1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
//
// MIT License
// Copyright (c) 2020 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//
// ---------------------------------------------------------------
// Tasking class header file
//
/// Class Description:
///
/// This class provides a mechanism to create a mutex and locks/unlocks it.
/// Can be used by applications to implement in a portable way a mutexing logic.
/// Usage Example:
///
/// #include "Threading.hh"
/// #include "AutoLock.hh"
///
/// /// defined somewhere -- static so all threads see the same mutex
/// static Mutex aMutex;
///
/// /// somewhere else:
/// /// The AutoLock instance will automatically unlock the mutex when it
/// /// goes out of scope. One typically defines the scope within { } if
/// /// there is thread-safe code following the auto-lock
///
/// {
/// AutoLock l(&aMutex);
/// ProtectedCode();
/// }
///
/// UnprotectedCode();
///
/// /// When ProtectedCode() is calling a function that also tries to lock
/// /// a normal AutoLock + Mutex will "deadlock". In other words, the
/// /// the mutex in the ProtectedCode() function will wait forever to
/// /// acquire the lock that is being held by the function that called
/// /// ProtectedCode(). In this situation, use a RecursiveAutoLock +
/// /// RecursiveMutex, e.g.
///
/// /// defined somewhere -- static so all threads see the same mutex
/// static RecursiveMutex aRecursiveMutex;
///
/// /// this function is sometimes called directly and sometimes called
/// /// from SomeFunction_B(), which also locks the mutex
/// void SomeFunction_A()
/// {
/// /// when called from SomeFunction_B(), a Mutex + AutoLock will
/// /// deadlock
/// RecursiveAutoLock l(&aRecursiveMutex);
/// /// do something
/// }
///
/// void SomeFunction_B()
/// {
///
/// {
/// RecursiveAutoLock l(&aRecursiveMutex);
/// SomeFunction_A();
/// }
///
/// UnprotectedCode();
/// }
///
///
/// ---------------------------------------------------------------
/// Author: Andrea Dotti (15 Feb 2013): First Implementation
///
/// Update: Jonathan Madsen (9 Feb 2018): Replaced custom implementation
/// with inheritance from C++11 unique_lock, which inherits the
/// following member functions:
///
/// - unique_lock(unique_lock&& other) noexcept;
/// - explicit unique_lock(mutex_type& m);
/// - unique_lock(mutex_type& m, std::defer_lock_t t) noexcept;
/// - unique_lock(mutex_type& m, std::try_to_lock_t t);
/// - unique_lock(mutex_type& m, std::adopt_lock_t t);
///
/// - template <typename Rep, typename Period>
/// unique_lock(mutex_type& m,
/// const std::chrono::duration<Rep,Period>&
/// timeout_duration);
///
/// - template<typename Clock, typename Duration>
/// unique_lock(mutex_type& m,
/// const std::chrono::time_point<Clock,Duration>& timeout_time);
///
/// - void lock();
/// - void unlock();
/// - bool try_lock();
///
/// - template <typename Rep, typename Period>
/// bool try_lock_for(const std::chrono::duration<Rep,Period>&);
///
/// - template <typename Rep, typename Period>
/// bool try_lock_until(const std::chrono::time_point<Clock,Duration>&);
///
/// - void swap(unique_lock& other) noexcept;
/// - mutex_type* release() noexcept;
/// - mutex_type* mutex() const noexcept;
/// - bool owns_lock() const noexcept;
/// - explicit operator bool() const noexcept;
/// - unique_lock& operator=(unique_lock&& other);
///
/// ---------------------------------------------------------------
///
/// Note that AutoLock is defined also for a sequential Tasking build but below
/// regarding implementation (also found in Threading.hh)
///
///
/// NOTE ON Tasking SERIAL BUILDS AND MUTEX/UNIQUE_LOCK
/// ==================================================
///
/// Mutex and RecursiveMutex are always C++11 std::mutex types
/// however, in serial mode, using MUTEXLOCK and MUTEXUNLOCK on these
/// types has no effect -- i.e. the mutexes are not actually locked or unlocked
///
/// Additionally, when a Mutex or RecursiveMutex is used with AutoLock
/// and RecursiveAutoLock, respectively, these classes also suppressing
/// the locking and unlocking of the mutex. Regardless of the build type,
/// AutoLock and RecursiveAutoLock inherit from std::unique_lock<std::mutex>
/// and std::unique_lock<std::recursive_mutex>, respectively. This means
/// that in situations (such as is needed by the analysis category), the
/// AutoLock and RecursiveAutoLock can be passed to functions requesting
/// a std::unique_lock. Within these functions, since std::unique_lock
