1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
|
/*
* This file is part of the PulseView project.
*
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
#include <extdef.h>
#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cstdint>
#include "logic.hpp"
#include "logicsegment.hpp"
#include <libsigrokcxx/libsigrokcxx.hpp>
using std::lock_guard;
using std::recursive_mutex;
using std::max;
using std::min;
using std::shared_ptr;
using std::vector;
using sigrok::Logic;
namespace pv {
namespace data {
const int LogicSegment::MipMapScalePower = 4;
const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes
LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
unsigned int unit_size, uint64_t samplerate) :
Segment(segment_id, samplerate, unit_size),
owner_(owner),
last_append_sample_(0),
last_append_accumulator_(0),
last_append_extra_(0)
{
memset(mip_map_, 0, sizeof(mip_map_));
}
LogicSegment::~LogicSegment()
{
lock_guard<recursive_mutex> lock(mutex_);
for (MipMapLevel &l : mip_map_)
free(l.data);
}
template <class T>
void LogicSegment::downsampleTmain(const T*&in, T &acc, T &prev)
{
// Accumulate one sample at a time
for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
T sample = *in++;
acc |= prev ^ sample;
prev = sample;
}
}
template <>
void LogicSegment::downsampleTmain<uint8_t>(const uint8_t*&in, uint8_t &acc, uint8_t &prev)
{
// Handle 8 bit samples in 32 bit steps
uint32_t prev32 = prev | prev << 8 | prev << 16 | prev << 24;
uint32_t acc32 = acc;
const uint32_t *in32 = (const uint32_t*)in;
for (uint64_t i = 0; i < MipMapScaleFactor; i += 4) {
uint32_t sample32 = *in32++;
acc32 |= prev32 ^ sample32;
prev32 = sample32;
}
// Reduce result back to uint8_t
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
prev = (prev32 >> 24) & 0xff; // MSB is last
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
prev = prev32 & 0xff; // LSB is last
#else
#error Endianness unknown
#endif
acc |= acc32 & 0xff;
acc |= (acc32 >> 8) & 0xff;
acc |= (acc32 >> 16) & 0xff;
acc |= (acc32 >> 24) & 0xff;
in = (const uint8_t*)in32;
}
template <>
void LogicSegment::downsampleTmain<uint16_t>(const uint16_t*&in, uint16_t &acc, uint16_t &prev)
{
// Handle 16 bit samples in 32 bit steps
uint32_t prev32 = prev | prev << 16;
uint32_t acc32 = acc;
const uint32_t *in32 = (const uint32_t*)in;
for (uint64_t i = 0; i < MipMapScaleFactor; i += 2) {
uint32_t sample32 = *in32++;
acc32 |= prev32 ^ sample32;
prev32 = sample32;
}
// Reduce result back to uint16_t
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
prev = (prev32 >> 16) & 0xffff; // MSB is last
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
prev = prev32 & 0xffff; // LSB is last
#else
#error Endian unknown
#endif
acc |= acc32 & 0xffff;
acc |= (acc32 >> 16) & 0xffff;
in = (const uint16_t*)in32;
}
template <class T>
void LogicSegment::downsampleT(const uint8_t *in_, uint8_t *&out_, uint64_t len)
{
const T *in = (const T*)in_;
T *out = (T*)out_;
T prev = last_append_sample_;
T acc = last_append_accumulator_;
// Try to complete the previous downsample
if (last_append_extra_) {
while (last_append_extra_ < MipMapScaleFactor && len > 0) {
T sample = *in++;
acc |= prev ^ sample;
prev = sample;
last_append_extra_++;
len--;
}
if (!len) {
// Not enough samples available to complete downsample
last_append_sample_ = prev;
last_append_accumulator_ = acc;
return;
}
// We have a complete downsample
*out++ = acc;
acc = 0;
last_append_extra_ = 0;
}
// Handle complete blocks of MipMapScaleFactor samples
while (len >= MipMapScaleFactor) {
downsampleTmain<T>(in, acc, prev);
len -= MipMapScaleFactor;
// Output downsample
*out++ = acc;
acc = 0;
}
// Process remainder, not enough for a complete sample
while (len > 0) {
T sample = *in++;
acc |= prev ^ sample;
prev = sample;
last_append_extra_++;
len--;
}
// Update context
last_append_sample_ = prev;
last_append_accumulator_ = acc;
out_ = (uint8_t *)out;
}
void LogicSegment::downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
{
// Downsample using the generic unpack_sample()
// which can handle any width between 1 and 8 bytes
uint64_t prev = last_append_sample_;
uint64_t acc = last_append_accumulator_;
// Try to complete the previous downsample
if (last_append_extra_) {
while (last_append_extra_ < MipMapScaleFactor && len > 0) {
