File: logicsegment.cpp

package info (click to toggle)
pulseview 0.4.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,064 kB
  • sloc: cpp: 25,958; xml: 215; java: 42; makefile: 2
file content (704 lines) | stat: -rw-r--r-- 18,753 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/*
 * This file is part of the PulseView project.
 *
 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h" // For HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS

#include <extdef.h>

#include <cassert>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <cstdint>

#include "logic.hpp"
#include "logicsegment.hpp"

#include <libsigrokcxx/libsigrokcxx.hpp>

using std::lock_guard;
using std::recursive_mutex;
using std::max;
using std::min;
using std::shared_ptr;
using std::vector;

using sigrok::Logic;

namespace pv {
namespace data {

const int LogicSegment::MipMapScalePower = 4;
const int LogicSegment::MipMapScaleFactor = 1 << MipMapScalePower;
const float LogicSegment::LogMipMapScaleFactor = logf(MipMapScaleFactor);
const uint64_t LogicSegment::MipMapDataUnit = 64 * 1024; // bytes

LogicSegment::LogicSegment(pv::data::Logic& owner, uint32_t segment_id,
	unsigned int unit_size,	uint64_t samplerate) :
	Segment(segment_id, samplerate, unit_size),
	owner_(owner),
	last_append_sample_(0),
	last_append_accumulator_(0),
	last_append_extra_(0)
{
	memset(mip_map_, 0, sizeof(mip_map_));
}

LogicSegment::~LogicSegment()
{
	lock_guard<recursive_mutex> lock(mutex_);
	for (MipMapLevel &l : mip_map_)
		free(l.data);
}

template <class T>
void LogicSegment::downsampleTmain(const T*&in, T &acc, T &prev)
{
	// Accumulate one sample at a time
	for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
		T sample = *in++;
		acc |= prev ^ sample;
		prev = sample;
	}
}

template <>
void LogicSegment::downsampleTmain<uint8_t>(const uint8_t*&in, uint8_t &acc, uint8_t &prev)
{
	// Handle 8 bit samples in 32 bit steps
	uint32_t prev32 = prev | prev << 8 | prev << 16 | prev << 24;
	uint32_t acc32 = acc;
	const uint32_t *in32 = (const uint32_t*)in;
	for (uint64_t i = 0; i < MipMapScaleFactor; i += 4) {
		uint32_t sample32 = *in32++;
		acc32 |= prev32 ^ sample32;
		prev32 = sample32;
	}
	// Reduce result back to uint8_t
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	prev = (prev32 >> 24) & 0xff; // MSB is last
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	prev = prev32 & 0xff; // LSB is last
#else
#error Endianness unknown
#endif
	acc |= acc32 & 0xff;
	acc |= (acc32 >> 8) & 0xff;
	acc |= (acc32 >> 16) & 0xff;
	acc |= (acc32 >> 24) & 0xff;
	in = (const uint8_t*)in32;
}

template <>
void LogicSegment::downsampleTmain<uint16_t>(const uint16_t*&in, uint16_t &acc, uint16_t &prev)
{
	// Handle 16 bit samples in 32 bit steps
	uint32_t prev32 = prev | prev << 16;
	uint32_t acc32 = acc;
	const uint32_t *in32 = (const uint32_t*)in;
	for (uint64_t i = 0; i < MipMapScaleFactor; i += 2) {
		uint32_t sample32 = *in32++;
		acc32 |= prev32 ^ sample32;
		prev32 = sample32;
	}
	// Reduce result back to uint16_t
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
	prev = (prev32 >> 16) & 0xffff; // MSB is last
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
	prev = prev32 & 0xffff; // LSB is last
#else
#error Endian unknown
#endif
	acc |= acc32 & 0xffff;
	acc |= (acc32 >> 16) & 0xffff;
	in = (const uint16_t*)in32;
}

template <class T>
void LogicSegment::downsampleT(const uint8_t *in_, uint8_t *&out_, uint64_t len)
{
	const T *in = (const T*)in_;
	T *out = (T*)out_;
	T prev = last_append_sample_;
	T acc = last_append_accumulator_;

