1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
.. currentmodule:: psycopg
.. index::
single: Adaptation
pair: Objects; Adaptation
single: Data types; Adaptation
.. _types-adaptation:
Adapting basic Python types
===========================
Many standard Python types are adapted into SQL and returned as Python
objects when a query is executed.
Converting the following data types between Python and PostgreSQL works
out-of-the-box and doesn't require any configuration. In case you need to
customise the conversion you should take a look at :ref:`adaptation`.
.. index::
pair: Boolean; Adaptation
.. _adapt-bool:
Booleans adaptation
-------------------
Python `bool` values `!True` and `!False` are converted to the equivalent
`PostgreSQL boolean type`__::
>>> cur.execute("SELECT %s, %s", (True, False))
# equivalent to "SELECT true, false"
.. __: https://www.postgresql.org/docs/current/datatype-boolean.html
.. versionchanged:: 3.2
`numpy.bool_` values can be dumped too.
.. index::
single: Adaptation; numbers
single: Integer; Adaptation
single: Float; Adaptation
single: Decimal; Adaptation
.. _adapt-numbers:
Numbers adaptation
------------------
.. seealso::
- `PostgreSQL numeric types
<https://www.postgresql.org/docs/current/static/datatype-numeric.html>`__
- Python `int` values can be converted to PostgreSQL :sql:`smallint`,
:sql:`integer`, :sql:`bigint`, or :sql:`numeric`, according to their numeric
value. Psycopg will choose the smallest data type available, because
PostgreSQL can automatically cast a type up (e.g. passing a `smallint` where
PostgreSQL expect an `integer` is gladly accepted) but will not cast down
automatically (e.g. if a function has an :sql:`integer` argument, passing it
a :sql:`bigint` value will fail, even if the value is 1).
- Python `float` values are converted to PostgreSQL :sql:`float8`.
- Python `~decimal.Decimal` values are converted to PostgreSQL :sql:`numeric`.
On the way back, smaller types (:sql:`int2`, :sql:`int4`, :sql:`float4`) are
promoted to the larger Python counterpart.
.. note::
Sometimes you may prefer to receive :sql:`numeric` data as `!float`
instead, for performance reason or ease of manipulation: you can configure
an adapter to :ref:`cast PostgreSQL numeric to Python float
<adapt-example-float>`. This of course may imply a loss of precision.
.. versionchanged:: 3.2
NumPy integer__ and `floating point`__ values can be dumped too.
.. __: https://numpy.org/doc/stable/reference/arrays.scalars.html#integer-types
.. __: https://numpy.org/doc/stable/reference/arrays.scalars.html#floating-point-types
.. index::
pair: Strings; Adaptation
single: Unicode; Adaptation
pair: Encoding; SQL_ASCII
.. _adapt-string:
Strings adaptation
------------------
.. seealso::
- `PostgreSQL character types
<https://www.postgresql.org/docs/current/datatype-character.html>`__
Python `str` are converted to PostgreSQL string syntax, and PostgreSQL types
such as :sql:`text` and :sql:`varchar` are converted back to Python `!str`:
.. code:: python
conn = psycopg.connect()
conn.execute(
"INSERT INTO menu (id, entry) VALUES (%s, %s)",
(1, "Crème Brûlée at 4.99€"))
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
'Crème Brûlée at 4.99€'
PostgreSQL databases `have an encoding`__, and `the session has an encoding`__
too, exposed in the `!Connection.info.`\ `~ConnectionInfo.encoding`
attribute. If your database and connection are in UTF-8 encoding you will
likely have no problem, otherwise you will have to make sure that your
application only deals with the non-ASCII chars that the database can handle;
failing to do so may result in encoding/decoding errors:
.. __: https://www.postgresql.org/docs/current/sql-createdatabase.html
.. __: https://www.postgresql.org/docs/current/multibyte.html
.. code:: python
# The encoding is set at connection time according to the db configuration
conn.info.encoding
'utf-8'
# The Latin-9 encoding can manage some European accented letters
# and the Euro symbol
conn.execute("SET client_encoding TO LATIN9")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
'Crème Brûlée at 4.99€'
# The Latin-1 encoding doesn't have a representation for the Euro symbol
conn.execute("SET client_encoding TO LATIN1")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
# Traceback (most recent call last)
# ...
# UntranslatableCharacter: character with byte sequence 0xe2 0x82 0xac
# in encoding "UTF8" has no equivalent in encoding "LATIN1"
In rare cases you may have strings with unexpected encodings in the database.
