1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
//
// MIT License
// Copyright (c) 2020 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// ---------------------------------------------------------------
// Tasking class header file
//
// Class Description:
//
// This file creates a class for an efficient thread-pool that
// accepts work in the form of tasks.
//
// ---------------------------------------------------------------
// Author: Jonathan Madsen (Feb 13th 2018)
// ---------------------------------------------------------------
#pragma once
#include "PTL/AutoLock.hh"
#include "PTL/ThreadData.hh"
#include "PTL/Threading.hh"
#include "PTL/Types.hh"
#include "PTL/VTask.hh"
#include "PTL/VUserTaskQueue.hh"
#if defined(PTL_USE_TBB)
# if !defined(TBB_SUPPRESS_DEPRECATED_MESSAGES)
# define TBB_SUPPRESS_DEPRECATED_MESSAGES 1
# endif
# if !defined(TBB_PREVIEW_GLOBAL_CONTROL)
# define TBB_PREVIEW_GLOBAL_CONTROL 1
# endif
# include <tbb/global_control.h>
# include <tbb/tbb.h>
#endif
// C
#include <cstdint>
#include <cstdlib>
#include <cstring>
// C++
#include <atomic>
#include <deque>
#include <iostream>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <stack>
#include <thread>
#include <unordered_map>
#include <vector>
namespace PTL
{
class ThreadPool
{
public:
template <typename KeyT, typename MappedT, typename HashT = KeyT>
using uomap = std::unordered_map<KeyT, MappedT, std::hash<HashT>>;
// pod-types
using size_type = size_t;
using task_count_type = std::shared_ptr<std::atomic_uintmax_t>;
using atomic_int_type = std::shared_ptr<std::atomic_uintmax_t>;
using pool_state_type = std::shared_ptr<std::atomic_short>;
using atomic_bool_type = std::shared_ptr<std::atomic_bool>;
// objects
using task_type = VTask;
using lock_t = std::shared_ptr<Mutex>;
using condition_t = std::shared_ptr<Condition>;
using task_pointer = std::shared_ptr<task_type>;
using task_queue_t = VUserTaskQueue;
// containers
using thread_list_t = std::deque<ThreadId>;
using bool_list_t = std::vector<bool>;
using thread_id_map_t = std::map<ThreadId, uintmax_t>;
using thread_index_map_t = std::map<uintmax_t, ThreadId>;
using thread_vec_t = std::vector<Thread>;
using thread_data_t = std::vector<std::shared_ptr<ThreadData>>;
// functions
using initialize_func_t = std::function<void()>;
using finalize_func_t = std::function<void()>;
using affinity_func_t = std::function<intmax_t(intmax_t)>;
static affinity_func_t& affinity_functor()
{
static affinity_func_t _v = [](intmax_t) {
static std::atomic<intmax_t> assigned;
intmax_t _assign = assigned++;
return _assign % Thread::hardware_concurrency();
};
return _v;
}
static initialize_func_t& initialization_functor()
{
static initialize_func_t _v = []() {};
return _v;
}
static finalize_func_t& finalization_functor()
{
static finalize_func_t _v = []() {};
return _v;
}
struct Config
{
PTL_DEFAULT_OBJECT(Config)
Config(bool, bool, bool, int, int, size_type, VUserTaskQueue*, affinity_func_t,
initialize_func_t, finalize_func_t);
bool init = true;
bool use_tbb = f_use_tbb();
bool use_affinity = f_use_cpu_affinity();
int verbose = f_verbose();
int priority = f_thread_priority();
size_type pool_size = f_default_pool_size();
VUserTaskQueue* task_queue = nullptr;
affinity_func_t set_affinity = affinity_functor();
initialize_func_t initializer = initialization_functor();
finalize_func_t finalizer = finalization_functor();
};
public:
// Constructor and Destructors
explicit ThreadPool(const Config&);
ThreadPool(const size_type& pool_size, VUserTaskQueue* task_queue = nullptr,
bool _use_affinity = f_use_cpu_affinity(),
affinity_func_t = affinity_functor(),
initialize_func_t = initialization_functor(),
finalize_func_t = finalization_functor());
ThreadPool(const size_type& pool_size, initialize_func_t, finalize_func_t,
bool _use_affinity = f_use_cpu_affinity(),
affinity_func_t = affinity_functor(),
VUserTaskQueue* task_queue = nullptr);
