1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
|
// MIT License
// Copyright (c) 2020 Jonathan R. Madsen
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#pragma once
#include <cstring>
#include <functional>
#include <tuple>
#include <type_traits>
namespace PTL
{
template <typename Tp, typename Up>
struct SmallerThanT
{
static constexpr bool value = sizeof(Tp) < sizeof(Up);
};
//======================================================================================//
// CTValue == compile-time value
//
// useful to work with sequences of compile-time values, such as the bounds of a
// multidimensional array or indices into another typelist.
template <typename Tp, Tp Value>
struct CTValue
{
static constexpr Tp value = Value;
};
//======================================================================================//
template <std::size_t Height, typename Tp,
bool = std::is_class<Tp>::value && !std::is_final<Tp>::value>
class TupleElt;
//--------------------------------------------------------------------------------------//
// specialization that does not satisfy is_class<> and not is_final<>
//
template <std::size_t Height, typename Tp>
class TupleElt<Height, Tp, false>
{
Tp value;
public:
TupleElt() = default;
template <typename Up>
TupleElt(Up&& other)
: value(std::forward<Up>(other))
{}
Tp& get() { return value; }
Tp const& get() const { return value; }
};
//--------------------------------------------------------------------------------------//
// specialization that does satisfy is_class<> and not is_final<>
//
template <std::size_t Height, typename Tp>
class TupleElt<Height, Tp, true> : private Tp
{
public:
TupleElt() = default;
template <typename Up>
explicit TupleElt(Up&& other)
: Tp(std::forward<Up>(other))
{}
Tp& get() { return *this; }
const Tp& get() const { return *this; }
};
//======================================================================================//
template <unsigned H, typename T>
T&
get_height(TupleElt<H, T>& te)
{
return te.get();
}
//======================================================================================//
template <typename... Types>
class Tuple;
//--------------------------------------------------------------------------------------//
// recursive case:
template <typename Head, typename... Tail>
class Tuple<Head, Tail...>
: private TupleElt<sizeof...(Tail), Head>
, private Tuple<Tail...>
{
template <unsigned I, typename... Elements>
friend auto get(Tuple<Elements...>& t)
-> decltype(get_height<sizeof...(Elements) - I - 1>(t));
public:
Head& head() { return static_cast<HeadElt*>(this)->get(); }
const Head& head() const { return static_cast<HeadElt const*>(this)->get(); }
Tuple<Tail...>& tail() { return *this; }
const Tuple<Tail...>& tail() const { return *this; }
private:
using HeadElt = TupleElt<sizeof...(Tail), Head>;
};
//--------------------------------------------------------------------------------------//
// basis case:
template <>
class Tuple<>
{
// no storage required
};
//--------------------------------------------------------------------------------------//
template <unsigned I, typename... Elements>
auto
get(Tuple<Elements...>& t) -> decltype(get_height<sizeof...(Elements) - I - 1>(t))
{
return get_height<sizeof...(Elements) - I - 1>(t);
}
template <typename... Tp>
using TypeList = Tuple<Tp...>;
//======================================================================================//
template <typename List>
class IsEmpty
{
public:
static constexpr bool value = false;
};
template <>
class IsEmpty<Tuple<>>
{
public:
static constexpr bool value = true;
};
template <typename List, typename NewElement>
class PushBackT;
template <typename... Elements, typename NewElement>
class PushBackT<Tuple<Elements...>, NewElement>
{
public:
using Type = Tuple<Elements..., NewElement>;
};
template <typename List, typename NewElement>
using PushBack = typename PushBackT<List, NewElement>::Type;
template <typename List>
class PopFrontT;
template <typename Head, typename... Tail>
class PopFrontT<std::tuple<Head, Tail...>>
{
public:
using Type = std::tuple<Tail...>;
};
template <typename List>
using PopFront = typename PopFrontT<List>::Type;
template <typename List, typename Element>
class PushFrontT;
template <typename... Types, typename Element>
class PushFrontT<std::tuple<Types...>, Element>
{
public:
using Type = std::tuple<Element, Types...>;
};
template <typename List, typename NewElement>
using PushFront = typename PushFrontT<List, NewElement>::Type;
template <typename... Types, typename V>
PushFront<std::tuple<Types...>, V>
pushFront(std::tuple<Types...> const& tuple, V const& value)
{
return PushFront<std::tuple<Types...>, V>(value, tuple);
}
template <typename T, T... Values>
struct Valuelist
{};
template <typename... Types>
struct Front;
template <typename FrontT, typename... Types>
struct Front<FrontT, Types...>
{
using Type = FrontT;
};
template <typename... Types>
struct Back;
template <typename BackT, typename... Types>
struct Back<Types..., BackT>
{ // ERROR: pack expansion not at the end of
using Type = BackT; // template argument list
};
//======================================================================================//
template <typename List, template <typename T> class MetaFun,
bool Empty = IsEmpty<List>::value>
class TransformT;
// recursive case:
template <typename List, template <typename T> class MetaFun>
class TransformT<List, MetaFun, false>
: public PushFrontT<typename TransformT<PopFront<List>, MetaFun>::Type,
typename MetaFun<Front<List>>::Type>
{};
// basis case:
template <typename List, template <typename T> class MetaFun>
class TransformT<List, MetaFun, true>
{
public:
using Type = List;
};
template <typename List, template <typename T> class MetaFun>
using Transform = typename TransformT<List, MetaFun>::Type;
template <typename... Elements, template <typename T> class MetaFun>
class TransformT<Tuple<Elements...>, MetaFun, false>
{
public:
using Type = Tuple<typename MetaFun<Elements>::Type...>;
};
template <size_t N>
struct ForwardTupleAsArgs
{
template <typename Func, typename Head, typename... Tail>
static inline auto forward(Func&& func, Head&& head, Tail&&... tail)
-> decltype(ForwardTupleAsArgs<N - 1>::forward(
std::forward<Func>(func), std::forward<Head>(head),
std::get<N - 1>(std::forward<Head>(head)), std::forward<Tail>(tail)...))