Using the ``SQL_ASCII`` client encoding will disable decoding of the data
coming from the database, which will be returned as `bytes`:
.. code:: python
conn.execute("SET client_encoding TO SQL_ASCII")
conn.execute("SELECT entry FROM menu WHERE id = 1").fetchone()[0]
b'Cr\xc3\xa8me Br\xc3\xbbl\xc3\xa9e at 4.99\xe2\x82\xac'
Alternatively you can cast the unknown encoding data to :sql:`bytea` to
retrieve it as bytes, leaving other strings unaltered: see :ref:`adapt-binary`
Note that PostgreSQL text cannot contain the ``0x00`` byte. If you need to
store Python strings that may contain binary zeros you should use a
:sql:`bytea` field.
.. index::
single: bytea; Adaptation
single: bytes; Adaptation
single: bytearray; Adaptation
single: memoryview; Adaptation
single: Binary string
.. _adapt-binary:
Binary adaptation
-----------------
Python types representing binary objects (`bytes`, `bytearray`, `memoryview`)
are converted by default to :sql:`bytea` fields. By default data received is
returned as `!bytes`.
If you are storing large binary data in bytea fields (such as binary documents
or images) you should probably use the binary format to pass and return
values, otherwise binary data will undergo `ASCII escaping`__, taking some CPU
time and more bandwidth. See :ref:`binary-data` for details.
.. __: https://www.postgresql.org/docs/current/datatype-binary.html
.. _adapt-date:
Date/time types adaptation
--------------------------
.. seealso::
- `PostgreSQL date/time types
<https://www.postgresql.org/docs/current/datatype-datetime.html>`__
- Python `~datetime.date` objects are converted to PostgreSQL :sql:`date`.
- Python `~datetime.datetime` objects are converted to PostgreSQL
:sql:`timestamp` (if they don't have a `!tzinfo` set) or :sql:`timestamptz`
(if they do).
- Python `~datetime.time` objects are converted to PostgreSQL :sql:`time`
(if they don't have a `!tzinfo` set) or :sql:`timetz` (if they do).
- Python `~datetime.timedelta` objects are converted to PostgreSQL
:sql:`interval`.
PostgreSQL :sql:`timestamptz` values are returned with a timezone set to the
`connection TimeZone setting`__, which is available as a Python
`~zoneinfo.ZoneInfo` object in the `!Connection.info`.\ `~ConnectionInfo.timezone`
attribute::
>>> conn.info.timezone
zoneinfo.ZoneInfo(key='Europe/London')
>>> conn.execute("select '2048-07-08 12:00'::timestamptz").fetchone()[0]
datetime.datetime(2048, 7, 8, 12, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/London'))
.. __: https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE
.. note::
PostgreSQL :sql:`timestamptz` doesn't store "a timestamp with a timezone
attached": it stores a timestamp always in UTC, which is converted, on
output, to the connection TimeZone setting::
>>> conn.execute("SET TIMEZONE to 'Europe/Rome'") # UTC+2 in summer
>>> conn.execute("SELECT '2042-07-01 12:00Z'::timestamptz").fetchone()[0] # UTC input
datetime.datetime(2042, 7, 1, 14, 0, tzinfo=zoneinfo.ZoneInfo(key='Europe/Rome'))
Check out the `PostgreSQL documentation about timezones`__ for all the
details.
.. __: https://www.postgresql.org/docs/current/datatype-datetime.html
#DATATYPE-TIMEZONES
.. warning::
Times with timezone are silly objects, because you cannot know the offset
of a timezone with daylight saving time rules without knowing the date
too.
Although silly, times with timezone are supported both by Python and by
PostgreSQL. However they are only supported with fixed offset timezones:
Postgres :sql:`timetz` values loaded from the database will result in
Python `!time` objects with `!tzinfo` attributes specified as fixed
offset, for instance by a `~datetime.timezone` value::
>>> conn.execute("SET TIMEZONE to 'Europe/Rome'")
# UTC+1 in winter
>>> conn.execute("SELECT '2042-01-01 12:00Z'::timestamptz::timetz").fetchone()[0]
datetime.time(13, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=3600)))
# UTC+2 in summer
>>> conn.execute("SELECT '2042-07-01 12:00Z'::timestamptz::timetz").fetchone()[0]
datetime.time(14, 0, tzinfo=datetime.timezone(datetime.timedelta(seconds=7200)))
Dumping Python `!time` objects is only supported with fixed offset
`!tzinfo`, such as the ones returned by Postgres, or by whatever
`~datetime.tzinfo` implementation resulting in the time's
`~datetime.time.utcoffset` returning a value.
