1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
|
function HDRTest(dotest, meterType, highprecision, screenid, filename)
% HDRTest([dotest=all][, meterType=7][, highprecision=0][, screenid=max][, filename='hdrmeasurements.mat'])
%
% Perform some basic correctness tests and evaluation for HDR display operation,
% using a Colorimeter.
%
% Test if HDR-10 display mode delivers sufficiently correct and precise results
% on a suitable HDR capable display setup and monitor.
%
% This test script requires a supported Photometer or Colorimeter to be connected
% for measurement of luminance and chromaticity, ie. XYZ tristimulus color values.
%
% Supported devices are the ones listed in "help MeasXYZ".
%
% 'dotest' Vector which selects which tests to perform. Defaults to "all tests":
% dotest = [luminance, redprimary, greenprimary, blueprimary], e.g., [1 0 0 0]
% only do luminance test, [0 1 0 0] only do red primary test, [1 1 1 1] do all tests.
%
% 'meterType' id code of the measurement device to use, as listed in "help MeasXYZ".
% Defaults to meterType 7 for the CRS ColorCal2. If you specify a meterType
% 0 then the test script will run through as fast as possible without
% measuring anything - a dry run if you want.
%
% A meterType of -1 requests manual measurement and data entry. The script
% will display a test stimulus, make a beep noise, and expect you to use
% some external manually operated colorimeter to measure, then press a key.
% After keypress a text will ask you to enter the measured luminance in
% nits on the keyboard and press ENTER to finish data entry. Then it will
% advance to the next measurement. The current measurement run can be
% aborted by typing q instead of the nits value. Invalid entry will be
% stored as NaN for "Not a number".
%
% If you don't own a colorimeter supported by CMCheckInit(), but that is
% controllable by Matlab/Octave code, please let us know. You can still
% automate measurement yourself by specifying a meterType of 3 and then
% providing the following functions in your Matlab/Octave function search
% path: CRSColorInit() to initialize your colorimeter, CRSColorClose() to
% shut it down again, and XYZ = CRSColorMeasXYZ() to perform a measurement
% of XYZ tristimulus values. This "hijacks" the builtin support for the CRS
% color toolbox for convenient use of your own colorimeter.
%
% 'highprecision' If set to 1, will request a fp16 16 bpc non-linear
% floating point framebuffer for output, instead of the default setting 0,
% which requests a 10 bpc linear framebuffer. This may be able to raise
% precision of the encoded signal from 10 bit to up to 12 bit. Please note
% that if used on MS-Windows, the test will print false warnings about
% mismatches between shader computed PQ values. That is normal at the
% moment, because on Windows PQ is not used for fp16 mode.
% If set to 2, will request a 16 bpc fixed point framebuffer, which allows for up
% to 16 bpc linear precision, but in reality on early 2021 hardware at most 12 bpc.
% On most operating-systems + driver + gpu combos this 16 bpc mode will fail.
%
% 'screenid' Screen to use. Defaults to maximum screen id.
%
% 'filename' Name of the file where results should be stored. Defaults to file
% 'hdrmeasurements.mat' in the current working directory.
%
% Press the ESCAPE key to abort the test at any time.
%
% History:
% 02-Sep-2020 mk Written.
global retluminance;
global referenceluminance;
% Check if PTB is properly installed, use cross-platform defaults and normalized
% color range:
PsychDefaultSetup(2);
if nargin < 1 || isempty(dotest)
dotest = [1, 1, 1, 1];
end
% Default to ColorCal2 if meterType is not specified:
if nargin < 2 || isempty(meterType)
meterType = 7;
end
if nargin < 3 || isempty(highprecision)
highprecision = 0;
end
if nargin < 4 || isempty(screenid)
screenid = max(Screen('Screens'));
end
if nargin < 5 || isempty(filename)
filename = 'hdrmeasurements.mat';
else
if ~ischar(filename)
error('Invalid filename given. Not a string!');
end
end
if meterType > 0
% Open the colorimeter, or abort if not possible:
CMCheckInit(meterType);
end
if meterType == -1
% Suppress console output for manual data entry:
ListenChar(2);
end
referenceluminance = [];
skipKbWait = 0;
lasterror('reset'); %#ok<LERR>
% Optionally print gpu hw state:
printgpuhwstate;
try
% Open an onscreen fullscreen window on a HDR-10 capable monitor.
