results should be stored. Defaults to file
% 'hdrmeasurements.mat' in the current working directory.
%
% Press the ESCAPE key to abort the test at any time.
%

% History:
% 02-Sep-2020   mk  Written.

global retluminance;
global referenceluminance;

% Check if PTB is properly installed, use cross-platform defaults and normalized
% color range:
PsychDefaultSetup(2);

if nargin < 1 || isempty(dotest)
    dotest = [1, 1, 1, 1];
end

% Default to ColorCal2 if meterType is not specified:
if nargin < 2 || isempty(meterType)
    meterType = 7;
end

if nargin < 3 || isempty(highprecision)
    highprecision = 0;
end

if nargin < 4 || isempty(screenid)
    screenid = max(Screen('Screens'));
end

if nargin < 5 || isempty(filename)
    filename = 'hdrmeasurements.mat';
else
    if ~ischar(filename)
        error('Invalid filename given. Not a string!');
    end
end

if meterType > 0
    % Open the colorimeter, or abort if not possible:
    CMCheckInit(meterType);
end

if meterType == -1
    % Suppress console output for manual data entry:
    ListenChar(2);
end

referenceluminance = [];
skipKbWait = 0;
lasterror('reset'); %#ok<LERR>

% Optionally print gpu hw state:
printgpuhwstate;

try
    % Open an onscreen fullscreen window on a HDR-10 capable monitor.
    % Background color is black, unit for all colors is nits.
    PsychImaging('PrepareConfiguration');
    PsychImaging('AddTask', 'General', 'EnableHDR', 'Nits');

    if highprecision == 1
        PsychImaging('AddTask', 'General', 'EnableNative16BitFloatingPointFramebuffer');
    end

    if highprecision == 2
        PsychImaging('AddTask', 'General', 'EnableNative16BitFramebuffer');
    end

    [win, rect] = PsychImaging('OpenWindow', screenid, 0);
    HideCursor(win);
    Screen('Textsize', win, 16);

    % Optionally print gpu hw state:
    printgpuhwstate;

    % Get displays HDR properties:
    displayhdrprops = PsychHDR('GetHDRProperties', win) %#ok<*NOPRT>
    if ~displayhdrprops.Valid
        % Fallback for macOS: Hard-code reasonable values, what else can we
        % do?
        displayhdrprops.MaxLuminance = 600;
        displayhdrprops.MaxFrameAverageLightLevel = 350;
    end

    maxLuminance = displayhdrprops.MaxLuminance
    maxFrameAverageLightLevel = displayhdrprops.MaxFrameAverageLightLevel; %#ok<NASGU>

    % Compute size of a test patch (filled rectangle) that fills exactly 10% of the
    % monitors display area, so we can test how well the monitor does wrt. peak
    % luminance:
    screenarea10percent = RectWidth(rect) * RectHeight(rect) * 0.10;
    testrectedgelength = floor(sqrt(screenarea10percent));

    % testrect is the proper 10% area rectangle:
    testrect = [0, 0, testrectedgelength, testrectedgelength];
    testrect = CenterRect(testrect, rect);

    if any(dotest(1:4))
        figure;
        DrawChromaticity;
        hold on;
    end

    %% Phase 1: White point and luminance measurement:
    if dotest(1)
        % Step through luminance range 0 - "95% of maxLuminance" nits, sampling in smaller
        % steps at the low end of the luminance range:
        whiteluminance = [0:0.001:0.049, 0.050:0.050:0.950, 1:1:(0.95 * maxLuminance)];
        targetcolors = whiteluminance;

        % Measure 10% area test patch of target luminances 'targetcolors' at display center:
        retluminance = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
        skipKbWait = 1;

        try
            % Convert measured values to chromaticity coordinates and luminance:
            xyY = XYZToxyY(retluminance.XYZ);
            ColorGamut(:, 4) = [mean(xyY(1,:)) ; mean(xyY(2,:))];

            % Report and plot measured white point vs. dispplay self reported one:
            fprintf('Reported white-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 4), displayhdrprops.ColorGamut(2, 4));
            fprintf('Measured white-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
            plot(xyY(1,:), xyY(2,:), '+k', mean(xyY(1,:)), mean(xyY(2,:)), 'ok', displayhdrprops.ColorGamut(1, 4), displayhdrprops.ColorGamut(2, 4), '*k');
            title('Chromaticity coordinates of measured samples:');
        catch
        end
    end

    %% Phase 2: Red primary measurement:
    if dotest(2)
        % Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
        referenceluminance = 10:10:maxLuminance;
        targetcolors = [1 ; 0 ; 0] * referenceluminance;