{
return ForwardTupleAsArgs<N - 1>::forward(
std::forward<Func>(func), std::forward<Head>(head),
std::get<N - 1>(std::forward<Head>(head)), std::forward<Tail>(tail)...);
}
};
//======================================================================================//
template <>
struct ForwardTupleAsArgs<0>
{
template <typename Func, typename Head, typename... Tail>
static inline auto forward(Func&& func, Head&&, Tail&&... tail)
-> decltype(std::forward<Func>(func)(std::forward<Tail>(tail)...))
{
return std::forward<Func>(func)(std::forward<Tail>(tail)...);
}
};
//======================================================================================//
template <size_t N>
struct ForEachTupleArg
{
template <typename Func, typename Head>
static inline auto apply(Func&& func, Head&& head)
{
std::forward<Func>(func)(std::forward<Head>(head));
}
template <typename Func, typename Head, typename... Tail>
static inline void apply(Func&& func, Head&& head, Tail&&... tail)
{
std::forward<Func>(func)(std::forward<Head>(head));
ForEachTupleArg<N - 1>::apply(std::forward<Func>(func),
std::forward<Tail>(tail)...);
}
};
//======================================================================================//
template <typename Func, typename Tuple>
void
for_each_tuple_arg(Func&& func, Tuple&& _tuple)
{
ForEachTupleArg<std::tuple_size<Tuple>::value>::apply(
std::forward<Func>(func), std::forward<std::tuple>(_tuple));
}
//======================================================================================//
template <typename Func, typename Tuple, std::size_t Head>
inline auto
InvokeSequence_impl(const Func& func, const Tuple& data)
{
func(std::get<Head>(data));
}
//======================================================================================//
template <typename Func, typename Tuple, std::size_t Head, std::size_t... Tail>
inline auto
InvokeSequence_impl(const Func& func, const Tuple& data)
{
func(std::get<Head>(data));
InvokeSequence_impl<Func, Tuple, Tail...>(func, data);
}
//======================================================================================//
template <typename Func, typename Tuple, std::size_t N = std::tuple_size<Tuple>::value,
typename Indices = std::make_index_sequence<N>>
inline auto
InvokeSequence(const Func& func, const Tuple& data)
{
return InvokeSequence_impl(func, data);
}
//======================================================================================//
// Convert array into a tuple
template <typename Container, std::size_t... N>
inline auto
ContainerToTuple_impl(const Container& tasks, std::index_sequence<N...>)
{
return std::make_tuple(tasks[N]...);
}
//======================================================================================//
template <std::size_t N, typename Container,
typename Indices = std::make_index_sequence<N>>
inline auto
ContainerToTuple(const Container& tasks)
{
return ContainerToTuple_impl(tasks, Indices{});
}
//======================================================================================//
template <typename... Args>
struct tuple_subset
{
static std::tuple<> get(const std::tuple<>&) { return std::tuple<>{}; }
template <typename... SubArgs>
static std::tuple<SubArgs...> get(const std::tuple<Args...>& t)
{
return std::tuple<SubArgs...>{ std::get<SubArgs>(t)... };
}
};
template <typename Head>
inline void
tuple_transform(const std::function<void(const Head&)>& pred,
const std::tuple<Head>& data)
{
pred(std::get<0>(data));
}
template <typename Head, typename... Tail>
inline void
tuple_transform(const std::function<void(const Head&)>& pred,
const std::tuple<Head, Tail...>& data)
{
pred(std::get<0>(data));
auto subset = tuple_subset<Head, Tail...>::template get<Tail...>(data);
tuple_transform<Tail...>(pred, std::forward<decltype(subset)>(subset));
}
template <typename Head, typename... Tail>
struct transform_tuple
{
using Function = std::function<void(Head)>;
template <typename TupleType>
static void apply(const Function& func, const TupleType& t)
{
func(std::get<0>(t));
PopFront<TupleType> nt = std::tuple<Tail...>{ std::get<Tail>(t)... };
transform_tuple<Tail...>::apply(func, nt);
}
};
template <typename Head>
struct transform_tuple<Head>
{
using Function = std::function<void(Head)>;
template <typename TupleType>
static void apply(const Function& func, const TupleType& t)
{
func(std::get<0>(t));
}
};
//======================================================================================//
template <typename Func, typename... Elements, unsigned... Indices>
auto
applyImpl(Func func, std::tuple<Elements...> const& t, Valuelist<unsigned, Indices...>)
-> decltype(func(std::get<Indices>(t)...))
{
return func(std::get<Indices>(t)...);
}
template <typename Func, typename... Elements, unsigned N = sizeof...(Elements)>
auto
apply(Func func, std::tuple<Elements...> const& t)
-> decltype(applyImpl(func, t, std::make_index_sequence<N>()))
{
return applyImpl(func, t, std::make_index_sequence<N>());
}
} // namespace PTL
|