File: sum.cc

package info (click to toggle)
ptl 2.3.3-2.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,296 kB
  • sloc: cpp: 8,195; python: 246; sh: 7; makefile: 3
file content (548 lines) | stat: -rw-r--r-- 19,722 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
//
// MIT License
// Copyright (c) 2019 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// ---------------------------------------------------------------
//
//   PTL implementation file
//
//  Description:
//
//      Here we copy the memory to GPU and call the GPU kernels
//

//============================================================================//
// C++

// includes all C, CUDA, and C++ header files

#include "sum.hh"
#include "ThreadPool.hh"
#include "profiler.hh"

typedef std::vector<float>   farray_t;
typedef std::vector<int64_t> iarray_t;

#define PRINT_HERE(extra)                                                                \
    printf("[%lu]> %s@'%s':%i %s\n", ThreadPool::get_this_thread_id(), __FUNCTION__,     \
           __FILE__, __LINE__, extra)

//============================================================================//

#if defined(PTL_USE_NVTX)

static nvtxEventAttributes_t nvtx_thrust_sum;
static nvtxEventAttributes_t nvtx_cuda_sum;

//----------------------------------------------------------------------------//

void
init_nvtx()
{
    static bool first = true;
    if(!first)
        return;
    first = false;

    nvtx_thrust_sum.version       = NVTX_VERSION;
    nvtx_thrust_sum.size          = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
    nvtx_thrust_sum.colorType     = NVTX_COLOR_ARGB;
    nvtx_thrust_sum.color         = 0xff0000ff; /* blue? */
    nvtx_thrust_sum.messageType   = NVTX_MESSAGE_TYPE_ASCII;
    nvtx_thrust_sum.message.ascii = "calc_coords";

    nvtx_cuda_sum.version       = NVTX_VERSION;
    nvtx_cuda_sum.size          = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
    nvtx_cuda_sum.colorType     = NVTX_COLOR_ARGB;
    nvtx_cuda_sum.color         = 0xffff0000; /* red */
    nvtx_cuda_sum.messageType   = NVTX_MESSAGE_TYPE_ASCII;
    nvtx_cuda_sum.message.ascii = "sort_intersections";
}

#endif

//============================================================================//

int
cuda_device_count()
{
    int         deviceCount = 0;
    cudaError_t error_id    = cudaGetDeviceCount(&deviceCount);

    if(error_id != cudaSuccess)
        return 0;

    return deviceCount;
}

//============================================================================//

void
cuda_device_query()
{
    static bool first = true;
    if(first)
        first = false;
    else
        return;

    int         deviceCount    = 0;
    int         driverVersion  = 0;
    int         runtimeVersion = 0;
    cudaError_t error_id       = cudaGetDeviceCount(&deviceCount);

    if(error_id != cudaSuccess)
    {
        printf("cudaGetDeviceCount returned error code %d\n--> %s\n",
               static_cast<int>(error_id), cudaGetErrorString(error_id));

        if(deviceCount > 0)
        {
            cudaSetDevice(0);
            cudaDeviceProp deviceProp;
            cudaGetDeviceProperties(&deviceProp, 0);
            printf("\nDevice %d: \"%s\"\n", 0, deviceProp.name);

            // Console log
            cudaDriverGetVersion(&driverVersion);
            cudaRuntimeGetVersion(&runtimeVersion);
            printf("  CUDA Driver Version / Runtime Version          %d.%d / "
                   "%d.%d\n",
                   driverVersion / 1000, (driverVersion % 100) / 10,
                   runtimeVersion / 1000, (runtimeVersion % 100) / 10);
            printf("  CUDA Capability Major/Minor version number:    %d.%d\n",
                   deviceProp.major, deviceProp.minor);
        }

        return;
    }

    if(deviceCount == 0)
        printf("No available CUDA device(s) detected\n");
    else
        printf("Detected %d CUDA capable devices\n", deviceCount);

    for(int dev = 0; dev < deviceCount; ++dev)
    {
        cudaSetDevice(dev);
        cudaDeviceProp deviceProp;
        cudaGetDeviceProperties(&deviceProp, dev);
        printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name);

        // Console log
        cudaDriverGetVersion(&driverVersion);
        cudaRuntimeGetVersion(&runtimeVersion);