% Background color is black, unit for all colors is nits.
PsychImaging('PrepareConfiguration');
PsychImaging('AddTask', 'General', 'EnableHDR', 'Nits');
if highprecision == 1
PsychImaging('AddTask', 'General', 'EnableNative16BitFloatingPointFramebuffer');
end
if highprecision == 2
PsychImaging('AddTask', 'General', 'EnableNative16BitFramebuffer');
end
[win, rect] = PsychImaging('OpenWindow', screenid, 0);
HideCursor(win);
Screen('Textsize', win, 16);
% Optionally print gpu hw state:
printgpuhwstate;
% Get displays HDR properties:
displayhdrprops = PsychHDR('GetHDRProperties', win) %#ok<*NOPRT>
if ~displayhdrprops.Valid
% Fallback for macOS: Hard-code reasonable values, what else can we
% do?
displayhdrprops.MaxLuminance = 600;
displayhdrprops.MaxFrameAverageLightLevel = 350;
end
maxLuminance = displayhdrprops.MaxLuminance
maxFrameAverageLightLevel = displayhdrprops.MaxFrameAverageLightLevel; %#ok<NASGU>
% Compute size of a test patch (filled rectangle) that fills exactly 10% of the
% monitors display area, so we can test how well the monitor does wrt. peak
% luminance:
screenarea10percent = RectWidth(rect) * RectHeight(rect) * 0.10;
testrectedgelength = floor(sqrt(screenarea10percent));
% testrect is the proper 10% area rectangle:
testrect = [0, 0, testrectedgelength, testrectedgelength];
testrect = CenterRect(testrect, rect);
if any(dotest(1:4))
figure;
DrawChromaticity;
hold on;
end
%% Phase 1: White point and luminance measurement:
if dotest(1)
% Step through luminance range 0 - "95% of maxLuminance" nits, sampling in smaller
% steps at the low end of the luminance range:
whiteluminance = [0:0.001:0.049, 0.050:0.050:0.950, 1:1:(0.95 * maxLuminance)];
targetcolors = whiteluminance;
% Measure 10% area test patch of target luminances 'targetcolors' at display center:
retluminance = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
skipKbWait = 1;
try
% Convert measured values to chromaticity coordinates and luminance:
xyY = XYZToxyY(retluminance.XYZ);
ColorGamut(:, 4) = [mean(xyY(1,:)) ; mean(xyY(2,:))];
% Report and plot measured white point vs. dispplay self reported one:
fprintf('Reported white-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 4), displayhdrprops.ColorGamut(2, 4));
fprintf('Measured white-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
plot(xyY(1,:), xyY(2,:), '+k', mean(xyY(1,:)), mean(xyY(2,:)), 'ok', displayhdrprops.ColorGamut(1, 4), displayhdrprops.ColorGamut(2, 4), '*k');
title('Chromaticity coordinates of measured samples:');
catch
end
end
%% Phase 2: Red primary measurement:
if dotest(2)
% Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
referenceluminance = 10:10:maxLuminance;
targetcolors = [1 ; 0 ; 0] * referenceluminance;
% Measure 10% area test patch of target luminances 'targetcolors' at display center:
retred = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
skipKbWait = 1;
try
% Convert measured values to chromaticity coordinates and luminance:
xyY = XYZToxyY(retred.XYZ);
ColorGamut(:, 1) = [mean(xyY(1,:)) ; mean(xyY(2,:))];
% Report and plot measured white point vs. dispplay self reported one:
fprintf('Reported red-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 1), displayhdrprops.ColorGamut(2, 1));
fprintf('Measured red-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
plot(xyY(1,:), xyY(2,:), '+r', mean(xyY(1,:)), mean(xyY(2,:)), 'or', displayhdrprops.ColorGamut(1, 1), displayhdrprops.ColorGamut(2, 1), '*r');
title('Chromaticity coordinates of measured samples:');
catch
end
end
%% Phase 3: Green primary measurement:
if dotest(3)
% Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
referenceluminance = 10:10:maxLuminance;