virtual ~ThreadPool();
ThreadPool(const ThreadPool&) = delete;
ThreadPool(ThreadPool&&) = default;
ThreadPool& operator=(const ThreadPool&) = delete;
ThreadPool& operator=(ThreadPool&&) = default;
public:
// Public functions
size_type initialize_threadpool(size_type); // start the threads
size_type destroy_threadpool(); // destroy the threads
size_type stop_thread();
template <typename FuncT>
void execute_on_all_threads(FuncT&& _func);
template <typename FuncT>
void execute_on_specific_threads(const std::set<std::thread::id>& _tid,
FuncT&& _func);
task_queue_t* get_queue() const { return m_task_queue; }
task_queue_t*& get_valid_queue(task_queue_t*&) const;
bool is_tbb_threadpool() const { return m_tbb_tp; }
public:
// Public functions related to TBB
static bool using_tbb();
// enable using TBB if available - semi-deprecated
static void set_use_tbb(bool _v);
/// set the default use of tbb
static void set_default_use_tbb(bool _v) { set_use_tbb(_v); }
/// set the default use of cpu affinity
static void set_default_use_cpu_affinity(bool _v);
/// set the default scheduling priority of threads in thread-pool
static void set_default_scheduling_priority(int _v) { f_thread_priority() = _v; }
/// set the default verbosity
static void set_default_verbose(int _v) { f_verbose() = _v; }
/// set the default pool size
static void set_default_size(size_type _v) { f_default_pool_size() = _v; }
/// get the default use of tbb
static bool get_default_use_tbb() { return f_use_tbb(); }
/// get the default use of cpu affinity
static bool get_default_use_cpu_affinity() { return f_use_cpu_affinity(); }
/// get the default scheduling priority of threads in thread-pool
static int get_default_scheduling_priority() { return f_thread_priority(); }
/// get the default verbosity
static int get_default_verbose() { return f_verbose(); }
/// get the default pool size
static size_type get_default_size() { return f_default_pool_size(); }
public:
// add tasks for threads to process
size_type add_task(task_pointer&& task, int bin = -1);
// size_type add_thread_task(ThreadId id, task_pointer&& task);
// add a generic container with iterator
template <typename ListT>
size_type add_tasks(ListT&);
Thread* get_thread(size_type _n) const;
Thread* get_thread(std::thread::id id) const;
// only relevant when compiled with PTL_USE_TBB
static tbb_global_control_t*& tbb_global_control();
void set_initialization(initialize_func_t f) { m_init_func = std::move(f); }
void set_finalization(finalize_func_t f) { m_fini_func = std::move(f); }
void reset_initialization()
{
m_init_func = []() {};
}
void reset_finalization()
{
m_fini_func = []() {};
}
public:
// get the pool state
const pool_state_type& state() const { return m_pool_state; }
// see how many main task threads there are
size_type size() const { return m_pool_size; }
// set the thread pool size
void resize(size_type _n);
// affinity assigns threads to cores, assignment at constructor
bool using_affinity() const { return m_use_affinity; }
bool is_alive() { return m_alive_flag->load(); }
void notify();
void notify_all();
void notify(size_type);
bool is_initialized() const;
int get_active_threads_count() const
{
return (m_thread_awake) ? m_thread_awake->load() : 0;
}
void set_affinity(affinity_func_t f) { m_affinity_func = std::move(f); }
void set_affinity(intmax_t i, Thread&) const;
void set_priority(int _prio, Thread&) const;
void set_verbose(int n) { m_verbose = n; }
int get_verbose() const { return m_verbose; }
bool is_main() const { return ThisThread::get_id() == m_main_tid; }
tbb_task_arena_t* get_task_arena();
public:
// read FORCE_NUM_THREADS environment variable
static const thread_id_map_t& get_thread_ids();
static uintmax_t get_thread_id(ThreadId);
static uintmax_t get_this_thread_id();
static uintmax_t add_thread_id(ThreadId = ThisThread::get_id());
protected:
void execute_thread(VUserTaskQueue*); // function thread sits in