	// Try to complete the previous downsample
	if (last_append_extra_) {
		while (last_append_extra_ < MipMapScaleFactor && len > 0) {
			T sample = *in++;
			acc |= prev ^ sample;
			prev = sample;
			last_append_extra_++;
			len--;
		}
		if (!len) {
			// Not enough samples available to complete downsample
			last_append_sample_ = prev;
			last_append_accumulator_ = acc;
			return;
		}
		// We have a complete downsample
		*out++ = acc;
		acc = 0;
		last_append_extra_ = 0;
	}

	// Handle complete blocks of MipMapScaleFactor samples
	while (len >= MipMapScaleFactor) {
		downsampleTmain<T>(in, acc, prev);
		len -= MipMapScaleFactor;
		// Output downsample
		*out++ = acc;
		acc = 0;
	}

	// Process remainder, not enough for a complete sample
	while (len > 0) {
		T sample = *in++;
		acc |= prev ^ sample;
		prev = sample;
		last_append_extra_++;
		len--;
	}

	// Update context
	last_append_sample_ = prev;
	last_append_accumulator_ = acc;
	out_ = (uint8_t *)out;
}

void LogicSegment::downsampleGeneric(const uint8_t *in, uint8_t *&out, uint64_t len)
{
	// Downsample using the generic unpack_sample()
	// which can handle any width between 1 and 8 bytes
	uint64_t prev = last_append_sample_;
	uint64_t acc = last_append_accumulator_;

	// Try to complete the previous downsample
	if (last_append_extra_) {
		while (last_append_extra_ < MipMapScaleFactor && len > 0) {
			const uint64_t sample = unpack_sample(in);
			in += unit_size_;
			acc |= prev ^ sample;
			prev = sample;
			last_append_extra_++;
			len--;
		}
		if (!len) {
			// Not enough samples available to complete downsample
			last_append_sample_ = prev;
			last_append_accumulator_ = acc;
			return;
		}
		// We have a complete downsample
		pack_sample(out, acc);
		out += unit_size_;
		acc = 0;
		last_append_extra_ = 0;
	}

	// Handle complete blocks of MipMapScaleFactor samples
	while (len >= MipMapScaleFactor) {
		// Accumulate one sample at a time
		for (uint64_t i = 0; i < MipMapScaleFactor; i++) {
			const uint64_t sample = unpack_sample(in);
			in += unit_size_;
			acc |= prev ^ sample;
			prev = sample;
		}
		len -= MipMapScaleFactor;
		// Output downsample
		pack_sample(out, acc);
		out += unit_size_;
		acc = 0;
	}

	// Process remainder, not enough for a complete sample
	while (len > 0) {
		const uint64_t sample = unpack_sample(in);
		in += unit_size_;
		acc |= prev ^ sample;
		prev = sample;
		last_append_extra_++;
		len--;
	}

	// Update context
	last_append_sample_ = prev;
	last_append_accumulator_ = acc;
}

inline uint64_t LogicSegment::unpack_sample(const uint8_t *ptr) const
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
	return *(uint64_t*)ptr;
#else
	uint64_t value = 0;
	switch (unit_size_) {
	default:
		value |= ((uint64_t)ptr[7]) << 56;
		/* FALLTHRU */
	case 7:
		value |= ((uint64_t)ptr[6]) << 48;
		/* FALLTHRU */
	case 6:
		value |= ((uint64_t)ptr[5]) << 40;
		/* FALLTHRU */
	case 5:
		value |= ((uint64_t)ptr[4]) << 32;
		/* FALLTHRU */
	case 4:
		value |= ((uint32_t)ptr[3]) << 24;
		/* FALLTHRU */
	case 3:
		value |= ((uint32_t)ptr[2]) << 16;
		/* FALLTHRU */
	case 2:
		value |= ptr[1] << 8;
		/* FALLTHRU */
	case 1:
		value |= ptr[0];
		/* FALLTHRU */
	case 0:
		break;
	}
	return value;
#endif
}