        // This only available in CUDA 4.0-4.2 (but these were only exposed in
        // the CUDA Driver API)
        int memoryClock;
        int memBusWidth;
        int L2CacheSize;

        printf("  CUDA Driver Version / Runtime Version          %d.%d / %d.%d\n",
               driverVersion / 1000, (driverVersion % 100) / 10, runtimeVersion / 1000,
               (runtimeVersion % 100) / 10);

        printf("  CUDA Capability Major/Minor version number:    %d.%d\n",
               deviceProp.major, deviceProp.minor);

        char msg[256];
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
        sprintf_s(msg, sizeof(msg),
                  "  Total amount of global memory:                 %.0f MBytes "
                  "(%llu bytes)\n",
                  static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
                  (unsigned long long) deviceProp.totalGlobalMem);
#else
        snprintf(msg, sizeof(msg),
                 "  Total amount of global memory:                 %.0f MBytes "
                 "(%llu bytes)\n",
                 static_cast<float>(deviceProp.totalGlobalMem / 1048576.0f),
                 (unsigned long long) deviceProp.totalGlobalMem);
#endif
        printf("%s", msg);

        printf("  GPU Max Clock rate:                            %.0f MHz (%0.2f "
               "GHz)\n",
               deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f);

#if CUDART_VERSION >= 5000
        // This is supported in CUDA 5.0 (runtime API device properties)
        printf("  Memory Clock rate:                             %.0f Mhz\n",
               deviceProp.memoryClockRate * 1e-3f);
        printf("  Memory Bus Width:                              %d-bit\n",
               deviceProp.memoryBusWidth);

        if(deviceProp.l2CacheSize)
        {
            printf("  L2 Cache Size:                                 %d bytes\n",
                   deviceProp.l2CacheSize);
        }

#else
        getCudaAttribute<int>(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev);
        printf("  Memory Clock rate:                             %.0f Mhz\n",
               memoryClock * 1e-3f);
        getCudaAttribute<int>(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH,
                              dev);
        printf("  Memory Bus Width:                              %d-bit\n", memBusWidth);
        getCudaAttribute<int>(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev);

        if(L2CacheSize)
            printf("  L2 Cache Size:                                 %d bytes\n",
                   L2CacheSize);
#endif

        printf("  Maximum Texture Dimension Size (x,y,z)         1D=(%d), 2D=(%d, "
               "%d), 3D=(%d, %d, %d)\n",
               deviceProp.maxTexture1D, deviceProp.maxTexture2D[0],
               deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0],
               deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]);
        printf("  Maximum Layered 1D Texture Size, (num) layers  1D=(%d), %d "
               "layers\n",
               deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]);
        printf("  Maximum Layered 2D Texture Size, (num) layers  2D=(%d, %d), %d "
               "layers\n",
               deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1],
               deviceProp.maxTexture2DLayered[2]);

        printf("  Total amount of constant memory:               %lu bytes\n",
               deviceProp.totalConstMem);
        printf("  Total amount of shared memory per block:       %lu bytes\n",
               deviceProp.sharedMemPerBlock);
        printf("  Total number of registers available per block: %d\n",
               deviceProp.regsPerBlock);
        printf("  Warp size:                                     %d\n",
               deviceProp.warpSize);
        printf("  Maximum number of threads per multiprocessor:  %d\n",
               deviceProp.maxThreadsPerMultiProcessor);
        printf("  Maximum number of threads per block:           %d\n",
               deviceProp.maxThreadsPerBlock);
        printf("  Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n",
               deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1],
               deviceProp.maxThreadsDim[2]);
        printf("  Max dimension size of a grid size    (x,y,z): (%d, %d, %d)\n",
               deviceProp.maxGridSize[0], deviceProp.maxGridSize[1],
               deviceProp.maxGridSize[2]);
        printf("  Maximum memory pitch:                          %lu bytes\n",
               deviceProp.memPitch);
        printf("  Texture alignment:                             %lu bytes\n",
               deviceProp.textureAlignment);
        printf("  Concurrent copy and kernel execution:          %s with %d copy "
               "engine(s)\n",
               (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount);
        printf("  Run time limit on kernels:                     %s\n",
               deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No");
        printf("  Integrated GPU sharing Host Memory:            %s\n",
               deviceProp.integrated ? "Yes" : "No");
        printf("  Support host page-locked memory mapping:       %s\n",
               deviceProp.canMapHostMemory ? "Yes" : "No");
        printf("  Alignment requirement for Surfaces:            %s\n",
               deviceProp.surfaceAlignment ? "Yes" : "No");
        printf("  Device has ECC support:                        %s\n",
               deviceProp.ECCEnabled ? "Enabled" : "Disabled");
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
        printf("  CUDA Device Driver Mode (TCC or WDDM):         %s\n",
               deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)"
                                    : "WDDM (Windows Display Driver Model)");
#endif
        printf("  Device supports Unified Addressing (UVA):      %s\n",
               deviceProp.unifiedAddressing ? "Yes" : "No");
        printf("  Device supports Compute Preemption:            %s\n",
               deviceProp.computePreemptionSupported ? "Yes" : "No");
        printf("  Supports Cooperative Kernel Launch:            %s\n",
               deviceProp.cooperativeLaunch ? "Yes" : "No");
        printf("  Supports MultiDevice Co-op Kernel Launch:      %s\n",
               deviceProp.cooperativeMultiDeviceLaunch ? "Yes" : "No");
        printf("  Device PCI Domain ID / Bus ID / location ID:   %d / %d / %d\n",
               deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID);