        % Measure 10% area test patch of target luminances 'targetcolors' at display center:
        retred = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
        skipKbWait = 1;

        try
            % Convert measured values to chromaticity coordinates and luminance:
            xyY = XYZToxyY(retred.XYZ);
            ColorGamut(:, 1) = [mean(xyY(1,:)) ; mean(xyY(2,:))];

            % Report and plot measured white point vs. dispplay self reported one:
            fprintf('Reported red-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 1), displayhdrprops.ColorGamut(2, 1));
            fprintf('Measured red-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
            plot(xyY(1,:), xyY(2,:), '+r', mean(xyY(1,:)), mean(xyY(2,:)), 'or', displayhdrprops.ColorGamut(1, 1), displayhdrprops.ColorGamut(2, 1), '*r');
            title('Chromaticity coordinates of measured samples:');
        catch
        end
    end

    %% Phase 3: Green primary measurement:
    if dotest(3)
        % Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
        referenceluminance = 10:10:maxLuminance;
        targetcolors = [0 ; 1 ; 0] * referenceluminance;

        % Measure 10% area test patch of target luminances 'targetcolors' at display center:
        retgreen = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
        skipKbWait = 1;

        try
            % Convert measured values to chromaticity coordinates and luminance:
            xyY = XYZToxyY(retgreen.XYZ);
            ColorGamut(:, 2) = [mean(xyY(1,:)) ; mean(xyY(2,:))];

            % Report and plot measured white point vs. dispplay self reported one:
            fprintf('Reported green-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 2), displayhdrprops.ColorGamut(2, 2));
            fprintf('Measured green-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
            plot(xyY(1,:), xyY(2,:), '+g', mean(xyY(1,:)), mean(xyY(2,:)), 'og', displayhdrprops.ColorGamut(1, 2), displayhdrprops.ColorGamut(2, 2), '*g');
            title('Chromaticity coordinates of measured samples:');
        catch
        end
    end

    %% Phase 4: Blue primary measurement:
    if dotest(4)
        % Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
        referenceluminance = 10:10:maxLuminance;
        targetcolors = [0 ; 0 ; 1] * referenceluminance;

        % Measure 10% area test patch of target luminances 'targetcolors' at display center:
        retblue = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);

        try
        % Convert measured values to chromaticity coordinates and luminance:
            xyY = XYZToxyY(retblue.XYZ);
            ColorGamut(:, 3) = [mean(xyY(1,:)) ; mean(xyY(2,:))];

            % Report and plot measured white point vs. dispplay self reported one:
            fprintf('Reported blue-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 3), displayhdrprops.ColorGamut(2, 3));
            fprintf('Measured blue-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
            plot(xyY(1,:), xyY(2,:), '+b', mean(xyY(1,:)), mean(xyY(2,:)), 'ob', displayhdrprops.ColorGamut(1, 3), displayhdrprops.ColorGamut(2, 3), '*b');
            title('Chromaticity coordinates of measured samples:');
        catch
        end
    end

    if any(dotest(2:4))
        if all(dotest(2:4)) && exist('ColorGamut', 'var') && (size(ColorGamut, 1) >= 2) && (size(ColorGamut, 2) >= 3)
            line(ColorGamut(1, [1,2,3,1]), ColorGamut(2, [1,2,3,1]), 'color', 'k');
            line(displayhdrprops.ColorGamut(1, [1,2,3,1]), displayhdrprops.ColorGamut(2, [1,2,3,1]), 'color', 'b');
        end

        hold off;
    end

    % Must wait for keypress for the tests following this line:
    skipKbWait = 0; %#ok<NASGU>

    % Close Screen, clean up:
    sca;
catch me
    % Close Screen, clean up:
    sca;
end

fprintf('Done. Writing results to file %s\n', filename);
save(filename, '-V7');

if meterType == -1
    % Suppress console output for manual data entry:
    ListenChar(0);

    % Disable sound output as used by Beeper():
    Snd('Close');
end

if meterType > 0
    % Close the colorimeter:
    CMClose(meterType);
end

% Close pointless empty chroma plot on manual data entry:
if meterType == -1
    close all;
end

% Some more plotting for test 1, detailed white-point and luminance:
if dotest(1)
    try
        figure;
        whiteluminance = whiteluminance(1:size(retluminance.XYZ, 2));
        plot(whiteluminance, retluminance.XYZ(2,:));
        title('Expected vs. measured luminance in nits:');
        xlabel('Expected luminance [nits]');
        ylabel('Measured luminance [nits]');
    catch
    end

    % The following half-assed algorithm needs a "Viewer discretion is
    % advised" disclaimer...
    fprintf('\n\nCAUTION: The following diagnostic output is based on a currently suboptimal method which\n');
    fprintf('leaves a lot to be desired. Therefore take the automatic assessment with a big grain of salt!\n\n');