const uint64_t sample = unpack_sample(in);
in += unit_size_;
acc |= prev ^ sample;
prev = sample;
last_append_extra_++;
len--;
}
if (!len) {
// Not enough samples available to complete downsample
last_append_sample_ = prev;
last_append_accumulator_ = acc;
return;
}
// We have a complete downsample
pack_sample(out, acc);
out += unit_size_;
acc = 0;
last_append_extra_ = 0;
}
// Handle complete blocks of MipMapScaleFactor samples
while (len >= MipMapScaleFactor) {
// Accumulate one sample at a time
for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
const uint64_t sample = unpack_sample(in);
in += unit_size_;
acc |= prev ^ sample;
prev = sample;
}
len -= MipMapScaleFactor;
// Output downsample
pack_sample(out, acc);
out += unit_size_;
acc = 0;
}
// Process remainder, not enough for a complete sample
while (len > 0) {
const uint64_t sample = unpack_sample(in);
in += unit_size_;
acc |= prev ^ sample;
prev = sample;
last_append_extra_++;
len--;
}
// Update context
last_append_sample_ = prev;
last_append_accumulator_ = acc;
}
inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
return *(uint64_t*)ptr;
#else
uint64_t value = 0;
switch (unit_size_) {
default:
value |= ((uint64_t)ptr[7]) << 56;
/* FALLTHRU */
case 7:
value |= ((uint64_t)ptr[6]) << 48;
/* FALLTHRU */
case 6:
value |= ((uint64_t)ptr[5]) << 40;
/* FALLTHRU */
case 5:
value |= ((uint64_t)ptr[4]) << 32;
/* FALLTHRU */
case 4:
value |= ((uint32_t)ptr[3]) << 24;
/* FALLTHRU */
case 3:
value |= ((uint32_t)ptr[2]) << 16;
/* FALLTHRU */
case 2:
value |= ptr[1] << 8;
/* FALLTHRU */
case 1:
value |= ptr[0];
/* FALLTHRU */
case 0:
break;
}
return value;
#endif
}
inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
*(uint64_t*)ptr = value;
#else
switch (unit_size_) {
default:
ptr[7] = value >> 56;
/* FALLTHRU */
case 7:
ptr[6] = value >> 48;
/* FALLTHRU */
case 6:
ptr[5] = value >> 40;
/* FALLTHRU */
case 5:
ptr[4] = value >> 32;
/* FALLTHRU */
case 4:
ptr[3] = value >> 24;
/* FALLTHRU */
case 3:
ptr[2] = value >> 16;
/* FALLTHRU */
case 2:
ptr[1] = value >> 8;
/* FALLTHRU */
case 1:
ptr[0] = value;
/* FALLTHRU */
case 0:
break;
}
#endif
}
void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
{
assert(unit_size_ == logic->unit_size());
assert((logic->data_length() % unit_size_) == 0);
append_payload(logic->data_pointer(), logic->data_length());
}
void LogicSegment::append_payload(void *data, uint64_t data_size)
{
assert((data_size % unit_size_) == 0);
lock_guard<recursive_mutex> lock(mutex_);
const uint64_t prev_sample_count = sample_count_;
const uint64_t sample_count = data_size / unit_size_;
append_samples(data, sample_count);
// Generate the first mip-map from the data
append_payload_to_mipmap();
if (sample_count > 1)
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1 + sample_count);
else
owner_.notify_samples_added(this, prev_sample_count + 1,
prev_sample_count + 1);
}
void LogicSegment::get_samples(int64_t start_sample,
int64_t end_sample, uint8_t* dest) const
{
assert(start_sample >= 0);
assert(start_sample <= (int64_t)sample_count_);
assert(end_sample >= 0);
assert(end_sample <= (int64_t)sample_count_);
assert(start_sample <= end_sample);
assert(dest != nullptr);
lock_guard<recursive_mutex> lock(mutex_);
get_raw_samples(start_sample, (end_sample - start_sample), dest);
}
void LogicSegment::get_subsampled_edges(
vector<EdgePair> &edges,
uint64_t start, uint64_t end,
float min_length, int sig_index, bool first_change_only)
{
uint64_t index = start;
unsigned int level;
bool last_sample;
bool fast_forward;
assert(start <= end);
assert(min_length > 0);
assert(sig_index >= 0);
assert(sig_index < 64);
lock_guard<recursive_mutex> lock(mutex_);
// Make sure we only process as many samples as we have
if (end > get_sample_count())
end = get_sample_count();
const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
const unsigned int min_level = max((int)floorf(logf(min_length) /
LogMipMapScaleFactor) - 1, 0);
const uint64_t sig_mask = 1ULL << sig_index;
// Store the initial state
last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
if (!first_change_only)
edges.emplace_back(index++, last_sample);
while (index + block_length <= end) {
//----- Continue to search -----//
level = min_level;
// We cannot fast-forward if there is no mip-map data at
// the minimum level.