int insert(task_pointer&&, int = -1);
int run_on_this(task_pointer&&);
protected:
// called in THREAD INIT
static void start_thread(ThreadPool*, thread_data_t*, intmax_t = -1);
void record_entry();
void record_exit();
private:
// Private variables
// random
bool m_use_affinity = false;
bool m_tbb_tp = false;
bool m_delete_task_queue = false;
int m_verbose = f_verbose();
int m_priority = f_thread_priority();
size_type m_pool_size = 0;
ThreadId m_main_tid = ThisThread::get_id();
atomic_bool_type m_alive_flag = std::make_shared<std::atomic_bool>(false);
pool_state_type m_pool_state = std::make_shared<std::atomic_short>(0);
atomic_int_type m_thread_awake = std::make_shared<std::atomic_uintmax_t>();
atomic_int_type m_thread_active = std::make_shared<std::atomic_uintmax_t>();
// locks
lock_t m_task_lock = std::make_shared<Mutex>();
// conditions
condition_t m_task_cond = std::make_shared<Condition>();
// containers
bool_list_t m_is_joined = {}; // join list
bool_list_t m_is_stopped = {}; // lets thread know to stop
thread_list_t m_main_threads = {}; // storage for active threads
thread_list_t m_stop_threads = {}; // storage for stopped threads
thread_vec_t m_threads = {};
thread_data_t m_thread_data = {};
// task queue
task_queue_t* m_task_queue = nullptr;
tbb_task_arena_t* m_tbb_task_arena = nullptr;
tbb_task_group_t* m_tbb_task_group = nullptr;
// functions
initialize_func_t m_init_func = initialization_functor();
finalize_func_t m_fini_func = finalization_functor();
affinity_func_t m_affinity_func = affinity_functor();
private:
static bool& f_use_tbb();
static bool& f_use_cpu_affinity();
static int& f_thread_priority();
static int& f_verbose();
static size_type& f_default_pool_size();
static thread_id_map_t& f_thread_ids();
};
//--------------------------------------------------------------------------------------//
inline void
ThreadPool::notify()
{
// wake up one thread that is waiting for a task to be available
if(m_thread_awake && m_thread_awake->load() < m_pool_size)
{
AutoLock l(*m_task_lock);
m_task_cond->notify_one();
}
}
//--------------------------------------------------------------------------------------//
inline void
ThreadPool::notify_all()
{
// wake all threads
AutoLock l(*m_task_lock);
m_task_cond->notify_all();
}
//--------------------------------------------------------------------------------------//
inline void
ThreadPool::notify(size_type ntasks)
{
if(ntasks == 0)
return;
// wake up as many threads that tasks just added
if(m_thread_awake && m_thread_awake->load() < m_pool_size)
{
AutoLock l(*m_task_lock);
if(ntasks < this->size())
{
for(size_type i = 0; i < ntasks; ++i)
m_task_cond->notify_one();
}
else
{
m_task_cond->notify_all();
}
}
}
//--------------------------------------------------------------------------------------//
// local function for getting the tbb task scheduler
inline tbb_global_control_t*&
ThreadPool::tbb_global_control()
{
static thread_local tbb_global_control_t* _instance = nullptr;
return _instance;
}
//--------------------------------------------------------------------------------------//
// task arena
inline tbb_task_arena_t*
ThreadPool::get_task_arena()
{
#if defined(PTL_USE_TBB)
// create a task arena
if(!m_tbb_task_arena)
{
auto _sz = (tbb_global_control())
? tbb_global_control()->active_value(
tbb::global_control::max_allowed_parallelism)
: size();
m_tbb_task_arena = new tbb_task_arena_t(::tbb::task_arena::attach{});
m_tbb_task_arena->initialize(_sz, 1);
}
#else
if(!m_tbb_task_arena)
m_tbb_task_arena = new tbb_task_arena_t{};
#endif
return m_tbb_task_arena;
}
//--------------------------------------------------------------------------------------//
inline void
ThreadPool::resize(size_type _n)
{
initialize_threadpool(_n);
if(m_task_queue)
m_task_queue->resize(static_cast<intmax_t>(_n));
}
//--------------------------------------------------------------------------------------//
