File: factory.rb

package info (click to toggle)
puppet-agent 7.23.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 19,092 kB
  • sloc: ruby: 245,074; sh: 456; makefile: 38; xml: 33
file content (1155 lines) | stat: -rw-r--r-- 33,901 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
# frozen_string_literal: true
# Factory is a helper class that makes construction of a Pops Model
# much more convenient. It can be viewed as a small internal DSL for model
# constructions.
# For usage see tests using the factory.
#
# @todo All those uppercase methods ... they look bad in one way, but stand out nicely in the grammar...
#   decide if they should change into lower case names (some of the are lower case)...
#
module Puppet::Pops
module Model
class Factory
  # Shared build_visitor, since there are many instances of Factory being used

  KEY_LENGTH = 'length'
  KEY_OFFSET = 'offset'
  KEY_LOCATOR = 'locator'
  KEY_OPERATOR = 'operator'

  KEY_VALUE = 'value'
  KEY_KEYS = 'keys'
  KEY_NAME = 'name'
  KEY_BODY = 'body'
  KEY_EXPR = 'expr'
  KEY_LEFT_EXPR = 'left_expr'
  KEY_RIGHT_EXPR = 'right_expr'
  KEY_PARAMETERS = 'parameters'

  BUILD_VISITOR = Visitor.new(self, 'build')
  INFER_VISITOR = Visitor.new(self, 'infer')
  INTERPOLATION_VISITOR = Visitor.new(self, 'interpolate')
  MAPOFFSET_VISITOR = Visitor.new(self, 'map_offset')

  def self.infer(o)
    if o.instance_of?(Factory)
      o
    else
      new(o)
    end
  end

  attr_reader :model_class, :unfolded

  def [](key)
    @init_hash[key]
  end

  def []=(key, value)
    @init_hash[key] = value
  end

  def all_factories(&block)
    block.call(self)
    @init_hash.each_value { |value| value.all_factories(&block) if value.instance_of?(Factory) }
  end

  def model
    if @current.nil?
      # Assign a default Locator if it's missing. Should only happen when the factory is used by other
      # means than from a parser (e.g. unit tests)
      unless @init_hash.include?(KEY_LOCATOR)
        @init_hash[KEY_LOCATOR] = Parser::Locator.locator('<no source>', 'no file')
        unless @model_class <= Program
          @init_hash[KEY_OFFSET] = 0
          @init_hash[KEY_LENGTH] = 0
        end
      end
      @current = create_model
    end
    @current
  end

  # Backward API compatibility
  alias current model

  def create_model
    @init_hash.each_pair { |key, elem| @init_hash[key] = factory_to_model(elem) }
    model_class.from_asserted_hash(@init_hash)
  end

  # Initialize a factory with a single object, or a class with arguments applied to build of
  # created instance
  #
  def initialize(o, *args)
    @init_hash = {}
    if o.instance_of?(Class)
      @model_class = o
      BUILD_VISITOR.visit_this_class(self, o, args)
    else
      INFER_VISITOR.visit_this(self, o, EMPTY_ARRAY)
    end
  end

  def map_offset(model, locator)
    MAPOFFSET_VISITOR.visit_this_1(self, model, locator)
  end

  def map_offset_Object(o, locator)
    o
  end

  def map_offset_Factory(o, locator)
    map_offset(o.model, locator)
  end

  def map_offset_Positioned(o, locator)
    # Transpose the local offset, length to global "coordinates"
    global_offset, global_length = locator.to_global(o.offset, o.length)

    # mutate
    o.instance_variable_set(:'@offset', global_offset)
    o.instance_variable_set(:'@length', global_length)
    # Change locator since the positions were transposed to the global coordinates
    o.instance_variable_set(:'@locator', locator.locator) if locator.is_a? Puppet::Pops::Parser::Locator::SubLocator
  end

  # Polymorphic interpolate
  def interpolate()
    INTERPOLATION_VISITOR.visit_this_class(self, @model_class, EMPTY_ARRAY)
  end