    % Check how much "dynamic range" is actually in the measured data. We
    % exclude measurements for target luminance values < 1 nit, as our
    % measurements may not be sensitive enough to resolve properly below that,
    % neither is our binning good enough:
    % Note: This is a bit hacky, better ways should be thought of...
    startind = find(whiteluminance >= 1.0, 1)
    shaderpq10bitval = retluminance.shaderpq10bitval(:, startind:end);
    [~, indices] = unique (shaderpq10bitval', 'rows');
    numlevelsexpected = length(indices)
    levelhisto = hist(retluminance.XYZ(2,:), numlevelsexpected); %#ok<HIST>
    numlevelsmeasured = length(find(levelhisto > 0))
    actualcontentbits = log2(numlevelsmeasured)

    % Check if the display likely does receive real 10 bpc content, as required for
    % HDR-10, ie. no truncation to 8 bpc happens on the gpu, link, or in the displays
    % display controller or matrix:
    if numlevelsexpected > 256 && actualcontentbits < 8
        warning('Measured data contains less than 8 bpc worth of variability. Suspicious...');
    end

    if numlevelsexpected > 256 && actualcontentbits > 8
        fprintf('More than 8 bits of variability detected in measured data. Good, 10 bpc transfer of video to display seems to work.\n');
    end

    % Save again if we made it to here:
    save(filename, '-V7');
end

% Optionally print gpu hw state:
printgpuhwstate;

if exist('me','var')
    rethrow(me);
end

% Auto close empty plots if no colorimeter measurement was done:
if meterType == 0
    close all;
end

% We are done!
end

function ret = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait)
    ret.shaderdiff = [];
    ret.shaderpq10bitval = [];
    ret.shaderpq12bitval = [];
    ret.referencecolors = [];
    ret.XYZ = [];
    ret.trouble = [];

    % Tell monitor what to expect:
    [winw, winh] = Screen('WindowSize', win);
    coverage = (RectWidth(testrect) * RectHeight(testrect)) / (winw * winh);
    % maxCLL intensity in nits of brightest pixel color component over all
    % frames - ie. brightest component in whole test sequence:
    maxCLL = max(targetcolors(:));
    % frame average light levels: For each frame/test patch, the value of
    % the brightest pixel color component in each pixel, averaged over all
    % pixels in a frame. In our case, as all pixels in the test patch have
    % same color and thereby same max component / component value, we just
    % take that maximum for each patch and multiply with how much of the
    % display is covered with the test patch, as the remainder of the
    % screen is all black aka zero:
    FALLs = max(targetcolors, [], 1) * coverage;
    % maxFALL is the maximum over all FALLs from all frames in the sequence:
    maxFALL = max(FALLs);

    msg = sprintf('Coverage %.01f%% : maxCLL = %.02f nits : maxFALL = %.02f nits.\n', 100 * coverage, maxCLL, maxFALL);
    disp(msg);

    % Tell the monitor about maxFALL and maxCLL, clamped to allowed maximum of 65535 nits:
    PsychHDR('HDRMetadata', win, 0, min(maxFALL, 65535), min(maxCLL, 65535));
    Screen('Flip', win);

    if ~skipKbWait
        % Instruct user to set up everything:
        DrawFormattedText(win, sprintf('%sPoint colorimeter at test patch,\nthen press any key to start measurement\n', msg), 'center', 30, [0, 40, 0]);
        Screen('FillRect', win, 40, testrect);
        Screen('FillOval', win, 0, CenterRect([0, 0, 10, 10], testrect));
        Screen('Flip', win);

        % Wait for start signal from user:
        KbStrokeWait(-1);
    else
        WaitSecs(5);
    end

    fprintf('\n\n\nStarting measurement:\n\n');

    for i = 1:size(targetcolors, 2)
        % ESCAPE allows early termination of measurement run:
        [~, ~, keyCode] = KbCheck(-1);
        if keyCode(KbName('ESCAPE'))
            break;
        end

        % Get targetcolor of test patch:
        targetcolor = targetcolors(:, i);

        % Draw test patch:
        Screen('FillRect', win, targetcolor, testrect);
        Screen('Flip', win);