/// member functions are not virtual, they will not retain the dummy locking
/// and unlocking behavior
/// --> An example of this behavior can be found below
///
/// Jonathan R. Madsen (February 21, 2018)
///
/***
//======================================================================================//
typedef std::unique_lock<std::mutex> unique_lock_t;
// functions for casting AutoLock to std::unique_lock to demonstrate
// that AutoLock is NOT polymorphic
void as_unique_lock(unique_lock_t* lock) { lock->lock(); }
void as_unique_unlock(unique_lock_t* lock) { lock->unlock(); }
//======================================================================================//
void run(const uint64_t& n)
{
// sync the threads a bit
std::this_thread::sleep_for(std::chrono::milliseconds(10));
// get two mutexes to avoid deadlock when l32 actually locks
AutoLock l32(TypeMutex<int32_t>(), std::defer_lock);
AutoLock l64(TypeMutex<int64_t>(), std::defer_lock);
// when serial: will not execute std::unique_lock::lock() because
// it overrides the member function
l32.lock();
// regardless of serial or MT: will execute std::unique_lock::lock()
// because std::unique_lock::lock() is not virtual
as_unique_lock(&l64);
std::cout << "Running iteration " << n << "..." << std::endl;
}
//======================================================================================//
// execute some work
template <typename thread_type = std::thread>
void exec(uint64_t n)
{
// get two mutexes to avoid deadlock when l32 actually locks
AutoLock l32(TypeMutex<int32_t>(), std::defer_lock);
AutoLock l64(TypeMutex<int64_t>(), std::defer_lock);
std::vector<thread_type*> threads(n, nullptr);
for(uint64_t i = 0; i < n; ++i)
{
threads[i] = new thread_type();
*(threads[i]) = std::move(thread_type(run, i));
}
// when serial: will not execute std::unique_lock::lock() because
// it overrides the member function
l32.lock();
// regardless of serial or MT: will execute std::unique_lock::lock()
// because std::unique_lock::lock() is not virtual
as_unique_lock(&l64);
std::cout << "Joining..." << std::endl;
// when serial: will not execute std::unique_lock::unlock() because
// it overrides the member function
l32.unlock();
// regardless of serial or MT: will execute std::unique_lock::unlock()
// because std::unique_lock::unlock() is not virtual
as_unique_unlock(&l64);
// NOTE ABOUT UNLOCKS:
// in MT, commenting out either
// l32.unlock();
// or
// as_unique_unlock(&l64);
// creates a deadlock; in serial, commenting out
// as_unique_unlock(&l64);
// creates a deadlock but commenting out
// l32.unlock();
// does not
// clean up and join
for(uint64_t i = 0; i < n; ++i)
{
threads[i]->join();
delete threads[i];
}
threads.clear();
}
//======================================================================================//
int main()
{
print_threading();
uint64_t n = 30;
std::cout << "\nRunning with real threads...\n" << std::endl;
exec<std::thread>(n);
std::cout << "\nRunning with fake threads...\n" << std::endl;
exec<DummyThread>(n);
}
***/
#pragma once
#include "PTL/Threading.hh"
#include <chrono>
#include <iostream>
#include <mutex>
#include <system_error>
namespace PTL
{
// Note: Note that TemplateAutoLock by itself is not thread-safe and
// cannot be shared among threads due to the locked switch
//
template <typename MutexT>
class TemplateAutoLock : public std::unique_lock<MutexT>
{
public:
//------------------------------------------------------------------------//
// Some useful typedefs
//------------------------------------------------------------------------//
typedef std::unique_lock<MutexT> unique_lock_t;
typedef TemplateAutoLock<MutexT> this_type;
typedef typename unique_lock_t::mutex_type mutex_type;
public:
//------------------------------------------------------------------------//
// STL-consistent reference form constructors
//------------------------------------------------------------------------//
// reference form is consistent with STL lock_guard types
// Locks the associated mutex by calling m.lock(). The behavior is
// undefined if the current thread already owns the mutex except when
// the mutex is recursive
explicit TemplateAutoLock(mutex_type& _mutex)
: unique_lock_t(_mutex, std::defer_lock)
{
// call termination-safe locking. if serial, this call has no effect
_lock_deferred();
}
// Tries to lock the associated mutex by calling
// m.try_lock_for(_timeout_duration). Blocks until specified
// _timeout_duration has elapsed or the lock is acquired, whichever comes
// first. May block for longer than _timeout_duration.