targetcolors = [0 ; 1 ; 0] * referenceluminance;
% Measure 10% area test patch of target luminances 'targetcolors' at display center:
retgreen = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
skipKbWait = 1;
try
% Convert measured values to chromaticity coordinates and luminance:
xyY = XYZToxyY(retgreen.XYZ);
ColorGamut(:, 2) = [mean(xyY(1,:)) ; mean(xyY(2,:))];
% Report and plot measured white point vs. dispplay self reported one:
fprintf('Reported green-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 2), displayhdrprops.ColorGamut(2, 2));
fprintf('Measured green-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
plot(xyY(1,:), xyY(2,:), '+g', mean(xyY(1,:)), mean(xyY(2,:)), 'og', displayhdrprops.ColorGamut(1, 2), displayhdrprops.ColorGamut(2, 2), '*g');
title('Chromaticity coordinates of measured samples:');
catch
end
end
%% Phase 4: Blue primary measurement:
if dotest(4)
% Step through luminance range 0 - maxLuminance nits, in steps of 1 nit:
referenceluminance = 10:10:maxLuminance;
targetcolors = [0 ; 0 ; 1] * referenceluminance;
% Measure 10% area test patch of target luminances 'targetcolors' at display center:
retblue = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait);
try
% Convert measured values to chromaticity coordinates and luminance:
xyY = XYZToxyY(retblue.XYZ);
ColorGamut(:, 3) = [mean(xyY(1,:)) ; mean(xyY(2,:))];
% Report and plot measured white point vs. dispplay self reported one:
fprintf('Reported blue-point is at: %f, %f\n', displayhdrprops.ColorGamut(1, 3), displayhdrprops.ColorGamut(2, 3));
fprintf('Measured blue-point is at: %f, %f\n', mean(xyY(1,:)), mean(xyY(2,:)));
plot(xyY(1,:), xyY(2,:), '+b', mean(xyY(1,:)), mean(xyY(2,:)), 'ob', displayhdrprops.ColorGamut(1, 3), displayhdrprops.ColorGamut(2, 3), '*b');
title('Chromaticity coordinates of measured samples:');
catch
end
end
if any(dotest(2:4))
if all(dotest(2:4)) && exist('ColorGamut', 'var') && (size(ColorGamut, 1) >= 2) && (size(ColorGamut, 2) >= 3)
line(ColorGamut(1, [1,2,3,1]), ColorGamut(2, [1,2,3,1]), 'color', 'k');
line(displayhdrprops.ColorGamut(1, [1,2,3,1]), displayhdrprops.ColorGamut(2, [1,2,3,1]), 'color', 'b');
end
hold off;
end
% Must wait for keypress for the tests following this line:
skipKbWait = 0; %#ok<NASGU>
% Close Screen, clean up:
sca;
catch me
% Close Screen, clean up:
sca;
end
fprintf('Done. Writing results to file %s\n', filename);
save(filename, '-V7');
if meterType == -1
% Suppress console output for manual data entry:
ListenChar(0);
% Disable sound output as used by Beeper():
Snd('Close');
end
if meterType > 0
% Close the colorimeter:
CMClose(meterType);
end
% Close pointless empty chroma plot on manual data entry:
if meterType == -1
close all;
end
% Some more plotting for test 1, detailed white-point and luminance:
if dotest(1)
try
figure;
whiteluminance = whiteluminance(1:size(retluminance.XYZ, 2));
plot(whiteluminance, retluminance.XYZ(2,:));
title('Expected vs. measured luminance in nits:');
xlabel('Expected luminance [nits]');
ylabel('Measured luminance [nits]');
catch
end
% The following half-assed algorithm needs a "Viewer discretion is
% advised" disclaimer...
fprintf('\n\nCAUTION: The following diagnostic output is based on a currently suboptimal method which\n');
fprintf('leaves a lot to be desired. Therefore take the automatic assessment with a big grain of salt!\n\n');
% Check how much "dynamic range" is actually in the measured data. We
% exclude measurements for target luminance values < 1 nit, as our
% measurements may not be sensitive enough to resolve properly below that,
% neither is our binning good enough:
% Note: This is a bit hacky, better ways should be thought of...
