File: segment.cpp

package info (click to toggle)
pulseview 0.4.2-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,064 kB
  • sloc: cpp: 25,958; xml: 215; java: 42; makefile: 2
file content (300 lines) | stat: -rw-r--r-- 7,626 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 * This file is part of the PulseView project.
 *
 * Copyright (C) 2017 Soeren Apel <soeren@apelpie.net>
 * Copyright (C) 2012 Joel Holdsworth <joel@airwebreathe.org.uk>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include "segment.hpp"

#include <cassert>
#include <cstdlib>
#include <cstring>

#include <QDebug>

using std::bad_alloc;
using std::lock_guard;
using std::min;
using std::recursive_mutex;

namespace pv {
namespace data {

const uint64_t Segment::MaxChunkSize = 10 * 1024 * 1024;  /* 10MiB */

Segment::Segment(uint32_t segment_id, uint64_t samplerate, unsigned int unit_size) :
	segment_id_(segment_id),
	sample_count_(0),
	start_time_(0),
	samplerate_(samplerate),
	unit_size_(unit_size),
	iterator_count_(0),
	mem_optimization_requested_(false),
	is_complete_(false)
{
	lock_guard<recursive_mutex> lock(mutex_);
	assert(unit_size_ > 0);

	// Determine the number of samples we can fit in one chunk
	// without exceeding MaxChunkSize
	chunk_size_ = min(MaxChunkSize, (MaxChunkSize / unit_size_) * unit_size_);

	// Create the initial chunk
	current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */
	data_chunks_.push_back(current_chunk_);
	used_samples_ = 0;
	unused_samples_ = chunk_size_ / unit_size_;
}

Segment::~Segment()
{
	lock_guard<recursive_mutex> lock(mutex_);

	for (uint8_t* chunk : data_chunks_)
		delete[] chunk;
}

uint64_t Segment::get_sample_count() const
{
	lock_guard<recursive_mutex> lock(mutex_);
	return sample_count_;
}

const pv::util::Timestamp& Segment::start_time() const
{
	return start_time_;
}

double Segment::samplerate() const
{
	return samplerate_;
}

void Segment::set_samplerate(double samplerate)
{
	samplerate_ = samplerate;
}

unsigned int Segment::unit_size() const
{
	return unit_size_;
}

uint32_t Segment::segment_id() const
{
	return segment_id_;
}

void Segment::set_complete()
{
	is_complete_ = true;
}

bool Segment::is_complete() const
{
	return is_complete_;
}

void Segment::free_unused_memory()
{
	lock_guard<recursive_mutex> lock(mutex_);

	// Do not mess with the data chunks if we have iterators pointing at them
	if (iterator_count_ > 0) {
		mem_optimization_requested_ = true;
		return;
	}

	if (current_chunk_) {
		// No more data will come in, so re-create the last chunk accordingly
		uint8_t* resized_chunk = new uint8_t[used_samples_ * unit_size_ + 7];  /* FIXME +7 is workaround for #1284 */
		memcpy(resized_chunk, current_chunk_, used_samples_ * unit_size_);

		delete[] current_chunk_;
		current_chunk_ = resized_chunk;

		data_chunks_.pop_back();
		data_chunks_.push_back(resized_chunk);
	}
}

void Segment::append_single_sample(void *data)
{
	lock_guard<recursive_mutex> lock(mutex_);

	// There will always be space for at least one sample in
	// the current chunk, so we do not need to test for space

	memcpy(current_chunk_ + (used_samples_ * unit_size_), data, unit_size_);
	used_samples_++;
	unused_samples_--;

	if (unused_samples_ == 0) {
		current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */
		data_chunks_.push_back(current_chunk_);
		used_samples_ = 0;
		unused_samples_ = chunk_size_ / unit_size_;
	}

	sample_count_++;
}

void Segment::append_samples(void* data, uint64_t samples)
{
	lock_guard<recursive_mutex> lock(mutex_);

	const uint8_t* data_byte_ptr = (uint8_t*)data;
	uint64_t remaining_samples = samples;
	uint64_t data_offset = 0;

	do {
		uint64_t copy_count = 0;