  # Building of Model classes

  def build_ArithmeticExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_AssignmentExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_AttributeOperation(o, name, op, value)
    @init_hash[KEY_OPERATOR] = op
    @init_hash['attribute_name'] = name.to_s # BOOLEAN is allowed in the grammar
    @init_hash['value_expr'] = value
  end

  def build_AttributesOperation(o, value)
    @init_hash[KEY_EXPR] = value
  end

  def build_AccessExpression(o, left, keys)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash[KEY_KEYS] = keys
  end

  def build_BinaryExpression(o, left, right)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash[KEY_RIGHT_EXPR] = right
  end

  def build_BlockExpression(o, args)
    @init_hash['statements'] = args
  end

  def build_EppExpression(o, parameters_specified, body)
    @init_hash['parameters_specified'] = parameters_specified
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
  end

  # @param rval_required [Boolean] if the call must produce a value
  def build_CallExpression(o, functor, rval_required, args)
    @init_hash['functor_expr'] = functor
    @init_hash['rval_required'] = rval_required
    @init_hash['arguments'] = args
  end

  def build_CallMethodExpression(o, functor, rval_required, lambda, args)
    build_CallExpression(o, functor, rval_required, args)
    @init_hash['lambda'] = lambda
  end

  def build_CaseExpression(o, test, args)
    @init_hash['test'] = test
    @init_hash['options'] = args
  end

  def build_CaseOption(o, value_list, then_expr)
    value_list = [value_list] unless value_list.is_a?(Array)
    @init_hash['values'] = value_list
    b = f_build_body(then_expr)
    @init_hash['then_expr'] = b unless b.nil?
  end

  def build_CollectExpression(o, type_expr, query_expr, attribute_operations)
    @init_hash['type_expr'] = type_expr
    @init_hash['query'] = query_expr
    @init_hash['operations'] = attribute_operations
  end

  def build_ComparisonExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_ConcatenatedString(o, args)
    # Strip empty segments
    @init_hash['segments'] = args.reject { |arg| arg.model_class == LiteralString && arg['value'].empty? }
  end

  def build_HeredocExpression(o, name, expr)
    @init_hash['syntax'] = name
    @init_hash['text_expr'] = expr
  end

  # @param name [String] a valid classname
  # @param parameters [Array<Parameter>] may be empty
  # @param parent_class_name [String, nil] a valid classname referencing a parent class, optional.
  # @param body [Array<Expression>, Expression, nil] expression that constitute the body
  # @return [HostClassDefinition] configured from the parameters
  #
  def build_HostClassDefinition(o, name, parameters, parent_class_name, body)
    build_NamedDefinition(o, name, parameters, body)
    @init_hash['parent_class'] = parent_class_name unless parent_class_name.nil?
  end

  def build_ResourceOverrideExpression(o, resources, attribute_operations)
    @init_hash['resources'] = resources
    @init_hash['operations'] = attribute_operations
  end

  def build_ReservedWord(o, name, future)
    @init_hash['word'] = name
    @init_hash['future'] = future
  end

  def build_KeyedEntry(o, k, v)
    @init_hash['key'] = k
    @init_hash[KEY_VALUE] = v
  end

  def build_LiteralHash(o, keyed_entries, unfolded)
    @init_hash['entries'] = keyed_entries
    @unfolded = unfolded
  end

  def build_LiteralList(o, values)
    @init_hash['values'] = values
  end

  def build_LiteralFloat(o, val)
    @init_hash[KEY_VALUE] = val
  end

  def build_LiteralInteger(o, val, radix)
    @init_hash[KEY_VALUE] = val
    @init_hash['radix'] = radix
  end

  def build_LiteralString(o, value)
    @init_hash[KEY_VALUE] = val
  end

  def build_IfExpression(o, t, ift, els)
    @init_hash['test'] = t
    @init_hash['then_expr'] = ift
    @init_hash['else_expr'] = els
  end

  def build_ApplyExpression(o, args, body)
    @init_hash['arguments'] = args
    @init_hash['body'] = body
  end

  def build_MatchExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  # Building model equivalences of Ruby objects
  # Allows passing regular ruby objects to the factory to produce instructions
  # that when evaluated produce the same thing.