fast_forward = (mip_map_[level].data != nullptr);
if (min_length < MipMapScaleFactor) {
// Search individual samples up to the beginning of
// the next first level mip map block
const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));
for (; index < final_index &&
(index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
index++) {
const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
// If there was a change we cannot fast forward
if (sample != last_sample) {
fast_forward = false;
break;
}
}
} else {
// If resolution is less than a mip map block,
// round up to the beginning of the mip-map block
// for this level of detail
const int min_level_scale_power = (level + 1) * MipMapScalePower;
index = pow2_ceil(index, min_level_scale_power);
if (index >= end)
break;
// We can fast forward only if there was no change
const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
if (last_sample != sample)
fast_forward = false;
}
if (fast_forward) {
// Fast forward: This involves zooming out to higher
// levels of the mip map searching for changes, then
// zooming in on them to find the point where the edge
// begins.
// Slide right and zoom out at the beginnings of mip-map
// blocks until we encounter a change
while (true) {
const int level_scale_power = (level + 1) * MipMapScalePower;
const uint64_t offset = index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= mip_map_[level].length ||
(get_subsample(level, offset) & sig_mask))
break;
if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
// If we are now at the beginning of a
// higher level mip-map block ascend one
// level
if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
break;
level++;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1, level_scale_power);
}
}
// Zoom in, and slide right until we encounter a change,
// and repeat until we reach min_level
while (true) {
assert(mip_map_[level].data);
const int level_scale_power = (level + 1) * MipMapScalePower;
const uint64_t offset = index >> level_scale_power;
// Check if we reached the last block at this
// level, or if there was a change in this block
if (offset >= mip_map_[level].length ||
(get_subsample(level, offset) & sig_mask)) {
// Zoom in unless we reached the minimum
// zoom
if (level == min_level)
break;
level--;
} else {
// Slide right to the beginning of the
// next mip map block
index = pow2_ceil(index + 1, level_scale_power);
}
}
// If individual samples within the limit of resolution,
// do a linear search for the next transition within the
// block
if (min_length < MipMapScaleFactor) {
for (; index < end; index++) {
const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
if (sample != last_sample)
break;
}
}
}
//----- Store the edge -----//
// Take the last sample of the quanization block
const int64_t final_index = index + block_length;
if (index + block_length > end)
break;
// Store the final state
const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
edges.emplace_back(index, final_sample);
index = final_index;
last_sample = final_sample;
if (first_change_only)
break;
}
// Add the final state
if (!first_change_only) {
const bool end_sample = get_unpacked_sample(end) & sig_mask;
if (last_sample != end_sample)
edges.emplace_back(end, end_sample);
edges.emplace_back(end + 1, end_sample);
}
}
void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
uint64_t origin_sample, float min_length, int sig_index)
{
if (origin_sample >= sample_count_)
return;
// Put the edges vector on the heap, it can become quite big until we can
// use a get_subsampled_edges() implementation that searches backwards
vector<EdgePair>* edges = new vector<EdgePair>;
// Get all edges to the left of origin_sample
get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);
// If we don't specify "first only", the first and last edge are the states
// at samples 0 and origin_sample. If only those exist, there are no edges
