1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
//
// MIT License
// Copyright (c) 2018 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// ---------------------------------------------------------------
//
// PTL CUDA implementation
//
//
//============================================================================//
#include "sum.hh"
#define PRINT_HERE(extra) \
printf("> %s@'%s':%i %s\n", __FUNCTION__, __FILE__, __LINE__, extra)
//============================================================================//
// gridDim: This variable contains the dimensions of the grid.
// blockIdx: This variable contains the block index within the grid.
// blockDim: This variable and contains the dimensions of the block.
// threadIdx: This variable contains the thread index within the block.
//============================================================================//
//
// efficient reduction
// https://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
//
//============================================================================//
template <unsigned int blockSize, typename _Tp>
__device__ void
warpReduce(volatile _Tp* _data, unsigned int tid)
{
if(blockSize >= 64)
_data[tid] += _data[tid + 32];
if(blockSize >= 32)
_data[tid] += _data[tid + 16];
if(blockSize >= 16)
_data[tid] += _data[tid + 8];
if(blockSize >= 8)
_data[tid] += _data[tid + 4];
if(blockSize >= 4)
_data[tid] += _data[tid + 2];
if(blockSize >= 2)
_data[tid] += _data[tid + 1];
}
//----------------------------------------------------------------------------//
template <unsigned int blockSize, typename _Tp>
__global__ void
reduce(_Tp* _idata, _Tp* _odata, unsigned int n)
{
extern __shared__ _Tp _data[];
unsigned int tid = threadIdx.x;
unsigned int i = (2 * blockSize) * blockIdx.x + tid;
unsigned int gridSize = 2 * blockSize * gridDim.x;
_data[tid] = 0;
while(i < n)
{
_data[tid] += _idata[i] + _idata[i + blockSize];
i += gridSize;
}
__syncthreads();
if(blockSize >= 512)
{
if(tid < 256)
{
_data[tid] += _data[tid + 256];
}
__syncthreads();
}
if(blockSize >= 256)
{
if(tid < 128)
{
_data[tid] += _data[tid + 128];
}
__syncthreads();
}
if(blockSize >= 128)
{
if(tid < 64)
{
_data[tid] += _data[tid + 64];
}
__syncthreads();
}
if(tid < 32)
warpReduce<blockSize, _Tp>(_data, tid);
if(tid == 0)
_odata[blockIdx.x] = _data[0];
}
//----------------------------------------------------------------------------//
template <typename _Tp>
void
compute_reduction(int threads, _Tp* _idata, _Tp* _odata, int dimGrid, int dimBlock,
int smemSize, cudaStream_t stream)
{
cudaStreamSynchronize(stream);
CUDA_CHECK_LAST_ERROR();
switch(threads)
{
case 512:
reduce<512, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 256:
reduce<256, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 128:
reduce<128, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 64:
reduce<64, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 32:
reduce<32, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 16:
reduce<16, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 8:
reduce<8, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 4:
reduce<4, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 2:
reduce<2, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
case 1:
reduce<1, _Tp>
<<<dimGrid, dimBlock, smemSize, stream>>>(_idata, _odata, threads);
break;
}
CUDA_CHECK_LAST_ERROR();
cudaStreamSynchronize(stream);
CUDA_CHECK_LAST_ERROR();
}
//============================================================================//
template <typename _Tp>
void
call_compute_reduction(int64_t& _i, uint64_t& _offset, int nthreads, _Tp* _idata,
_Tp* _odata, int dimGrid, int dimBlock, int smemSize,
cudaStream_t stream)
{
// assumes nthreads < cuda_max_threads_per_block()
compute_reduction(nthreads, _idata + _offset, _odata + _offset, dimGrid, dimBlock,
smemSize, stream);
_i -= nthreads;
_offset += nthreads;
}
//============================================================================//
float
compute_sum_host(aligned_ptr<float>& data, cudaStream_t stream, bool with_thrust,
float* buffer)
{
float _sum;
if(with_thrust)
{
cudaStreamSynchronize(stream);
CUDA_CHECK_LAST_ERROR();
_sum = thrust::reduce(thrust::system::cuda::par.on(stream), data.ptr,
data.ptr + data.size, 0.0f, thrust::plus<float>());
CUDA_CHECK_LAST_ERROR();
cudaStreamSynchronize(stream);
CUDA_CHECK_LAST_ERROR();
}
else
{
// PRINT_HERE("");
// PRINT_HERE(std::string(std::string("size : ") +
// std::to_string(data.size)).c_str());
// PRINT_HERE(std::string(std::string("padding : ") +
// std::to_string(data.padding)).c_str());
// PRINT_HERE(std::string(std::string("storage : ") +
// std::to_string(data.storage_size)).c_str());
if(data.size < 1 || data.storage_size < 1)
return 0.0f;
int64_t remain = data.size;
uint64_t offset = 0;
int smemSize = cuda_shared_memory_per_block();
int dimGrid = cuda_multi_processor_count();
int dimBlock = cuda_max_threads_per_block();
float* _idata = data.ptr;
float* _odata = buffer;
async_gpu_memset<float>(_odata, data.storage_size, stream);
CUDA_CHECK_LAST_ERROR();
while(remain > 0)
{
for(const auto& itr : { 512, 256, 128, 64, 32, 16, 8, 4, 2, 1 })
{
if(remain >= itr)
{
call_compute_reduction(remain, offset, itr, _idata, _odata, dimGrid,
dimBlock, smemSize, stream);
break;
}
}
}
cudaMemcpyAsync(&_sum, _odata, 1 * sizeof(float), cudaMemcpyDeviceToHost, stream);
CUDA_CHECK_LAST_ERROR();
cudaDeviceSynchronize();
CUDA_CHECK_LAST_ERROR();
}
return _sum;
}
//============================================================================//
|