        % Read back and compare Screen()'s shader based EOTF encoding against our
        % Matlab reference implementation in PQ():
        gpupqvalue = squeeze(Screen('GetImage', win, CenterRect([0 0 1 1], testrect), 'backBuffer', 1, 3));
        gpu10bitval = round(gpupqvalue * (2^10 - 1));
        gpu12bitval = round(gpupqvalue * (2^12 - 1));
        [refpqvalue, ref10bitval, ref12bitval] = PQ(single(targetcolor)); %#ok<ASGLU>
        if max(abs(gpu10bitval - ref10bitval)) > 1
            fprintf('WARNING: Mismatch of 10 bpc PQ encoded pixelvalue between PTB shader and reference implementation! %i\n', ...
                    abs(gpu10bitval - ref10bitval));
        end

        ret.shaderdiff(:, end+1) = gpu10bitval - ref10bitval; %#ok<*AGROW>
        ret.shaderpq10bitval(:, end+1) = gpu10bitval;
        ret.shaderpq12bitval(:, end+1) = gpu12bitval;

        if meterType ~= 0
            % Give display(backlight) some time to settle to new steady state:
            WaitSecs(0.5);
        end
 
        % Measure true luminance according to colorimeter:
        ret.referencecolors(:, end+1) = targetcolor;

        if meterType > 0
            [ret.XYZ(:, end+1), ret.trouble(end+1)] = MeasXYZ(meterType);
        else
            switch (meterType)
                case 0 % Fast run-through...
                    [ret.XYZ(:, end+1), ret.trouble(end+1)] = deal([0 ; 0; 0], -1);

                case -1 % Manual measurement and data entry:
                    Beeper;
                    KbStrokeWait(-1);
                    manNits = Ask(win, 'Measured nits + ENTER [q + ENTER to quit run]: ', 200, 0, 'GetChar');
                    % Abort on 'q', otherwise convert entry to manNits
                    % measured luminance value:
                    if ~strcmp(manNits, 'q')
                        manNits = str2double(manNits);
                    else
                        break;
                    end
                    [ret.XYZ(:, end+1), ret.trouble(end+1)] = deal([0 ; manNits ; 0], -1);
            end
        end

        if isscalar(targetcolor)
            targetlum = targetcolor;
        elseif length(find(targetcolor > 0)) == 1
            targetlum = max(targetcolor);
        else
            targetlum = rgb2gray(targetcolor');
        end

        % Display measurement result to top-left corner of screen:
        if isscalar(gpu10bitval)
            msg = sprintf('[PQ-10/12bit = %i/%i] -> Target %.05f nits vs. measured %.05f nits -> Delta %.01f%%. Trouble = %i\n', gpu10bitval, ...
                          gpu12bitval, targetlum, ret.XYZ(2, end), (ret.XYZ(2, end) - targetlum) / targetlum * 100, ret.trouble(end));
        else
            msg = sprintf('[PQ-10/12bit = %i,%i,%i/%i,%i,%i] -> Target %.05f nits vs. measured %.05f nits -> Delta %.01f%%. Trouble = %i\n', gpu10bitval, ...
                          gpu12bitval, targetlum, ret.XYZ(2, end), (ret.XYZ(2, end) - targetlum) / targetlum * 100, ret.trouble(end));
        end
        disp(msg);
        DrawFormattedText(win, msg, 0, 30, 40);
        Screen('Flip', win);

        if meterType ~= 0
            % Rest for a second:
            WaitSecs(1);
        end
    end

    nsamples = min(size(ret.referencecolors, 2), size(ret.XYZ, 2));
    ret.referencecolors = ret.referencecolors(:, 1:nsamples);
    ret.XYZ = ret.XYZ(:, 1:nsamples);
end

function [v, digital10bitval, digital12bitval] = PQ(L)
% ST-2084 PQ "Perceptual Quantizer" inverse EOTF (ie. OETF), from
% https://en.wikipedia.org/wiki/High-dynamic-range_video#Perceptual_Quantizer
%
  L  = L / 10000;
  Lp = L .^ 0.1593017578125;
  f  = (0.8359375 + 18.8515625 .* Lp) ./ (1 + 18.6875 .* Lp);
  v  = f .^ 78.84375;

  % Convert back into 10 bit discrete value:
  digital10bitval = round(v * (2^10 - 1));
  % Convert back into 12 bit discrete value:
  digital12bitval = round(v * (2^12 - 1));
end

function printgpuhwstate
    % Disabled by default:
    if 0
        if IsLinux %#ok<UNRCH>
            % This system() call would print status of gamma lut's on AMD DCN-1 hardware
            % for display engine/ooutput 0. A value of 0 means hw bypass enabled and is
            % good for our purpose. This will prompt for an admin password, so will only
            % work with Octave run from a terminal. Also needs AMD's 'umr' tools installed:
            system ('sudo umr -O bits --read raven1.dcn10.mmCM0_CM_RGAM_CONTROL --read raven1.dcn10.mmCM0_CM_DGAM_CONTROL')
        end
    end
end