inline void LogicSegment::pack_sample(uint8_t *ptr, uint64_t value)
{
#ifdef HAVE_UNALIGNED_LITTLE_ENDIAN_ACCESS
	*(uint64_t*)ptr = value;
#else
	switch (unit_size_) {
	default:
		ptr[7] = value >> 56;
		/* FALLTHRU */
	case 7:
		ptr[6] = value >> 48;
		/* FALLTHRU */
	case 6:
		ptr[5] = value >> 40;
		/* FALLTHRU */
	case 5:
		ptr[4] = value >> 32;
		/* FALLTHRU */
	case 4:
		ptr[3] = value >> 24;
		/* FALLTHRU */
	case 3:
		ptr[2] = value >> 16;
		/* FALLTHRU */
	case 2:
		ptr[1] = value >> 8;
		/* FALLTHRU */
	case 1:
		ptr[0] = value;
		/* FALLTHRU */
	case 0:
		break;
	}
#endif
}

void LogicSegment::append_payload(shared_ptr<sigrok::Logic> logic)
{
	assert(unit_size_ == logic->unit_size());
	assert((logic->data_length() % unit_size_) == 0);

	append_payload(logic->data_pointer(), logic->data_length());
}

void LogicSegment::append_payload(void *data, uint64_t data_size)
{
	assert((data_size % unit_size_) == 0);

	lock_guard<recursive_mutex> lock(mutex_);

	const uint64_t prev_sample_count = sample_count_;
	const uint64_t sample_count = data_size / unit_size_;

	append_samples(data, sample_count);

	// Generate the first mip-map from the data
	append_payload_to_mipmap();

	if (sample_count > 1)
		owner_.notify_samples_added(this, prev_sample_count + 1,
			prev_sample_count + 1 + sample_count);
	else
		owner_.notify_samples_added(this, prev_sample_count + 1,
			prev_sample_count + 1);
}

void LogicSegment::get_samples(int64_t start_sample,
	int64_t end_sample, uint8_t* dest) const
{
	assert(start_sample >= 0);
	assert(start_sample <= (int64_t)sample_count_);
	assert(end_sample >= 0);
	assert(end_sample <= (int64_t)sample_count_);
	assert(start_sample <= end_sample);
	assert(dest != nullptr);

	lock_guard<recursive_mutex> lock(mutex_);

	get_raw_samples(start_sample, (end_sample - start_sample), dest);
}

void LogicSegment::get_subsampled_edges(
	vector<EdgePair> &edges,
	uint64_t start, uint64_t end,
	float min_length, int sig_index, bool first_change_only)
{
	uint64_t index = start;
	unsigned int level;
	bool last_sample;
	bool fast_forward;

	assert(start <= end);
	assert(min_length > 0);
	assert(sig_index >= 0);
	assert(sig_index < 64);

	lock_guard<recursive_mutex> lock(mutex_);

	// Make sure we only process as many samples as we have
	if (end > get_sample_count())
		end = get_sample_count();

	const uint64_t block_length = (uint64_t)max(min_length, 1.0f);
	const unsigned int min_level = max((int)floorf(logf(min_length) /
		LogMipMapScaleFactor) - 1, 0);
	const uint64_t sig_mask = 1ULL << sig_index;

	// Store the initial state
	last_sample = (get_unpacked_sample(start) & sig_mask) != 0;
	if (!first_change_only)
		edges.emplace_back(index++, last_sample);

	while (index + block_length <= end) {
		//----- Continue to search -----//
		level = min_level;

		// We cannot fast-forward if there is no mip-map data at
		// the minimum level.
		fast_forward = (mip_map_[level].data != nullptr);

		if (min_length < MipMapScaleFactor) {
			// Search individual samples up to the beginning of
			// the next first level mip map block
			const uint64_t final_index = min(end, pow2_ceil(index, MipMapScalePower));

			for (; index < final_index &&
					(index & ~((uint64_t)(~0) << MipMapScalePower)) != 0;
					index++) {

				const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;

				// If there was a change we cannot fast forward
				if (sample != last_sample) {
					fast_forward = false;
					break;
				}
			}
		} else {
			// If resolution is less than a mip map block,
			// round up to the beginning of the mip-map block
			// for this level of detail
			const int min_level_scale_power = (level + 1) * MipMapScalePower;
			index = pow2_ceil(index, min_level_scale_power);
			if (index >= end)
				break;

			// We can fast forward only if there was no change
			const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
			if (last_sample != sample)
				fast_forward = false;
		}

		if (fast_forward) {

			// Fast forward: This involves zooming out to higher
			// levels of the mip map searching for changes, then
			// zooming in on them to find the point where the edge
			// begins.