  def infer_String(o)
    @model_class = LiteralString
    @init_hash[KEY_VALUE] = o
  end

  def infer_NilClass(o)
    @model_class = Nop
  end

  def infer_TrueClass(o)
    @model_class = LiteralBoolean
    @init_hash[KEY_VALUE] = o
  end

  def infer_FalseClass(o)
    @model_class = LiteralBoolean
    @init_hash[KEY_VALUE] = o
  end

  def infer_Integer(o)
    @model_class = LiteralInteger
    @init_hash[KEY_VALUE] = o
  end

  def infer_Float(o)
    @model_class = LiteralFloat
    @init_hash[KEY_VALUE] = o
  end

  def infer_Regexp(o)
    @model_class = LiteralRegularExpression
    @init_hash['pattern'] = o.inspect
    @init_hash[KEY_VALUE] = o
  end

  # Creates a String literal, unless the symbol is one of the special :undef, or :default
  # which instead creates a LiterlUndef, or a LiteralDefault.
  # Supports :undef because nil creates a no-op instruction.
  def infer_Symbol(o)
    case o
    when :undef
      @model_class = LiteralUndef
    when :default
      @model_class = LiteralDefault
    else
      infer_String(o.to_s)
    end
  end

  # Creates a LiteralList instruction from an Array, where the entries are built.
  def infer_Array(o)
    @model_class = LiteralList
    @init_hash['values'] = o.map { |e| Factory.infer(e) }
  end

  # Create a LiteralHash instruction from a hash, where keys and values are built
  # The hash entries are added in sorted order based on key.to_s
  #
  def infer_Hash(o)
    @model_class = LiteralHash
    @init_hash['entries'] = o.sort_by { |k,_| k.to_s }.map { |k, v| Factory.new(KeyedEntry, Factory.infer(k), Factory.infer(v)) }
    @unfolded = false
  end

  def f_build_body(body)
    case body
    when NilClass
      nil
    when Array
      Factory.new(BlockExpression, body)
    when Factory
      body
    else
      Factory.infer(body)
    end
  end

  def build_LambdaExpression(o, parameters, body, return_type)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_NamedDefinition(o, name, parameters, body)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
  end

  def build_FunctionDefinition(o, name, parameters, body, return_type)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_PlanDefinition(o, name, parameters, body, return_type=nil)
    @init_hash[KEY_PARAMETERS] = parameters
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash[KEY_NAME] = name
    @init_hash['return_type'] = return_type unless return_type.nil?
  end

  def build_NodeDefinition(o, hosts, parent, body)
    @init_hash['host_matches'] = hosts
    @init_hash['parent'] = parent unless parent.nil? # no nop here
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
  end

  def build_Parameter(o, name, expr)
    @init_hash[KEY_NAME] = name
    @init_hash[KEY_VALUE] = expr
  end

  def build_QualifiedReference(o, name)
    @init_hash['cased_value'] = name.to_s
  end

  def build_RelationshipExpression(o, op, a, b)
    @init_hash[KEY_OPERATOR] = op
    build_BinaryExpression(o, a, b)
  end

  def build_ResourceExpression(o, type_name, bodies)
    @init_hash['type_name'] = type_name
    @init_hash['bodies'] = bodies
  end

  def build_RenderStringExpression(o, string)
    @init_hash[KEY_VALUE] = string;
  end

  def build_ResourceBody(o, title_expression, attribute_operations)
    @init_hash['title'] = title_expression
    @init_hash['operations'] = attribute_operations
  end

  def build_ResourceDefaultsExpression(o, type_ref, attribute_operations)
    @init_hash['type_ref'] = type_ref
    @init_hash['operations'] = attribute_operations
  end

  def build_SelectorExpression(o, left, *selectors)
    @init_hash[KEY_LEFT_EXPR] = left
    @init_hash['selectors'] = selectors
  end

  def build_SelectorEntry(o, matching, value)
    @init_hash['matching_expr'] = matching
    @init_hash['value_expr'] = value
  end

  def build_QueryExpression(o, expr)
    @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
  end