        const char* sComputeMode[] = {
            "Default (multiple host threads can use ::cudaSetDevice() with "
            "device "
            "simultaneously)",
            "Exclusive (only one host thread in one process is able to use "
            "::cudaSetDevice() with this device)",
            "Prohibited (no host thread can use ::cudaSetDevice() with this "
            "device)",
            "Exclusive Process (many threads in one process is able to use "
            "::cudaSetDevice() with this device)",
            "Unknown",
            NULL
        };
        printf("  Compute Mode:\n");
        printf("     < %s >\n", sComputeMode[deviceProp.computeMode]);
    }

    printf("\n\n");
    cudaDeviceSynchronize();
    CUDA_CHECK_LAST_ERROR();
}

//============================================================================//

int
cuda_set_device(int device)
{
    int deviceCount = cuda_device_count();
    if(deviceCount == 0)
        return -1;

    // don't set to higher than number of devices
    device = device % deviceCount;
    // update thread-static variable
    this_thread_device() = device;
    // actually set the device
    cudaSetDevice(device);
    // return the modulus
    return device;
}

//============================================================================//

int
cuda_multi_processor_count()
{
    if(cuda_device_count() == 0)
        return 0;

    // keep from querying device
    static thread_local cuda_device_info<int>* _instance = new cuda_device_info<int>();
    // use the thread assigned devices
    int device = this_thread_device();

    if(_instance->find(device) != _instance->end())
        return _instance->find(device)->second;

    cudaSetDevice(device);
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);

    return ((*_instance)[device] = deviceProp.multiProcessorCount);
}

//============================================================================//

int
cuda_max_threads_per_block()
{
    if(cuda_device_count() == 0)
        return 0;

    // keep from querying device
    static thread_local cuda_device_info<int>* _instance = new cuda_device_info<int>();
    // use the thread assigned devices
    int device = this_thread_device();

    if(_instance->find(device) != _instance->end())
        return _instance->find(device)->second;

    cudaSetDevice(device);
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);

    return ((*_instance)[device] = deviceProp.maxThreadsPerBlock);
}

//============================================================================//

int
cuda_warp_size()
{
    if(cuda_device_count() == 0)
        return 0;

    // keep from querying device
    static thread_local cuda_device_info<int>* _instance = new cuda_device_info<int>();
    // use the thread assigned devices
    int device = this_thread_device();

    if(_instance->find(device) != _instance->end())
        return _instance->find(device)->second;

    cudaSetDevice(device);
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);

    return ((*_instance)[device] = deviceProp.warpSize);
}

//============================================================================//

int
cuda_shared_memory_per_block()
{
    if(cuda_device_count() == 0)
        return 0;