			// Slide right and zoom out at the beginnings of mip-map
			// blocks until we encounter a change
			while (true) {
				const int level_scale_power = (level + 1) * MipMapScalePower;
				const uint64_t offset = index >> level_scale_power;

				// Check if we reached the last block at this
				// level, or if there was a change in this block
				if (offset >= mip_map_[level].length ||
					(get_subsample(level, offset) &	sig_mask))
					break;

				if ((offset & ~((uint64_t)(~0) << MipMapScalePower)) == 0) {
					// If we are now at the beginning of a
					// higher level mip-map block ascend one
					// level
					if ((level + 1 >= ScaleStepCount) || (!mip_map_[level + 1].data))
						break;

					level++;
				} else {
					// Slide right to the beginning of the
					// next mip map block
					index = pow2_ceil(index + 1, level_scale_power);
				}
			}

			// Zoom in, and slide right until we encounter a change,
			// and repeat until we reach min_level
			while (true) {
				assert(mip_map_[level].data);

				const int level_scale_power = (level + 1) * MipMapScalePower;
				const uint64_t offset = index >> level_scale_power;

				// Check if we reached the last block at this
				// level, or if there was a change in this block
				if (offset >= mip_map_[level].length ||
						(get_subsample(level, offset) & sig_mask)) {
					// Zoom in unless we reached the minimum
					// zoom
					if (level == min_level)
						break;

					level--;
				} else {
					// Slide right to the beginning of the
					// next mip map block
					index = pow2_ceil(index + 1, level_scale_power);
				}
			}

			// If individual samples within the limit of resolution,
			// do a linear search for the next transition within the
			// block
			if (min_length < MipMapScaleFactor) {
				for (; index < end; index++) {
					const bool sample = (get_unpacked_sample(index) & sig_mask) != 0;
					if (sample != last_sample)
						break;
				}
			}
		}

		//----- Store the edge -----//

		// Take the last sample of the quanization block
		const int64_t final_index = index + block_length;
		if (index + block_length > end)
			break;

		// Store the final state
		const bool final_sample = (get_unpacked_sample(final_index - 1) & sig_mask) != 0;
		edges.emplace_back(index, final_sample);

		index = final_index;
		last_sample = final_sample;

		if (first_change_only)
			break;
	}

	// Add the final state
	if (!first_change_only) {
		const bool end_sample = get_unpacked_sample(end) & sig_mask;
		if (last_sample != end_sample)
			edges.emplace_back(end, end_sample);
		edges.emplace_back(end + 1, end_sample);
	}
}

void LogicSegment::get_surrounding_edges(vector<EdgePair> &dest,
	uint64_t origin_sample, float min_length, int sig_index)
{
	if (origin_sample >= sample_count_)
		return;

	// Put the edges vector on the heap, it can become quite big until we can
	// use a get_subsampled_edges() implementation that searches backwards
	vector<EdgePair>* edges = new vector<EdgePair>;

	// Get all edges to the left of origin_sample
	get_subsampled_edges(*edges, 0, origin_sample, min_length, sig_index, false);

	// If we don't specify "first only", the first and last edge are the states
	// at samples 0 and origin_sample. If only those exist, there are no edges
	if (edges->size() == 2) {
		delete edges;
		return;
	}

	// Dismiss the entry for origin_sample so that back() gives us the
	// real last entry
	edges->pop_back();
	dest.push_back(edges->back());
	edges->clear();

	// Get first edge to the right of origin_sample
	get_subsampled_edges(*edges, origin_sample, sample_count_, min_length, sig_index, true);

	// "first only" is specified, so nothing needs to be dismissed
	if (edges->size() == 0) {
		delete edges;
		return;
	}

	dest.push_back(edges->front());

	delete edges;
}

void LogicSegment::reallocate_mipmap_level(MipMapLevel &m)
{
	lock_guard<recursive_mutex> lock(mutex_);

	const uint64_t new_data_length = ((m.length + MipMapDataUnit - 1) /
		MipMapDataUnit) * MipMapDataUnit;

	if (new_data_length > m.data_length) {
		m.data_length = new_data_length;