		if (remaining_samples <= unused_samples_) {
			// All samples fit into the current chunk
			copy_count = remaining_samples;
		} else {
			// Only a part of the samples fit, fill up current chunk
			copy_count = unused_samples_;
		}

		const uint8_t* dest = &(current_chunk_[used_samples_ * unit_size_]);
		const uint8_t* src = &(data_byte_ptr[data_offset]);
		memcpy((void*)dest, (void*)src, (copy_count * unit_size_));

		used_samples_ += copy_count;
		unused_samples_ -= copy_count;
		remaining_samples -= copy_count;
		data_offset += (copy_count * unit_size_);

		if (unused_samples_ == 0) {
			try {
				// If we're out of memory, allocating a chunk will throw
				// std::bad_alloc. To give the application some usable memory
				// to work with in case chunk allocation fails, we allocate
				// extra memory and throw it away if it all succeeded.
				// This way, memory allocation will fail early enough to let
				// PV remain alive. Otherwise, PV will crash in a random
				// memory-allocating part of the application.
				current_chunk_ = new uint8_t[chunk_size_ + 7];  /* FIXME +7 is workaround for #1284 */

				const int dummy_size = 2 * chunk_size_;
				auto dummy_chunk = new uint8_t[dummy_size];
				memset(dummy_chunk, 0xFF, dummy_size);
				delete[] dummy_chunk;
			} catch (bad_alloc&) {
				delete[] current_chunk_;  // The new may have succeeded
				current_chunk_ = nullptr;
				throw;
			}

			data_chunks_.push_back(current_chunk_);
			used_samples_ = 0;
			unused_samples_ = chunk_size_ / unit_size_;
		}
	} while (remaining_samples > 0);

	sample_count_ += samples;
}

void Segment::get_raw_samples(uint64_t start, uint64_t count,
	uint8_t* dest) const
{
	assert(start < sample_count_);
	assert(start + count <= sample_count_);
	assert(count > 0);
	assert(dest != nullptr);

	lock_guard<recursive_mutex> lock(mutex_);

	uint8_t* dest_ptr = dest;

	uint64_t chunk_num = (start * unit_size_) / chunk_size_;
	uint64_t chunk_offs = (start * unit_size_) % chunk_size_;

	while (count > 0) {
		const uint8_t* chunk = data_chunks_[chunk_num];

		uint64_t copy_size = min(count * unit_size_,
			chunk_size_ - chunk_offs);

		memcpy(dest_ptr, chunk + chunk_offs, copy_size);

		dest_ptr += copy_size;
		count -= (copy_size / unit_size_);

		chunk_num++;
		chunk_offs = 0;
	}
}

SegmentDataIterator* Segment::begin_sample_iteration(uint64_t start)
{
	SegmentDataIterator* it = new SegmentDataIterator;

	assert(start < sample_count_);

	iterator_count_++;

	it->sample_index = start;
	it->chunk_num = (start * unit_size_) / chunk_size_;
	it->chunk_offs = (start * unit_size_) % chunk_size_;
	it->chunk = data_chunks_[it->chunk_num];

	return it;
}

void Segment::continue_sample_iteration(SegmentDataIterator* it, uint64_t increase)
{
	it->sample_index += increase;
	it->chunk_offs += (increase * unit_size_);

	if (it->chunk_offs > (chunk_size_ - 1)) {
		it->chunk_num++;
		it->chunk_offs -= chunk_size_;
		it->chunk = data_chunks_[it->chunk_num];
	}
}

void Segment::end_sample_iteration(SegmentDataIterator* it)
{
	delete it;

	iterator_count_--;

	if ((iterator_count_ == 0) && mem_optimization_requested_) {
		mem_optimization_requested_ = false;
		free_unused_memory();
	}
}

uint8_t* Segment::get_iterator_value(SegmentDataIterator* it)
{
	assert(it->sample_index <= (sample_count_ - 1));

	return (it->chunk + it->chunk_offs);
}

uint64_t Segment::get_iterator_valid_length(SegmentDataIterator* it)
{
	assert(it->sample_index <= (sample_count_ - 1));

	return ((chunk_size_ - it->chunk_offs) / unit_size_);
}

} // namespace data
} // namespace pv