.. _date-time-limits:
Dates and times limits in Python
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
PostgreSQL date and time objects can represent values that cannot be
represented by the Python `datetime` objects:
- dates and timestamps after the year 9999, the special value "infinity";
- dates and timestamps before the year 1, the special value "-infinity";
- the time 24:00:00.
Loading these values will raise a `~psycopg.DataError`.
If you need to handle these values you can define your own mapping (for
instance mapping every value greater than `datetime.date.max` to `!date.max`,
or the time 24:00 to 00:00) and write a subclass of the default loaders
implementing the added capability; please see :ref:`this example
<adapt-example-inf-date>` for a reference.
.. index::
single: DateStyle
single: IntervalStyle
.. _datestyle:
DateStyle and IntervalStyle limits
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Loading :sql:`timestamp with time zone` in text format is only supported if
the connection DateStyle__ is set to `ISO` format; time and time zone
representation in other formats is ambiguous.
.. __: https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-DATESTYLE
Furthermore, at the time of writing, the only supported value for
IntervalStyle__ is ``postgres``; loading :sql:`interval` data in text format
with a different setting is not supported.
.. __: https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-INTERVALSTYLE
If your server is configured with different settings by default, you can
obtain a connection in a supported style using the ``options`` connection
parameter; for example::
>>> conn = psycopg.connect(options="-c datestyle=ISO,YMD")
>>> conn.execute("show datestyle").fetchone()[0]
# 'ISO, YMD'
These GUC parameters only affects loading in text format; loading timestamps
or intervals in :ref:`binary format <binary-data>` is not affected by
DateStyle or IntervalStyle.
.. _adapt-json:
JSON adaptation
---------------
Psycopg can map between Python objects and PostgreSQL `json/jsonb
types`__, allowing to customise the load and dump function used.
.. __: https://www.postgresql.org/docs/current/datatype-json.html
Because several Python objects could be considered JSON (dicts, lists,
scalars, even date/time if using a dumps function customised to use them),
Psycopg requires you to wrap the object to dump as JSON into a wrapper:
either `psycopg.types.json.Json` or `~psycopg.types.json.Jsonb`.
.. code:: python
from psycopg.types.json import Jsonb
thing = {"foo": ["bar", 42]}
conn.execute("INSERT INTO mytable VALUES (%s)", [Jsonb(thing)])
By default Psycopg uses the standard library `json.dumps` and `json.loads`
functions to serialize and de-serialize Python objects to JSON. If you want to
customise how serialization happens, for instance changing serialization
parameters or using a different JSON library, you can specify your own
functions using the `psycopg.types.json.set_json_dumps()` and
`~psycopg.types.json.set_json_loads()` functions, to apply either globally or
to a specific context (connection or cursor).
.. code:: python
from functools import partial
from psycopg.types.json import Jsonb, set_json_dumps, set_json_loads
import ujson
# Use a faster dump function
set_json_dumps(ujson.dumps)
# Return floating point values as Decimal, just in one connection
set_json_loads(partial(json.loads, parse_float=Decimal), conn)
conn.execute("SELECT %s", [Jsonb({"value": 123.45})]).fetchone()[0]
# {'value': Decimal('123.45')}
If you need an even more specific dump customisation only for certain objects
(including different configurations in the same query) you can specify a
`!dumps` parameter in the
`~psycopg.types.json.Json`/`~psycopg.types.json.Jsonb` wrapper, which will
take precedence over what is specified by `!set_json_dumps()`.
.. code:: python
from uuid import UUID, uuid4
class UUIDEncoder(json.JSONEncoder):
"""A JSON encoder which can dump UUID."""
def default(self, obj):
if isinstance(obj, UUID):
return str(obj)
return json.JSONEncoder.default(self, obj)
uuid_dumps = partial(json.dumps, cls=UUIDEncoder)
obj = {"uuid": uuid4()}
cnn.execute("INSERT INTO objs VALUES %s", [Json(obj, dumps=uuid_dumps)])
# will insert: {'uuid': '0a40799d-3980-4c65-8315-2956b18ab0e1'}
.. _adapt-list:
Lists adaptation
----------------
Python `list` objects are adapted to `PostgreSQL arrays`__ and back. Only
lists containing objects of the same type can be dumped to PostgreSQL (but the
list may contain `!None` elements).