    // keep from querying device
    static thread_local cuda_device_info<int>* _instance = new cuda_device_info<int>();
    // use the thread assigned devices
    int device = this_thread_device();

    if(_instance->find(device) != _instance->end())
        return _instance->find(device)->second;

    cudaSetDevice(device);
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);

    return ((*_instance)[device] = deviceProp.sharedMemPerBlock);
}

//============================================================================//

float
compute_sum(farray_t& cpu_data)
{
    NVTX_RANGE_PUSH(&nvtx_cuda_sum);

    static thread_local uint64_t      tid    = ThreadPool::get_this_thread_id();
    static thread_local cudaStream_t& stream = cuda_streams::instance()->get(tid);

    float _sum = 0.0f;

    uintmax_t grainsize = static_cast<uintmax_t>(cuda_max_threads_per_block());
    float*    buffer    = gpu_malloc<float>(grainsize);

    if(cpu_data.size() > grainsize)
    {
        uintmax_t nitr = cpu_data.size() / grainsize;
        uintmax_t nmod = cpu_data.size() % grainsize;
        if(nmod > 0)
            ++nitr;
        uintmax_t nrem = (nmod > 0) ? nmod : grainsize;

        aligned_ptr<float> gpu_data = aligned_gpu_malloc<float, 512>(grainsize);

        auto offset = 0;
        for(uintmax_t i = 0; i < nitr; ++i)
        {
            uintmax_t size = grainsize;
            if(i + 1 == nitr)
                size = nrem;

            async_gpu_memcpy(gpu_data.ptr, cpu_data.data() + offset, size, stream);
            gpu_data.size = size;

            float _tmp_sum = compute_sum_host(gpu_data, stream, false, buffer);

            _sum += _tmp_sum;
            offset += size;
        }

        gpu_data.free();
    }
    else
    {
        aligned_ptr<float> gpu_data = aligned_async_malloc_and_memcpy<float, 512>(
            cpu_data.data(), cpu_data.size(), stream);
        float _tmp_sum = compute_sum_host(gpu_data, stream, false, buffer);

        _sum += _tmp_sum;

        gpu_data.free();
    }

    cudaFree(buffer);

    NVTX_RANGE_POP(stream);

    return _sum;
}

//============================================================================//

float
compute_sum(thrust::host_vector<float>& cpu_data)
{
    NVTX_RANGE_PUSH(&nvtx_thrust_sum);

    static thread_local uint64_t      tid    = ThreadPool::get_this_thread_id();
    static thread_local cudaStream_t& stream = cuda_streams::instance()->get(tid);

    float*             buffer   = nullptr;
    aligned_ptr<float> gpu_data = aligned_async_malloc_and_memcpy<float, 512>(
        cpu_data.data(), cpu_data.size(), stream);
    float _sum = compute_sum_host(gpu_data, stream, true, buffer);

    NVTX_RANGE_POP(stream);

    return _sum;
}

//============================================================================//

uint64_t
run_gpu(uint64_t n)
{
    cuda_device_query();
    set_this_thread_device();

    // constants
    const float    factor  = 1.0f;
    const float    epsilon = std::numeric_limits<float>::epsilon();
    const uint64_t scale   = 1;
    const uint64_t size    = scale * n;
    // const solution
    const float real_sum = factor * size;

    auto check = [&](const float& calc_sum) {
        uint64_t _ret = (abs(real_sum - calc_sum) < epsilon) ? 1 : 0;
        if(_ret == 0)
            printf("[%lu] > incorrect GPU summation. real = %g, calculated = %g\n",
                   ThreadPool::get_this_thread_id(), real_sum, calc_sum);
        return _ret;
    };

    uint64_t ret = 0;

    {
        // data
        // farray_t data(size, factor);
        // computed results
        // float calc_sum = compute_sum(data);
        // check if same
        // ret += check(calc_sum);
        ret += 1;
        // PRINT_HERE(std::string(std::string("calc : ") +
        // std::to_string(calc_sum) +
        //                       std::string(", ") +
        //                       std::string("real : ") +
        //                       std::to_string(real_sum)).c_str());
    }

    {
        // data
        thrust::host_vector<float> thrust_data(size, factor);
        // solution
        float real_sum = factor * size;
        // computed results
        float calc_sum = compute_sum(thrust_data);
        // PRINT_HERE(std::string(std::string("calc : ") +
        // std::to_string(calc_sum) +
        //                       std::string(", ") +
        //                       std::string("real : ") +
        //                       std::to_string(real_sum)).c_str());

        // check if same
        ret += check(calc_sum);
    }

    return (ret < 2) ? 0 : 1;
}
//============================================================================//