  def build_TypeAlias(o, name, type_expr)
    if type_expr.model_class <= KeyedEntry
      # KeyedEntry is used for the form:
      #
      #   type Foo = Bar { ... }
      #
      # The entry contains Bar => { ... } and must be transformed into:
      #
      #   Object[{parent => Bar, ... }]
      #
      parent = type_expr['key']
      hash = type_expr['value']
      pn = parent['cased_value']
      unless pn == 'Object' || pn == 'TypeSet'
        hash['entries'] << Factory.KEY_ENTRY(Factory.QNAME('parent'), parent)
        parent = Factory.QREF('Object')
      end
      type_expr = parent.access([hash])
    elsif type_expr.model_class <= LiteralHash
      # LiteralHash is used for the form:
      #
      #   type Foo = { ... }
      #
      # The hash must be transformed into:
      #
      #   Object[{ ... }]
      #
      type_expr = Factory.QREF('Object').access([type_expr])
    end
    @init_hash['type_expr'] = type_expr
    @init_hash[KEY_NAME] = name
  end

  def build_TypeMapping(o, lhs, rhs)
    @init_hash['type_expr'] = lhs
    @init_hash['mapping_expr'] = rhs
  end

  def build_TypeDefinition(o, name, parent, body)
    b = f_build_body(body)
    @init_hash[KEY_BODY] = b unless b.nil?
    @init_hash['parent'] = parent
    @init_hash[KEY_NAME] = name
  end

  def build_UnaryExpression(o, expr)
    @init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
  end

  def build_Program(o, body, definitions, locator)
    @init_hash[KEY_BODY] = body
    # non containment
    @init_hash['definitions'] = definitions
    @init_hash[KEY_LOCATOR] = locator
  end

  def build_QualifiedName(o, name)
    @init_hash[KEY_VALUE] = name
  end

  def build_TokenValue(o)
    raise "Factory can not deal with a Lexer Token. Got token: #{o}. Probably caused by wrong index in grammar val[n]."
  end

  # Factory helpers
  def f_build_unary(klazz, expr)
    Factory.new(klazz, expr)
  end

  def f_build_binary_op(klazz, op, left, right)
    Factory.new(klazz, op, left, right)
  end

  def f_build_binary(klazz, left, right)
    Factory.new(klazz, left, right)
  end

  def f_arithmetic(op, r)
    f_build_binary_op(ArithmeticExpression, op, self, r)
  end

  def f_comparison(op, r)
    f_build_binary_op(ComparisonExpression, op, self, r)
  end

  def f_match(op, r)
    f_build_binary_op(MatchExpression, op, self, r)
  end

  # Operator helpers
  def in(r)     f_build_binary(InExpression, self, r);          end

  def or(r)     f_build_binary(OrExpression, self, r);          end

  def and(r)    f_build_binary(AndExpression, self, r);         end

  def not();    f_build_unary(NotExpression, self);             end

  def minus();  f_build_unary(UnaryMinusExpression, self);      end

  def unfold(); f_build_unary(UnfoldExpression, self);          end

  def text();   f_build_unary(TextExpression, self);            end

  def var();    f_build_unary(VariableExpression, self);        end

  def access(r); f_build_binary(AccessExpression, self, r);     end

  def dot r;    f_build_binary(NamedAccessExpression, self, r); end

  def + r;      f_arithmetic('+', r);                           end

  def - r;      f_arithmetic('-', r);                           end

  def / r;      f_arithmetic('/', r);                           end

  def * r;      f_arithmetic('*', r);                           end

  def % r;      f_arithmetic('%', r);                           end

  def << r;     f_arithmetic('<<', r);                          end

  def >> r;     f_arithmetic('>>', r);                          end

  def < r;      f_comparison('<', r);                           end

  def <= r;     f_comparison('<=', r);                          end

  def > r;      f_comparison('>', r);                           end

  def >= r;     f_comparison('>=', r);                          end

  def eq r;     f_comparison('==', r);                          end

  def ne r;     f_comparison('!=', r);                          end

  def =~ r;     f_match('=~', r);                               end

  def mne r;    f_match('!~', r);                               end

  def paren;    f_build_unary(ParenthesizedExpression, self);   end

  def relop(op, r)
    f_build_binary_op(RelationshipExpression, op, self, r)
  end

  def select(*args)
    Factory.new(SelectorExpression, self, *args)
  end

  # Same as access, but with varargs and arguments that must be inferred. For testing purposes
  def access_at(*r)
    f_build_binary(AccessExpression, self, r.map { |arg| Factory.infer(arg) })
  end