.. __: https://www.postgresql.org/docs/current/arrays.html
.. note::
If you have a list of values which you want to use with the :sql:`IN`
operator... don't. It won't work (neither with a list nor with a tuple)::
>>> conn.execute("SELECT * FROM mytable WHERE id IN %s", [[10,20,30]])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
psycopg.errors.SyntaxError: syntax error at or near "$1"
LINE 1: SELECT * FROM mytable WHERE id IN $1
^
What you want to do instead is to use the `'= ANY()' expression`__ and pass
the values as a list (not a tuple).
>>> conn.execute("SELECT * FROM mytable WHERE id = ANY(%s)", [[10,20,30]])
This has also the advantage of working with an empty list, whereas ``IN
()`` is not valid SQL.
.. __: https://www.postgresql.org/docs/current/functions-comparisons.html
#id-1.5.8.30.16
.. _adapt-uuid:
UUID adaptation
---------------
Python `uuid.UUID` objects are adapted to PostgreSQL `UUID type`__ and back::
>>> conn.execute("select gen_random_uuid()").fetchone()[0]
UUID('97f0dd62-3bd2-459e-89b8-a5e36ea3c16c')
>>> from uuid import uuid4
>>> conn.execute("select gen_random_uuid() = %s", [uuid4()]).fetchone()[0]
False # long shot
.. __: https://www.postgresql.org/docs/current/datatype-uuid.html
.. _adapt-network:
Network data types adaptation
-----------------------------
Objects from the `ipaddress` module are converted to PostgreSQL `network
address types`__:
- `~ipaddress.IPv4Address`, `~ipaddress.IPv4Interface` objects are converted
to the PostgreSQL :sql:`inet` type. On the way back, :sql:`inet` values
indicating a single address are converted to `!IPv4Address`, otherwise they
are converted to `!IPv4Interface`
- `~ipaddress.IPv4Network` objects are converted to the :sql:`cidr` type and
back.
- `~ipaddress.IPv6Address`, `~ipaddress.IPv6Interface`,
`~ipaddress.IPv6Network` objects follow the same rules, with IPv6
:sql:`inet` and :sql:`cidr` values.
.. __: https://www.postgresql.org/docs/current/datatype-net-types.html#DATATYPE-CIDR
.. code:: python
>>> conn.execute("select '192.168.0.1'::inet, '192.168.0.1/24'::inet").fetchone()
(IPv4Address('192.168.0.1'), IPv4Interface('192.168.0.1/24'))
>>> conn.execute("select '::ffff:1.2.3.0/120'::cidr").fetchone()[0]
IPv6Network('::ffff:102:300/120')
.. _adapt-enum:
Enum adaptation
---------------
.. versionadded:: 3.1
Psycopg can adapt Python `~enum.Enum` subclasses into PostgreSQL enum types
(created with the |CREATE TYPE AS ENUM|_ command).
.. |CREATE TYPE AS ENUM| replace:: :sql:`CREATE TYPE ... AS ENUM (...)`
.. _CREATE TYPE AS ENUM: https://www.postgresql.org/docs/current/static/datatype-enum.html
In order to set up a bidirectional enum mapping, you should get information
about the PostgreSQL enum using the `~types.enum.EnumInfo` class and
register it using `~types.enum.register_enum()`. The behaviour of unregistered
and registered enums is different.
- If the enum is not registered with `register_enum()`:
- Pure `!Enum` classes are dumped as normal strings, using their member
names as value. The unknown oid is used, so PostgreSQL should be able to
use this string in most contexts (such as an enum or a text field).
.. versionchanged:: 3.1
In previous version dumping pure enums is not supported and raise a
"cannot adapt" error.
- Mix-in enums are dumped according to their mix-in type (because a `class
MyIntEnum(int, Enum)` is more specifically an `!int` than an `!Enum`, so
it's dumped by default according to `!int` rules).
- PostgreSQL enums are loaded as Python strings. If you want to load arrays
of such enums you will have to find their OIDs using `types.TypeInfo.fetch()`
and register them using `~types.TypeInfo.register()`.