inline int
ThreadPool::run_on_this(task_pointer&& _task)
{
auto&& _func = [_task]() { (*_task)(); };
if(m_tbb_tp && m_tbb_task_group)
{
auto* _arena = get_task_arena();
_arena->execute([this, _func]() { this->m_tbb_task_group->run(_func); });
}
else
{
_func();
}
// return the number of tasks added to task-list
return 0;
}
//--------------------------------------------------------------------------------------//
inline int
ThreadPool::insert(task_pointer&& task, int bin)
{
static thread_local ThreadData* _data = ThreadData::GetInstance();
// pass the task to the queue
auto ibin = get_valid_queue(m_task_queue)->InsertTask(std::move(task), _data, bin);
notify();
return ibin;
}
//--------------------------------------------------------------------------------------//
inline ThreadPool::size_type
ThreadPool::add_task(task_pointer&& task, int bin)
{
// if not native (i.e. TBB) or we haven't built thread-pool, just execute
if(m_tbb_tp || !task->is_native_task() || !m_alive_flag->load())
return static_cast<size_type>(run_on_this(std::move(task)));
return static_cast<size_type>(insert(std::move(task), bin));
}
//--------------------------------------------------------------------------------------//
template <typename ListT>
inline ThreadPool::size_type
ThreadPool::add_tasks(ListT& c)
{
if(!m_alive_flag) // if we haven't built thread-pool, just execute
{
for(auto& itr : c)
run(itr);
c.clear();
return 0;
}
// TODO: put a limit on how many tasks can be added at most
auto c_size = c.size();
for(auto& itr : c)
{
if(!itr->is_native_task())
--c_size;
else
{
//++(m_task_queue);
get_valid_queue(m_task_queue)->InsertTask(itr);
}
}
c.clear();
// notify sleeping threads
notify(c_size);
return c_size;
}
//--------------------------------------------------------------------------------------//
template <typename FuncT>
inline void
ThreadPool::execute_on_all_threads(FuncT&& _func)
{
if(m_tbb_tp && m_tbb_task_group)
{
#if defined(PTL_USE_TBB)
// TBB lazily activates threads to process tasks and the main thread
// participates in processing the tasks so getting a specific
// function to execute only on the worker threads requires some trickery
//
std::set<std::thread::id> _first{};
Mutex _mutex{};
// init function which executes function and returns 1 only once
auto _init = [&]() {
int _once = 0;
_mutex.lock();
if(_first.find(std::this_thread::get_id()) == _first.end())
{
// we need to reset this thread-local static for multiple invocations
// of the same template instantiation
_once = 1;
_first.insert(std::this_thread::get_id());
}
_mutex.unlock();
if(_once != 0)
{
_func();
return 1;
}
return 0;
};
// this will collect the number of threads which have
// executed the _init function above
std::atomic<size_t> _total_init{ 0 };
// max parallelism by TBB
size_t _maxp = tbb_global_control()->active_value(
tbb::global_control::max_allowed_parallelism);
// create a task arean
auto* _arena = get_task_arena();
// size of the thread-pool
size_t _sz = size();
// number of cores
size_t _ncore = Threading::GetNumberOfCores();
// maximum depth for recursion
size_t _dmax = std::max<size_t>(_ncore, 8);
// how many threads we need to initialize
size_t _num = std::min(_maxp, std::min(_sz, _ncore));
// this is the task passed to the task-group
std::function<void()> _init_task;
_init_task = [&]() {
add_thread_id();
static thread_local size_type _depth = 0;
int _ret = 0;
// don't let the main thread execute the function
if(!is_main())
{
// execute the function
_ret = _init();
// add the result
_total_init += _ret;
}
// if the function did not return anything, recursively execute
// two more tasks
++_depth;
if(_ret == 0 && _depth < _dmax && _total_init.load() < _num)
{
tbb::task_group tg{};
tg.run([&]() { _init_task(); });
tg.run([&]() { _init_task(); });
ThisThread::sleep_for(std::chrono::milliseconds{ 1 });
tg.wait();
}
--_depth;
};