startind = find(whiteluminance >= 1.0, 1)
shaderpq10bitval = retluminance.shaderpq10bitval(:, startind:end);
[~, indices] = unique (shaderpq10bitval', 'rows');
numlevelsexpected = length(indices)
levelhisto = hist(retluminance.XYZ(2,:), numlevelsexpected); %#ok<HIST>
numlevelsmeasured = length(find(levelhisto > 0))
actualcontentbits = log2(numlevelsmeasured)
% Check if the display likely does receive real 10 bpc content, as required for
% HDR-10, ie. no truncation to 8 bpc happens on the gpu, link, or in the displays
% display controller or matrix:
if numlevelsexpected > 256 && actualcontentbits < 8
warning('Measured data contains less than 8 bpc worth of variability. Suspicious...');
end
if numlevelsexpected > 256 && actualcontentbits > 8
fprintf('More than 8 bits of variability detected in measured data. Good, 10 bpc transfer of video to display seems to work.\n');
end
% Save again if we made it to here:
save(filename, '-V7');
end
% Optionally print gpu hw state:
printgpuhwstate;
if exist('me','var')
rethrow(me);
end
% Auto close empty plots if no colorimeter measurement was done:
if meterType == 0
close all;
end
% We are done!
end
function ret = runTestPatchSeries(win, meterType, testrect, targetcolors, skipKbWait)
ret.shaderdiff = [];
ret.shaderpq10bitval = [];
ret.shaderpq12bitval = [];
ret.referencecolors = [];
ret.XYZ = [];
ret.trouble = [];
% Tell monitor what to expect:
[winw, winh] = Screen('WindowSize', win);
coverage = (RectWidth(testrect) * RectHeight(testrect)) / (winw * winh);
% maxCLL intensity in nits of brightest pixel color component over all
% frames - ie. brightest component in whole test sequence:
maxCLL = max(targetcolors(:));
% frame average light levels: For each frame/test patch, the value of
% the brightest pixel color component in each pixel, averaged over all
% pixels in a frame. In our case, as all pixels in the test patch have
% same color and thereby same max component / component value, we just
% take that maximum for each patch and multiply with how much of the
% display is covered with the test patch, as the remainder of the
% screen is all black aka zero:
FALLs = max(targetcolors, [], 1) * coverage;
% maxFALL is the maximum over all FALLs from all frames in the sequence:
maxFALL = max(FALLs);
msg = sprintf('Coverage %.01f%% : maxCLL = %.02f nits : maxFALL = %.02f nits.\n', 100 * coverage, maxCLL, maxFALL);
disp(msg);
% Tell the monitor about maxFALL and maxCLL, clamped to allowed maximum of 65535 nits:
PsychHDR('HDRMetadata', win, 0, min(maxFALL, 65535), min(maxCLL, 65535));
Screen('Flip', win);
if ~skipKbWait
% Instruct user to set up everything:
DrawFormattedText(win, sprintf('%sPoint colorimeter at test patch,\nthen press any key to start measurement\n', msg), 'center', 30, [0, 40, 0]);
Screen('FillRect', win, 40, testrect);
Screen('FillOval', win, 0, CenterRect([0, 0, 10, 10], testrect));
Screen('Flip', win);
% Wait for start signal from user:
KbStrokeWait(-1);
else
WaitSecs(5);
end
fprintf('\n\n\nStarting measurement:\n\n');
for i = 1:size(targetcolors, 2)
% ESCAPE allows early termination of measurement run:
[~, ~, keyCode] = KbCheck(-1);
if keyCode(KbName('ESCAPE'))
break;
end
% Get targetcolor of test patch:
targetcolor = targetcolors(:, i);
% Draw test patch:
Screen('FillRect', win, targetcolor, testrect);
Screen('Flip', win);
% Read back and compare Screen()'s shader based EOTF encoding against our
% Matlab reference implementation in PQ():
gpupqvalue = squeeze(Screen('GetImage', win, CenterRect([0 0 1 1], testrect), 'backBuffer', 1, 3));
gpu10bitval = round(gpupqvalue * (2^10 - 1));
gpu12bitval = round(gpupqvalue * (2^12 - 1));
[refpqvalue, ref10bitval, ref12bitval] = PQ(single(targetcolor)); %#ok<ASGLU>
if max(abs(gpu10bitval - ref10bitval)) > 1
fprintf('WARNING: Mismatch of 10 bpc PQ encoded pixelvalue between PTB shader and reference implementation! %i\n', ...