template <typename Rep, typename Period>
TemplateAutoLock(mutex_type& _mutex,
const std::chrono::duration<Rep, Period>& _timeout_duration)
: unique_lock_t(_mutex, std::defer_lock)
{
// call termination-safe locking. if serial, this call has no effect
_lock_deferred(_timeout_duration);
}
// Tries to lock the associated mutex by calling
// m.try_lock_until(_timeout_time). Blocks until specified _timeout_time has
// been reached or the lock is acquired, whichever comes first. May block
// for longer than until _timeout_time has been reached.
template <typename Clock, typename Duration>
TemplateAutoLock(mutex_type& _mutex,
const std::chrono::time_point<Clock, Duration>& _timeout_time)
: unique_lock_t(_mutex, std::defer_lock)
{
// call termination-safe locking. if serial, this call has no effect
_lock_deferred(_timeout_time);
}
// Does not lock the associated mutex.
TemplateAutoLock(mutex_type& _mutex, std::defer_lock_t _lock) noexcept
: unique_lock_t(_mutex, _lock)
{}
// Tries to lock the associated mutex without blocking by calling
// m.try_lock(). The behavior is undefined if the current thread already
// owns the mutex except when the mutex is recursive.
TemplateAutoLock(mutex_type& _mutex, std::try_to_lock_t _lock)
: unique_lock_t(_mutex, _lock)
{}
// Assumes the calling thread already owns m
TemplateAutoLock(mutex_type& _mutex, std::adopt_lock_t _lock)
: unique_lock_t(_mutex, _lock)
{}
public:
//------------------------------------------------------------------------//
// Backwards compatibility versions (constructor with pointer to mutex)
//------------------------------------------------------------------------//
TemplateAutoLock(mutex_type* _mutex)
: unique_lock_t(*_mutex, std::defer_lock)
{
// call termination-safe locking. if serial, this call has no effect
_lock_deferred();
}
TemplateAutoLock(mutex_type* _mutex, std::defer_lock_t _lock) noexcept
: unique_lock_t(*_mutex, _lock)
{}
TemplateAutoLock(mutex_type* _mutex, std::try_to_lock_t _lock)
: unique_lock_t(*_mutex, _lock)
{}
TemplateAutoLock(mutex_type* _mutex, std::adopt_lock_t _lock)
: unique_lock_t(*_mutex, _lock)
{}
private:
// helpful macros
#define _is_stand_mutex(Tp) (std::is_same<Tp, Mutex>::value)
#define _is_recur_mutex(Tp) (std::is_same<Tp, RecursiveMutex>::value)
#define _is_other_mutex(Tp) (!_is_stand_mutex(Tp) && !_is_recur_mutex(Tp))
template <typename Tp = MutexT,
typename std::enable_if<_is_stand_mutex(Tp), int>::type = 0>
std::string GetTypeString()
{
return "AutoLock<Mutex>";
}
template <typename Tp = MutexT,
typename std::enable_if<_is_recur_mutex(Tp), int>::type = 0>
std::string GetTypeString()
{
return "AutoLock<RecursiveMutex>";
}
template <typename Tp = MutexT,
typename std::enable_if<_is_other_mutex(Tp), int>::type = 0>
std::string GetTypeString()
{
return "AutoLock<UNKNOWN_MUTEX>";
}
// pollution is bad
#undef _is_stand_mutex
#undef _is_recur_mutex
#undef _is_other_mutex
// used in _lock_deferred chrono variants to avoid ununsed-variable warning
template <typename Tp>
void suppress_unused_variable(const Tp&)
{}
//========================================================================//
// NOTE on _lock_deferred(...) variants:
// a system_error in lock means that the mutex is unavailable
// we want to throw the error that comes from locking an unavailable
// mutex so that we know there is a memory leak
