1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
//
// MIT License
// Copyright (c) 2020 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED
// "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
// LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// ---------------------------------------------------------------
// Tasking class header file
//
// Class Description:
//
// This file defines types and macros used to expose Tasking threading model.
#pragma once
#include "PTL/Globals.hh"
#include "PTL/Types.hh"
#include <array>
#include <chrono>
#include <condition_variable>
#include <future>
#include <mutex>
#include <thread>
#include <vector>
namespace PTL
{
// Macro to put current thread to sleep
//
#define THREADSLEEP(tick) std::this_thread::sleep_for(std::chrono::seconds(tick))
// will be used in the future when migrating threading to task-based style
template <typename Tp>
using Future = std::future<Tp>;
template <typename Tp>
using SharedFuture = std::shared_future<Tp>;
template <typename Tp>
using Promise = std::promise<Tp>;
//
// NOTE ON Tasking SERIAL BUILDS AND MUTEX/UNIQUE_LOCK
// ==================================================
//
// Mutex and RecursiveMutex are always C++11 std::mutex types
// however, in serial mode, using MUTEXLOCK and MUTEXUNLOCK on these
// types has no effect -- i.e. the mutexes are not actually locked or unlocked
//
// Additionally, when a Mutex or RecursiveMutex is used with AutoLock
// and RecursiveAutoLock, respectively, these classes also suppressing
// the locking and unlocking of the mutex. Regardless of the build type,
// AutoLock and RecursiveAutoLock inherit from std::unique_lock<std::mutex>
// and std::unique_lock<std::recursive_mutex>, respectively. This means
// that in situations (such as is needed by the analysis category), the
// AutoLock and RecursiveAutoLock can be passed to functions requesting
// a std::unique_lock. Within these functions, since std::unique_lock
// member functions are not virtual, they will not retain the dummy locking
// and unlocking behavior
// --> An example of this behavior can be found in AutoLock.hh
//
// Jonathan R. Madsen (February 21, 2018)
//
// global mutex types
typedef std::mutex Mutex;
typedef std::recursive_mutex RecursiveMutex;
// mutex macros
#define MUTEX_INITIALIZER \
{}
#define MUTEXINIT(mutex) \
; \
;
#define MUTEXDESTROY(mutex) \
; \
;
// static functions: get_id(), sleep_for(...), sleep_until(...), yield(),
namespace ThisThread
{
using namespace std::this_thread;
}
// will be used in the future when migrating threading to task-based style
// and are currently used in unit tests
template <typename Tp>
using Promise = std::promise<Tp>;
template <typename Tp>
using Future = std::future<Tp>;
template <typename Tp>
using SharedFuture = std::shared_future<Tp>;
// Some useful types
typedef void* ThreadFunReturnType;
typedef void* ThreadFunArgType;
typedef int (*thread_lock)(Mutex*);
typedef int (*thread_unlock)(Mutex*);
// Helper function for getting a unique static mutex for a specific
// class or type
// Usage example:
// a template class "Cache<T>" that required a static
// mutex for specific to type T:
// AutoLock l(TypeMutex<Cache<T>>());
template <typename Tp, typename MutexTp = Mutex, size_t N = 4>
MutexTp&
TypeMutex(const unsigned int& _n = 0)
{
static std::array<MutexTp, N> _mutex_array{};
return _mutex_array[_n % N];
}
//======================================================================================//
// global thread types
using Thread = std::thread;
using NativeThread = std::thread::native_handle_type;
// std::thread::id does not cast to integer
using Pid_t = std::thread::id;
// Condition
using Condition = std::condition_variable;
// Thread identifier
using ThreadId = Thread::id;
//======================================================================================//
namespace Threading
{
enum
{
SEQUENTIAL_ID = -2,
MASTER_ID = -1,
WORKER_ID = 0,
GENERICTHREAD_ID = -1000
};
Pid_t
GetPidId();
unsigned
GetNumberOfPhysicalCpus();
unsigned
GetNumberOfCores();
int
GetThreadId();
void
SetThreadId(int aNewValue);
bool
SetPinAffinity(int idx);
bool
SetThreadPriority(int _v);
bool
SetPinAffinity(int idx, NativeThread& _t);
bool
SetThreadPriority(int _v, NativeThread& _t);
} // namespace Threading
} // namespace PTL
|