  # For CaseExpression, setting the default for an already build CaseExpression
  def default(r)
    @init_hash['options'] << Factory.WHEN(Factory.infer(:default), r)
    self
  end

  def lambda=(lambda)
    @init_hash['lambda'] = lambda
    self
  end

  # Assignment =
  def set(r)
    f_build_binary_op(AssignmentExpression, '=', self, r)
  end

  # Assignment +=
  def plus_set(r)
    f_build_binary_op(AssignmentExpression, '+=', self, r)
  end

  # Assignment -=
  def minus_set(r)
    f_build_binary_op(AssignmentExpression, '-=', self, r)
  end

  def attributes(*args)
    @init_hash['attributes'] = args
    self
  end

  def offset
    @init_hash[KEY_OFFSET]
  end

  def length
    @init_hash[KEY_LENGTH]
  end

  # Records the position (start -> end) and computes the resulting length.
  #
  def record_position(locator, start_locatable, end_locatable)
    # record information directly in the Positioned object
    start_offset = start_locatable.offset
    @init_hash[KEY_LOCATOR] = locator
    @init_hash[KEY_OFFSET] = start_offset
    @init_hash[KEY_LENGTH] = end_locatable.nil? ? start_locatable.length : end_locatable.offset + end_locatable.length - start_offset
    self
  end

  # Sets the form of the resource expression (:regular (the default), :virtual, or :exported).
  # Produces true if the expression was a resource expression, false otherwise.
  #
  def self.set_resource_form(expr, form)
    # Note: Validation handles illegal combinations
    return false unless expr.instance_of?(self) && expr.model_class <= AbstractResource
    expr['form'] = form
    return true
  end

  # Returns symbolic information about an expected shape of a resource expression given the LHS of a resource expr.
  #
  # * `name { }` => `:resource`,  create a resource of the given type
  # * `Name { }` => ':defaults`, set defaults for the referenced type
  # * `Name[] { }` => `:override`, overrides instances referenced by LHS
  # * _any other_ => ':error', all other are considered illegal
  #
  def self.resource_shape(expr)
    if expr == 'class'
      :class
    elsif expr.instance_of?(self)
      mc = expr.model_class
      if mc <= QualifiedName
        :resource
      elsif mc <= QualifiedReference
        :defaults
      elsif mc <= AccessExpression
        # if Resource[e], then it is not resource specific
        lhs = expr[KEY_LEFT_EXPR]
        if lhs.model_class <= QualifiedReference && lhs[KEY_VALUE] == 'resource' && expr[KEY_KEYS].size == 1
          :defaults
        else
          :override
        end
      else
        :error
      end
    else
      :error
    end
  end

  # Factory starting points

  def self.literal(o);                   infer(o);                                       end

  def self.minus(o);                     infer(o).minus;                                 end

  def self.unfold(o);                    infer(o).unfold;                                end

  def self.var(o);                       infer(o).var;                                   end

  def self.block(*args);                 new(BlockExpression, args.map { |arg| infer(arg) }); end

  def self.string(*args);                new(ConcatenatedString, args.map { |arg| infer(arg) });           end

  def self.text(o);                      infer(o).text;                                  end

  def self.IF(test_e,then_e,else_e);     new(IfExpression, test_e, then_e, else_e);      end

  def self.UNLESS(test_e,then_e,else_e); new(UnlessExpression, test_e, then_e, else_e);  end

  def self.CASE(test_e,*options);        new(CaseExpression, test_e, options);           end

  def self.WHEN(values_list, block);     new(CaseOption, values_list, block);            end