// TBB won't oversubscribe so we need to limit by ncores - 1
size_t nitr = 0;
auto _fname = __FUNCTION__;
auto _write_info = [&]() {
std::cout << "[" << _fname << "]> Total initialized: " << _total_init
<< ", expected: " << _num << ", max-parallel: " << _maxp
<< ", size: " << _sz << ", ncore: " << _ncore << std::endl;
};
while(_total_init < _num)
{
auto _n = 2 * _num;
while(--_n > 0)
{
_arena->execute(
[&]() { m_tbb_task_group->run([&]() { _init_task(); }); });
}
_arena->execute([&]() { m_tbb_task_group->wait(); });
// don't loop infinitely but use a strict condition
if(nitr++ > 2 * (_num + 1) && (_total_init - 1) == _num)
{
_write_info();
break;
}
// at this point we need to exit
if(nitr > 4 * (_ncore + 1))
{
_write_info();
break;
}
}
if(get_verbose() > 3)
_write_info();
#endif
}
else if(get_queue())
{
get_queue()->ExecuteOnAllThreads(this, std::forward<FuncT>(_func));
}
}
//--------------------------------------------------------------------------------------//
template <typename FuncT>
inline void
ThreadPool::execute_on_specific_threads(const std::set<std::thread::id>& _tids,
FuncT&& _func)
{
if(m_tbb_tp && m_tbb_task_group)
{
#if defined(PTL_USE_TBB)
// TBB lazily activates threads to process tasks and the main thread
// participates in processing the tasks so getting a specific
// function to execute only on the worker threads requires some trickery
//
std::set<std::thread::id> _first{};
Mutex _mutex{};
// init function which executes function and returns 1 only once
auto _exec = [&]() {
int _once = 0;
_mutex.lock();
if(_first.find(std::this_thread::get_id()) == _first.end())
{
// we need to reset this thread-local static for multiple invocations
// of the same template instantiation
_once = 1;
_first.insert(std::this_thread::get_id());
}
_mutex.unlock();
if(_once != 0)
{
_func();
return 1;
}
return 0;
};
// this will collect the number of threads which have
// executed the _exec function above
std::atomic<size_t> _total_exec{ 0 };
// number of cores
size_t _ncore = Threading::GetNumberOfCores();
// maximum depth for recursion
size_t _dmax = std::max<size_t>(_ncore, 8);
// how many threads we need to initialize
size_t _num = _tids.size();
// create a task arena
auto* _arena = get_task_arena();
// this is the task passed to the task-group
std::function<void()> _exec_task;
_exec_task = [&]() {
add_thread_id();
static thread_local size_type _depth = 0;
int _ret = 0;
auto _this_tid = std::this_thread::get_id();
// don't let the main thread execute the function
if(_tids.count(_this_tid) > 0)
{
// execute the function
_ret = _exec();
// add the result
_total_exec += _ret;
}
// if the function did not return anything, recursively execute
// two more tasks
++_depth;
if(_ret == 0 && _depth < _dmax && _total_exec.load() < _num)
{
tbb::task_group tg{};
tg.run([&]() { _exec_task(); });
tg.run([&]() { _exec_task(); });
ThisThread::sleep_for(std::chrono::milliseconds{ 1 });
tg.wait();
}
--_depth;
};
// TBB won't oversubscribe so we need to limit by ncores - 1
size_t nitr = 0;
auto _fname = __FUNCTION__;
auto _write_info = [&]() {
std::cout << "[" << _fname << "]> Total executed: " << _total_exec
<< ", expected: " << _num << ", size: " << size() << std::endl;
};
while(_total_exec < _num)
{
auto _n = 2 * _num;
while(--_n > 0)
{
_arena->execute(
[&]() { m_tbb_task_group->run([&]() { _exec_task(); }); });
}
_arena->execute([&]() { m_tbb_task_group->wait(); });
// don't loop infinitely but use a strict condition
if(nitr++ > 2 * (_num + 1) && (_total_exec - 1) == _num)
{
_write_info();
break;
}
// at this point we need to exit
if(nitr > 8 * (_num + 1))
{
_write_info();
break;
}
}
if(get_verbose() > 3)
_write_info();
#endif
}
else if(get_queue())
{
get_queue()->ExecuteOnSpecificThreads(_tids, this, std::forward<FuncT>(_func));
}
}
//======================================================================================//
} // namespace PTL
|