// if the mutex is valid, this will hold until the other thread
// finishes
// sometimes certain destructors use locks, this isn't an issue unless
// the object is leaked. When this occurs, the application finalization
// (i.e. the real or implied "return 0" part of main) will call destructors
// on Tasking object after some static mutex variables are deleted, leading
// to the error code (typically on Clang compilers):
// libc++abi.dylib: terminating with uncaught exception of type
// std::__1::system_error: mutex lock failed: Invalid argument
// this function protects against this failure until such a time that
// these issues have been resolved
//========================================================================//
// standard locking
inline void _lock_deferred()
{
try
{
this->unique_lock_t::lock();
} catch(std::system_error& e)
{
PrintLockErrorMessage(e);
}
}
//========================================================================//
// Tries to lock the associated mutex by calling
// m.try_lock_for(_timeout_duration). Blocks until specified
// _timeout_duration has elapsed or the lock is acquired, whichever comes
// first. May block for longer than _timeout_duration.
template <typename Rep, typename Period>
void _lock_deferred(const std::chrono::duration<Rep, Period>& _timeout_duration)
{
try
{
this->unique_lock_t::try_lock_for(_timeout_duration);
} catch(std::system_error& e)
{
PrintLockErrorMessage(e);
}
}
//========================================================================//
// Tries to lock the associated mutex by calling
// m.try_lock_until(_timeout_time). Blocks until specified _timeout_time has
// been reached or the lock is acquired, whichever comes first. May block
// for longer than until _timeout_time has been reached.
template <typename Clock, typename Duration>
void _lock_deferred(const std::chrono::time_point<Clock, Duration>& _timeout_time)
{
try
{
this->unique_lock_t::try_lock_until(_timeout_time);
} catch(std::system_error& e)
{
PrintLockErrorMessage(e);
}
}
//========================================================================//
// the message for what mutex lock fails due to deleted static mutex
// at termination
void PrintLockErrorMessage(std::system_error& e)
{
// use std::cout/std::endl to avoid include dependencies
using std::cout;
using std::endl;
// the error that comes from locking an unavailable mutex
#if defined(VERBOSE)
cout << "Non-critical error: mutex lock failure in "
<< GetTypeString<mutex_type>() << ". "
<< "If the app is terminating, Tasking failed to "
<< "delete an allocated resource and a Tasking destructor is "
<< "being called after the statics were destroyed. \n\t--> "
<< "Exception: [code: " << e.code() << "] caught: " << e.what() << std::endl;
#else
suppress_unused_variable(e);
#endif
}
};
// -------------------------------------------------------------------------- //
//
// Use the non-template types below:
// - AutoLock with Mutex
// - RecursiveAutoLock with RecursiveMutex
//
// -------------------------------------------------------------------------- //
typedef TemplateAutoLock<Mutex> AutoLock;
typedef TemplateAutoLock<RecursiveMutex> RecursiveAutoLock;
// provide abbriviated type if another mutex type is desired to be used
// aside from above
template <typename Tp>
using TAutoLock = TemplateAutoLock<Tp>;
} // namespace PTL
|