  def self.MAP(match, value);            new(SelectorEntry, match, value);               end

  def self.KEY_ENTRY(key, val);          new(KeyedEntry, key, val);                      end

  def self.HASH(entries);                new(LiteralHash, entries, false);               end

  def self.HASH_UNFOLDED(entries);       new(LiteralHash, entries, true);                end

  def self.HEREDOC(name, expr);          new(HeredocExpression, name, expr);             end

  def self.STRING(*args);                new(ConcatenatedString, args);                  end

  def self.LIST(entries);                new(LiteralList, entries);                      end

  def self.PARAM(name, expr=nil);        new(Parameter, name, expr);                     end

  def self.NODE(hosts, parent, body);    new(NodeDefinition, hosts, parent, body);       end

  # Parameters

  # Mark parameter as capturing the rest of arguments
  def captures_rest
    @init_hash['captures_rest'] = true
  end

  # Set Expression that should evaluate to the parameter's type
  def type_expr(o)
    @init_hash['type_expr'] = o
  end

  # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
  # case it is returned.
  #
  def self.fqn(o)
    o.instance_of?(Factory) && o.model_class <= QualifiedName ? self : new(QualifiedName, o)
  end

  # Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
  # case it is returned.
  #
  def self.fqr(o)
    o.instance_of?(Factory) && o.model_class <= QualifiedReference ? self : new(QualifiedReference, o)
  end

  def self.SUBLOCATE(token, expr_factory)
    # expr is a Factory wrapped LiteralString, or ConcatenatedString
    # The token is SUBLOCATED token which has a SubLocator as the token's locator
    # Use the SubLocator to recalculate the offsets and lengths.
    model = expr_factory.model
    locator = token.locator
    expr_factory.map_offset(model, locator)
    model._pcore_all_contents([]) { |element| expr_factory.map_offset(element, locator) }

    # Returned the factory wrapping the now offset/length transformed expression(s)
    expr_factory
  end

  def self.TEXT(expr)
    new(TextExpression, infer(expr).interpolate)
  end

  # TODO_EPP
  def self.RENDER_STRING(o)
    new(RenderStringExpression, o)
  end

  def self.RENDER_EXPR(expr)
    new(RenderExpression, expr)
  end

  def self.EPP(parameters, body)
    if parameters.nil?
      params = []
      parameters_specified = false
    else
      params = parameters
      parameters_specified = true
    end
    LAMBDA(params, new(EppExpression, parameters_specified, body), nil)
  end

  def self.RESERVED(name, future=false)
    new(ReservedWord, name, future)
  end

  # TODO: This is the same a fqn factory method, don't know if callers to fqn and QNAME can live with the
  # same result or not yet - refactor into one method when decided.
  #
  def self.QNAME(name)
    new(QualifiedName, name)
  end

  def self.NUMBER(name_or_numeric)
    n_radix = Utils.to_n_with_radix(name_or_numeric)
    if n_radix
      val, radix = n_radix
      if val.is_a?(Float)
        new(LiteralFloat, val)
      else
        new(LiteralInteger, val, radix)
      end
    else
      # Bad number should already have been caught by lexer - this should never happen
      #TRANSLATORS 'NUMBER' refers to a method name and the 'name_or_numeric' was the passed in value and should not be translated
      raise ArgumentError, _("Internal Error, NUMBER token does not contain a valid number, %{name_or_numeric}") %
          { name_or_numeric: name_or_numeric }
    end
  end

  # Convert input string to either a qualified name, a LiteralInteger with radix, or a LiteralFloat
  #
  def self.QNAME_OR_NUMBER(name)
    n_radix = Utils.to_n_with_radix(name)
    if n_radix
      val, radix = n_radix
      if val.is_a?(Float)
        new(LiteralFloat, val)
      else
        new(LiteralInteger, val, radix)
      end
    else
      new(QualifiedName, name)
    end
  end