		// Padding is added to allow for the uint64_t write word
		m.data = realloc(m.data, new_data_length * unit_size_ +
			sizeof(uint64_t));
	}
}

void LogicSegment::append_payload_to_mipmap()
{
	MipMapLevel &m0 = mip_map_[0];
	uint64_t prev_length;
	uint8_t *dest_ptr;
	SegmentDataIterator* it;
	uint64_t accumulator;
	unsigned int diff_counter;

	// Expand the data buffer to fit the new samples
	prev_length = m0.length;
	m0.length = sample_count_ / MipMapScaleFactor;

	// Break off if there are no new samples to compute
	if (m0.length == prev_length)
		return;

	reallocate_mipmap_level(m0);

	dest_ptr = (uint8_t*)m0.data + prev_length * unit_size_;

	// Iterate through the samples to populate the first level mipmap
	const uint64_t start_sample = prev_length * MipMapScaleFactor;
	const uint64_t end_sample = m0.length * MipMapScaleFactor;
	uint64_t len_sample = end_sample - start_sample;
	it = begin_sample_iteration(start_sample);
	while (len_sample > 0) {
		// Number of samples available in this chunk
		uint64_t count = get_iterator_valid_length(it);
		// Reduce if less than asked for
		count = std::min(count, len_sample);
		uint8_t *src_ptr = get_iterator_value(it);
		// Submit these contiguous samples to downsampling in bulk
		if (unit_size_ == 1)
			downsampleT<uint8_t>(src_ptr, dest_ptr, count);
		else if (unit_size_ == 2)
			downsampleT<uint16_t>(src_ptr, dest_ptr, count);
		else if (unit_size_ == 4)
			downsampleT<uint32_t>(src_ptr, dest_ptr, count);
		else if (unit_size_ == 8)
			downsampleT<uint8_t>(src_ptr, dest_ptr, count);
		else
			downsampleGeneric(src_ptr, dest_ptr, count);
		len_sample -= count;
		// Advance iterator, should move to start of next chunk
		continue_sample_iteration(it, count);
	}
	end_sample_iteration(it);

	// Compute higher level mipmaps
	for (unsigned int level = 1; level < ScaleStepCount; level++) {
		MipMapLevel &m = mip_map_[level];
		const MipMapLevel &ml = mip_map_[level - 1];

		// Expand the data buffer to fit the new samples
		prev_length = m.length;
		m.length = ml.length / MipMapScaleFactor;

		// Break off if there are no more samples to be computed
		if (m.length == prev_length)
			break;

		reallocate_mipmap_level(m);

		// Subsample the lower level
		const uint8_t* src_ptr = (uint8_t*)ml.data +
			unit_size_ * prev_length * MipMapScaleFactor;
		const uint8_t *const end_dest_ptr =
			(uint8_t*)m.data + unit_size_ * m.length;

		for (dest_ptr = (uint8_t*)m.data +
				unit_size_ * prev_length;
				dest_ptr < end_dest_ptr;
				dest_ptr += unit_size_) {
			accumulator = 0;
			diff_counter = MipMapScaleFactor;
			while (diff_counter-- > 0) {
				accumulator |= unpack_sample(src_ptr);
				src_ptr += unit_size_;
			}

			pack_sample(dest_ptr, accumulator);
		}
	}
}

uint64_t LogicSegment::get_unpacked_sample(uint64_t index) const
{
	assert(index < sample_count_);

	assert(unit_size_ <= 8);  // 8 * 8 = 64 channels
	uint8_t data[8];

	get_raw_samples(index, 1, data);

	return unpack_sample(data);
}

uint64_t LogicSegment::get_subsample(int level, uint64_t offset) const
{
	assert(level >= 0);
	assert(mip_map_[level].data);
	return unpack_sample((uint8_t*)mip_map_[level].data +
		unit_size_ * offset);
}

uint64_t LogicSegment::pow2_ceil(uint64_t x, unsigned int power)
{
	const uint64_t p = UINT64_C(1) << power;
	return (x + p - 1) / p * p;
}

} // namespace data
} // namespace pv