1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/*
* This file is part of the PulseView project.
*
* Copyright (C) 2017 Soeren Apel <soeren@apelpie.net>
* Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "segment.hpp"
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <QDebug>
using std::bad_alloc;
using std::lock_guard;
using std::min;
using std::recursive_mutex;
namespace pv {
namespace data {
const uint64_t Segment::MaxChunkSize = 10 * 1024 * 1024; /* 10MiB */
Segment::Segment(uint32_t segment_id, uint64_t samplerate, unsigned int unit_size) :
segment_id_(segment_id),
sample_count_(0),
start_time_(0),
samplerate_(samplerate),
unit_size_(unit_size),
iterator_count_(0),
mem_optimization_requested_(false),
is_complete_(false)
{
lock_guard<recursive_mutex> lock(mutex_);
assert(unit_size_ > 0);
// Determine the number of samples we can fit in one chunk
// without exceeding MaxChunkSize
chunk_size_ = min(MaxChunkSize, (MaxChunkSize / unit_size_) * unit_size_);
// Create the initial chunk
current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
data_chunks_.push_back(current_chunk_);
used_samples_ = 0;
unused_samples_ = chunk_size_ / unit_size_;
}
Segment::~Segment()
{
lock_guard<recursive_mutex> lock(mutex_);
for (uint8_t* chunk : data_chunks_)
delete[] chunk;
}
uint64_t Segment::get_sample_count() const
{
lock_guard<recursive_mutex> lock(mutex_);
return sample_count_;
}
const pv::util::Timestamp& Segment::start_time() const
{
return start_time_;
}
double Segment::samplerate() const
{
return samplerate_;
}
void Segment::set_samplerate(double samplerate)
{
samplerate_ = samplerate;
}
unsigned int Segment::unit_size() const
{
return unit_size_;
}
uint32_t Segment::segment_id() const
{
return segment_id_;
}
void Segment::set_complete()
{
is_complete_ = true;
}
bool Segment::is_complete() const
{
return is_complete_;
}
void Segment::free_unused_memory()
{
lock_guard<recursive_mutex> lock(mutex_);
// Do not mess with the data chunks if we have iterators pointing at them
if (iterator_count_ > 0) {
mem_optimization_requested_ = true;
return;
}
if (current_chunk_) {
// No more data will come in, so re-create the last chunk accordingly
uint8_t* resized_chunk = new uint8_t[used_samples_ * unit_size_ + 7]; /* FIXME +7 is workaround for #1284 */
memcpy(resized_chunk, current_chunk_, used_samples_ * unit_size_);
delete[] current_chunk_;
current_chunk_ = resized_chunk;
data_chunks_.pop_back();
data_chunks_.push_back(resized_chunk);
}
}
void Segment::append_single_sample(void *data)
{
lock_guard<recursive_mutex> lock(mutex_);
// There will always be space for at least one sample in
// the current chunk, so we do not need to test for space
memcpy(current_chunk_ + (used_samples_ * unit_size_), data, unit_size_);
used_samples_++;
unused_samples_--;
if (unused_samples_ == 0) {
current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
data_chunks_.push_back(current_chunk_);
used_samples_ = 0;
unused_samples_ = chunk_size_ / unit_size_;
}
sample_count_++;
}
void Segment::append_samples(void* data, uint64_t samples)
{
lock_guard<recursive_mutex> lock(mutex_);
const uint8_t* data_byte_ptr = (uint8_t*)data;
uint64_t remaining_samples = samples;
uint64_t data_offset = 0;
do {
uint64_t copy_count = 0;
if (remaining_samples <= unused_samples_) {
// All samples fit into the current chunk
copy_count = remaining_samples;
} else {
// Only a part of the samples fit, fill up current chunk
copy_count = unused_samples_;
}
const uint8_t* dest = &(current_chunk_[used_samples_ * unit_size_]);
const uint8_t* src = &(data_byte_ptr[data_offset]);
memcpy((void*)dest, (void*)src, (copy_count * unit_size_));
used_samples_ += copy_count;
unused_samples_ -= copy_count;
remaining_samples -= copy_count;
data_offset += (copy_count * unit_size_);
if (unused_samples_ == 0) {
try {
// If we're out of memory, allocating a chunk will throw
// std::bad_alloc. To give the application some usable memory
// to work with in case chunk allocation fails, we allocate
// extra memory and throw it away if it all succeeded.
// This way, memory allocation will fail early enough to let
// PV remain alive. Otherwise, PV will crash in a random
// memory-allocating part of the application.
current_chunk_ = new uint8_t[chunk_size_ + 7]; /* FIXME +7 is workaround for #1284 */
const int dummy_size = 2 * chunk_size_;
auto dummy_chunk = new uint8_t[dummy_size];
memset(dummy_chunk, 0xFF, dummy_size);
delete[] dummy_chunk;
} catch (bad_alloc&) {
delete[] current_chunk_; // The new may have succeeded
current_chunk_ = nullptr;
throw;
}
data_chunks_.push_back(current_chunk_);
used_samples_ = 0;
unused_samples_ = chunk_size_ / unit_size_;
}
} while (remaining_samples > 0);
sample_count_ += samples;
}
void Segment::get_raw_samples(uint64_t start, uint64_t count,
uint8_t* dest) const
{
assert(start < sample_count_);
assert(start + count <= sample_count_);
assert(count > 0);
assert(dest != nullptr);
lock_guard<recursive_mutex> lock(mutex_);
uint8_t* dest_ptr = dest;
uint64_t chunk_num = (start * unit_size_) / chunk_size_;
uint64_t chunk_offs = (start * unit_size_) % chunk_size_;
while (count > 0) {
const uint8_t* chunk = data_chunks_[chunk_num];
uint64_t copy_size = min(count * unit_size_,
chunk_size_ - chunk_offs);
memcpy(dest_ptr, chunk + chunk_offs, copy_size);
dest_ptr += copy_size;
count -= (copy_size / unit_size_);
chunk_num++;
chunk_offs = 0;
}
}
SegmentDataIterator* Segment::begin_sample_iteration(uint64_t start)
{
SegmentDataIterator* it = new SegmentDataIterator;
assert(start < sample_count_);
iterator_count_++;
it->sample_index = start;
it->chunk_num = (start * unit_size_) / chunk_size_;
it->chunk_offs = (start * unit_size_) % chunk_size_;
it->chunk = data_chunks_[it->chunk_num];
return it;
}
void Segment::continue_sample_iteration(SegmentDataIterator* it, uint64_t increase)
{
it->sample_index += increase;
it->chunk_offs += (increase * unit_size_);
if (it->chunk_offs > (chunk_size_ - 1)) {
it->chunk_num++;
it->chunk_offs -= chunk_size_;
it->chunk = data_chunks_[it->chunk_num];
}
}
void Segment::end_sample_iteration(SegmentDataIterator* it)
{
delete it;
iterator_count_--;
if ((iterator_count_ == 0) && mem_optimization_requested_) {
mem_optimization_requested_ = false;
free_unused_memory();
}
}
uint8_t* Segment::get_iterator_value(SegmentDataIterator* it)
{
assert(it->sample_index <= (sample_count_ - 1));
return (it->chunk + it->chunk_offs);
}
uint64_t Segment::get_iterator_valid_length(SegmentDataIterator* it)
{
assert(it->sample_index <= (sample_count_ - 1));
return ((chunk_size_ - it->chunk_offs) / unit_size_);
}
} // namespace data
} // namespace pv
|