- If the enum is registered (using `~types.enum.EnumInfo`\ `!.fetch()` and
`~types.enum.register_enum()`):
- Enums classes, both pure and mixed-in, are dumped by name.
- The registered PostgreSQL enum is loaded back as the registered Python
enum members.
.. autoclass:: psycopg.types.enum.EnumInfo
`!EnumInfo` is a subclass of `~psycopg.types.TypeInfo`: refer to the
latter's documentation for generic usage, especially the
`~psycopg.types.TypeInfo.fetch()` method.
.. attribute:: labels
After `~psycopg.types.TypeInfo.fetch()`, it contains the labels defined
in the PostgreSQL enum type.
.. attribute:: enum
After `register_enum()` is called, it will contain the Python type
mapping to the registered enum.
.. autofunction:: psycopg.types.enum.register_enum
After registering, fetching data of the registered enum will cast
PostgreSQL enum labels into corresponding Python enum members.
If no `!enum` is specified, a new `Enum` is created based on
PostgreSQL enum labels.
Example::
>>> from enum import Enum, auto
>>> from psycopg.types.enum import EnumInfo, register_enum
>>> class UserRole(Enum):
... ADMIN = auto()
... EDITOR = auto()
... GUEST = auto()
>>> conn.execute("CREATE TYPE user_role AS ENUM ('ADMIN', 'EDITOR', 'GUEST')")
>>> info = EnumInfo.fetch(conn, "user_role")
>>> register_enum(info, conn, UserRole)
>>> some_editor = info.enum.EDITOR
>>> some_editor
<UserRole.EDITOR: 2>
>>> conn.execute(
... "SELECT pg_typeof(%(editor)s), %(editor)s",
... {"editor": some_editor}
... ).fetchone()
('user_role', <UserRole.EDITOR: 2>)
>>> conn.execute(
... "SELECT ARRAY[%s, %s]",
... [UserRole.ADMIN, UserRole.GUEST]
... ).fetchone()
[<UserRole.ADMIN: 1>, <UserRole.GUEST: 3>]
If the Python and the PostgreSQL enum don't match 1:1 (for instance if members
have a different name, or if more than one Python enum should map to the same
PostgreSQL enum, or vice versa), you can specify the exceptions using the
`!mapping` parameter.
`!mapping` should be a dictionary with Python enum members as keys and the
matching PostgreSQL enum labels as values, or a list of `(member, label)`
pairs with the same meaning (useful when some members are repeated). Order
matters: if an element on either side is specified more than once, the last
pair in the sequence will take precedence::
# Legacy roles, defined in medieval times.
>>> conn.execute(
... "CREATE TYPE abbey_role AS ENUM ('ABBOT', 'SCRIBE', 'MONK', 'GUEST')")
>>> info = EnumInfo.fetch(conn, "abbey_role")
>>> register_enum(info, conn, UserRole, mapping=[
... (UserRole.ADMIN, "ABBOT"),
... (UserRole.EDITOR, "SCRIBE"),
... (UserRole.EDITOR, "MONK")])
>>> conn.execute("SELECT '{ABBOT,SCRIBE,MONK,GUEST}'::abbey_role[]").fetchone()[0]
[<UserRole.ADMIN: 1>,
<UserRole.EDITOR: 2>,
<UserRole.EDITOR: 2>,
<UserRole.GUEST: 3>]
>>> conn.execute("SELECT %s::text[]", [list(UserRole)]).fetchone()[0]
['ABBOT', 'MONK', 'GUEST']
A particularly useful case is when the PostgreSQL labels match the *values* of
a `!str`\-based Enum. In this case it is possible to use something like ``{m:
m.value for m in enum}`` as mapping::
>>> class LowercaseRole(str, Enum):
... ADMIN = "admin"
... EDITOR = "editor"
... GUEST = "guest"
>>> conn.execute(
... "CREATE TYPE lowercase_role AS ENUM ('admin', 'editor', 'guest')")
>>> info = EnumInfo.fetch(conn, "lowercase_role")
>>> register_enum(
... info, conn, LowercaseRole, mapping={m: m.value for m in LowercaseRole})
>>> conn.execute("SELECT 'editor'::lowercase_role").fetchone()[0]
<LowercaseRole.EDITOR: 'editor'>
|