if (edges->size() == 2) {
delete edges;
return;
}
// Dismiss the entry for origin_sample so that back() gives us the
// real last entry
edges->pop_back();
dest.push_back(edges->back());
edges->clear();
// Get first edge to the right of origin_sample
get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);
// "first only" is specified, so nothing needs to be dismissed
if (edges->size() == 0) {
delete edges;
return;
}
dest.push_back(edges->front());
delete edges;
}
void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
{
lock_guard<recursive_mutex> lock(mutex_);
const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
MipMapDataUnit) * MipMapDataUnit;
if (new_data_length > m.data_length) {
m.data_length = new_data_length;
// Padding is added to allow for the uint64_t write word
m.data = realloc(m.data, new_data_length * unit_size_ +
sizeof(uint64_t));
}
}
void LogicSegment::append_payload_to_mipmap()
{
MipMapLevel &m0 = mip_map_[0];
uint64_t prev_length;
uint8_t *dest_ptr;
SegmentDataIterator* it;
uint64_t accumulator;
unsigned int diff_counter;
// Expand the data buffer to fit the new samples
prev_length = m0.length;
m0.length = sample_count_ / MipMapScaleFactor;
// Break off if there are no new samples to compute
if (m0.length == prev_length)
return;
reallocate_mipmap_level(m0);
dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;
// Iterate through the samples to populate the first level mipmap
const uint64_t start_sample = prev_length * MipMapScaleFactor;
const uint64_t end_sample = m0.length * MipMapScaleFactor;
uint64_t len_sample = end_sample - start_sample;
it = begin_sample_iteration(start_sample);
while (len_sample > 0) {
// Number of samples available in this chunk
uint64_t count = get_iterator_valid_length(it);
// Reduce if less than asked for
count = std::min(count, len_sample);
uint8_t *src_ptr = get_iterator_value(it);
// Submit these contiguous samples to downsampling in bulk
if (unit_size_ == 1)
downsampleT<uint8_t>(src_ptr, dest_ptr, count);
else if (unit_size_ == 2)
downsampleT<uint16_t>(src_ptr, dest_ptr, count);
else if (unit_size_ == 4)
downsampleT<uint32_t>(src_ptr, dest_ptr, count);
else if (unit_size_ == 8)
downsampleT<uint8_t>(src_ptr, dest_ptr, count);
else
downsampleGeneric(src_ptr, dest_ptr, count);
len_sample -= count;
// Advance iterator, should move to start of next chunk
continue_sample_iteration(it, count);
}
end_sample_iteration(it);
// Compute higher level mipmaps
for (unsigned int level = 1; level < ScaleStepCount; level++) {
MipMapLevel &m = mip_map_[level];
const MipMapLevel &ml = mip_map_[level - 1];
// Expand the data buffer to fit the new samples
prev_length = m.length;
m.length = ml.length / MipMapScaleFactor;
// Break off if there are no more samples to be computed
if (m.length == prev_length)
break;
reallocate_mipmap_level(m);
// Subsample the lower level
const uint8_t* src_ptr = (uint8_t*)ml.data +
unit_size_ * prev_length * MipMapScaleFactor;
const uint8_t *const end_dest_ptr =
(uint8_t*)m.data + unit_size_ * m.length;
for (dest_ptr = (uint8_t*)m.data +
unit_size_ * prev_length;
dest_ptr < end_dest_ptr;
dest_ptr += unit_size_) {
accumulator = 0;
diff_counter = MipMapScaleFactor;
while (diff_counter-- > 0) {
accumulator |= unpack_sample(src_ptr);
src_ptr += unit_size_;
}
pack_sample(dest_ptr, accumulator);
}
}
}
uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
{
assert(index < sample_count_);
assert(unit_size_ <= 8); // 8 * 8 = 64 channels
uint8_t data[8];
get_raw_samples(index, 1, data);
return unpack_sample(data);
}
uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
{
assert(level >= 0);
assert(mip_map_[level].data);
return unpack_sample((uint8_t*)mip_map_[level].data +
unit_size_ * offset);
}
uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
{
const uint64_t p = UINT64_C(1) << power;
return (x + p - 1) / p * p;
}
} // namespace data
} // namespace pv
|