abs(gpu10bitval - ref10bitval));
end
ret.shaderdiff(:, end+1) = gpu10bitval - ref10bitval; %#ok<*AGROW>
ret.shaderpq10bitval(:, end+1) = gpu10bitval;
ret.shaderpq12bitval(:, end+1) = gpu12bitval;
if meterType ~= 0
% Give display(backlight) some time to settle to new steady state:
WaitSecs(0.5);
end
% Measure true luminance according to colorimeter:
ret.referencecolors(:, end+1) = targetcolor;
if meterType > 0
[ret.XYZ(:, end+1), ret.trouble(end+1)] = MeasXYZ(meterType);
else
switch (meterType)
case 0 % Fast run-through...
[ret.XYZ(:, end+1), ret.trouble(end+1)] = deal([0 ; 0; 0], -1);
case -1 % Manual measurement and data entry:
Beeper;
KbStrokeWait(-1);
manNits = Ask(win, 'Measured nits + ENTER [q + ENTER to quit run]: ', 200, 0, 'GetChar');
% Abort on 'q', otherwise convert entry to manNits
% measured luminance value:
if ~strcmp(manNits, 'q')
manNits = str2double(manNits);
else
break;
end
[ret.XYZ(:, end+1), ret.trouble(end+1)] = deal([0 ; manNits ; 0], -1);
end
end
if isscalar(targetcolor)
targetlum = targetcolor;
elseif length(find(targetcolor > 0)) == 1
targetlum = max(targetcolor);
else
targetlum = rgb2gray(targetcolor');
end
% Display measurement result to top-left corner of screen:
if isscalar(gpu10bitval)
msg = sprintf('[PQ-10/12bit = %i/%i] -> Target %.05f nits vs. measured %.05f nits -> Delta %.01f%%. Trouble = %i\n', gpu10bitval, ...
gpu12bitval, targetlum, ret.XYZ(2, end), (ret.XYZ(2, end) - targetlum) / targetlum * 100, ret.trouble(end));
else
msg = sprintf('[PQ-10/12bit = %i,%i,%i/%i,%i,%i] -> Target %.05f nits vs. measured %.05f nits -> Delta %.01f%%. Trouble = %i\n', gpu10bitval, ...
gpu12bitval, targetlum, ret.XYZ(2, end), (ret.XYZ(2, end) - targetlum) / targetlum * 100, ret.trouble(end));
end
disp(msg);
DrawFormattedText(win, msg, 0, 30, 40);
Screen('Flip', win);
if meterType ~= 0
% Rest for a second:
WaitSecs(1);
end
end
nsamples = min(size(ret.referencecolors, 2), size(ret.XYZ, 2));
ret.referencecolors = ret.referencecolors(:, 1:nsamples);
ret.XYZ = ret.XYZ(:, 1:nsamples);
end
function [v, digital10bitval, digital12bitval] = PQ(L)
% ST-2084 PQ "Perceptual Quantizer" inverse EOTF (ie. OETF), from
% https://en.wikipedia.org/wiki/High-dynamic-range_video#Perceptual_Quantizer
%
L = L / 10000;
Lp = L .^ 0.1593017578125;
f = (0.8359375 + 18.8515625 .* Lp) ./ (1 + 18.6875 .* Lp);
v = f .^ 78.84375;
% Convert back into 10 bit discrete value:
digital10bitval = round(v * (2^10 - 1));
% Convert back into 12 bit discrete value:
digital12bitval = round(v * (2^12 - 1));
end
function printgpuhwstate
% Disabled by default:
if 0
if IsLinux %#ok<UNRCH>
% This system() call would print status of gamma lut's on AMD DCN-1 hardware
% for display engine/ooutput 0. A value of 0 means hw bypass enabled and is
% good for our purpose. This will prompt for an admin password, so will only
% work with Octave run from a terminal. Also needs AMD's 'umr' tools installed:
system ('sudo umr -O bits --read raven1.dcn10.mmCM0_CM_RGAM_CONTROL --read raven1.dcn10.mmCM0_CM_DGAM_CONTROL')
end
end
end
|