1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#!/usr/bin/python
# Back-Propagation Neural Networks
#
# Written in Python. See http://www.python.org/
#
# Neil Schemenauer <nascheme@enme.ucalgary.ca>
import math
import random
import operator
import string
import psyco
#psyco.full()
from psyco.classes import *
#psyco.log()
#psyco.profile()
#__metaclass__ = type
random.seed(0)
def time(fn, *args):
import time, traceback
begin = time.clock()
try:
result = fn(*args)
except:
end = time.clock()
traceback.print_exc()
result = '<exception>'
else:
end = time.clock()
return result, end-begin
# calculate a random number where: a <= rand < b
def rand(a, b):
return (b-a)*random.random() + a
# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
self.ni = ni + 1 # +1 for bias node
self.nh = nh
self.no = no
# activations for nodes
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create weights
self.wi = makeMatrix(self.ni, self.nh)
self.wo = makeMatrix(self.nh, self.no)
# set them to random vaules
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-2.0, 2.0)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-2.0, 2.0)
# last change in weights for momentum
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError, 'wrong number of inputs'
# input activations
for i in range(self.ni-1):
#self.ai[i] = 1.0/(1.0+math.exp(-inputs[i]))
self.ai[i] = inputs[i]
# hidden activations
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
sum = sum + self.ai[i] * self.wi[i][j]
self.ah[j] = 1.0/(1.0+math.exp(-sum))
# output activations
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = 1.0/(1.0+math.exp(-sum))
return self.ao[:]
def backPropagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError, 'wrong number of target values'
# calculate error terms for output
output_deltas = [0.0] * self.no
for k in range(self.no):
ao = self.ao[k]
output_deltas[k] = ao*(1-ao)*(targets[k]-ao)
# calculate error terms for hidden
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
sum = 0.0
for k in range(self.no):
sum = sum + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = self.ah[j]*(1-self.ah[j])*sum
# update output weights
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
#print N*change, M*self.co[j][k]
# update input weights
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calculate error
error = 0.0
for k in range(len(targets)):
error = error + 0.5*(targets[k]-self.ao[k])**2
return error
def test(self, patterns):
for p in patterns:
print p[0], '->', self.update(p[0])
def weights(self):
print 'Input weights:'
for i in range(self.ni):
print self.wi[i]
print
print 'Output weights:'
for j in range(self.nh):
print self.wo[j]
def train(self, patterns, iterations=2000, N=0.5, M=0.1):
# N: learning rate
# M: momentum factor
for i in xrange(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.backPropagate(targets, N, M)
if i % 100 == 0:
print 'error %-14f' % error
def demo():
# Teach network XOR function
pat = [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# create a network with two input, two hidden, and two output nodes
n = NN(2, 3, 1)
# train it with some patterns
n.train(pat, 2000)
# test it
n.test(pat)
if __name__ == '__main__':
v, t1 = time(demo)
v, t2 = time(demo)
v, t3 = time(demo)
v, t4 = time(demo)
v, t5 = time(demo)
print t1, t2, t3, t4, t5
psyco.dumpcodebuf()
|