  def self.QREF(name)
    new(QualifiedReference, name)
  end

  def self.VIRTUAL_QUERY(query_expr)
    new(VirtualQuery, query_expr)
  end

  def self.EXPORTED_QUERY(query_expr)
    new(ExportedQuery, query_expr)
  end

  def self.ARGUMENTS(args, arg)
    if !args.empty? && arg.model_class <= LiteralHash && arg.unfolded
      last = args[args.size() - 1]
      if last.model_class <= LiteralHash && last.unfolded
        last['entries'].concat(arg['entries'])
        return args
      end
    end
    args.push(arg)
  end

  def self.ATTRIBUTE_OP(name, op, expr)
    new(AttributeOperation, name, op, expr)
  end

  def self.ATTRIBUTES_OP(expr)
    new(AttributesOperation, expr)
  end

  # Same as CALL_NAMED but with inference and varargs (for testing purposes)
  def self.call_named(name, rval_required, *argument_list)
    new(CallNamedFunctionExpression, fqn(name), rval_required, argument_list.map { |arg| infer(arg) })
  end

  def self.CALL_NAMED(name, rval_required, argument_list)
    new(CallNamedFunctionExpression, name, rval_required, argument_list)
  end

  def self.CALL_METHOD(functor, argument_list)
    new(CallMethodExpression, functor, true, nil, argument_list)
  end

  def self.COLLECT(type_expr, query_expr, attribute_operations)
    new(CollectExpression, type_expr, query_expr, attribute_operations)
  end

  def self.NAMED_ACCESS(type_name, bodies)
    new(NamedAccessExpression, type_name, bodies)
  end

  def self.RESOURCE(type_name, bodies)
    new(ResourceExpression, type_name, bodies)
  end

  def self.RESOURCE_DEFAULTS(type_name, attribute_operations)
    new(ResourceDefaultsExpression, type_name, attribute_operations)
  end

  def self.RESOURCE_OVERRIDE(resource_ref, attribute_operations)
    new(ResourceOverrideExpression, resource_ref, attribute_operations)
  end

  def self.RESOURCE_BODY(resource_title, attribute_operations)
    new(ResourceBody, resource_title, attribute_operations)
  end

  def self.PROGRAM(body, definitions, locator)
    new(Program, body, definitions, locator)
  end

  # Builds a BlockExpression if args size > 1, else the single expression/value in args
  def self.block_or_expression(args, left_brace = nil, right_brace = nil)
    if args.size > 1
      block_expr = new(BlockExpression, args)

      # If given a left and right brace position, use those
      # otherwise use the first and last element of the block
      if !left_brace.nil? && !right_brace.nil?
        block_expr.record_position(args.first[KEY_LOCATOR], left_brace, right_brace)
      else
        block_expr.record_position(args.first[KEY_LOCATOR], args.first, args.last)
      end

      block_expr
    else
      args[0]
    end
  end

  def self.HOSTCLASS(name, parameters, parent, body)
    new(HostClassDefinition, name, parameters, parent, body)
  end

  def self.DEFINITION(name, parameters, body)
    new(ResourceTypeDefinition, name, parameters, body)
  end

  def self.PLAN(name, parameters, body)
    new(PlanDefinition, name, parameters, body, nil)
  end

  def self.APPLY(arguments, body)
    new(ApplyExpression, arguments, body)
  end

  def self.APPLY_BLOCK(statements)
    new(ApplyBlockExpression, statements)
  end

  def self.FUNCTION(name, parameters, body, return_type)
    new(FunctionDefinition, name, parameters, body, return_type)
  end

  def self.LAMBDA(parameters, body, return_type)
    new(LambdaExpression, parameters, body, return_type)
  end

  def self.TYPE_ASSIGNMENT(lhs, rhs)
    if lhs.model_class <= AccessExpression
      new(TypeMapping, lhs, rhs)
    else
      new(TypeAlias, lhs['cased_value'], rhs)
    end
  end

  def self.TYPE_DEFINITION(name, parent, body)
    new(TypeDefinition, name, parent, body)
  end

  def self.nop? o
    o.nil? || o.instance_of?(Factory) && o.model_class <= Nop
  end

  STATEMENT_CALLS = {
    'require' => true,
    'realize' => true,
    'include' => true,
    'contain' => true,
    'tag'     => true,

    'debug'   => true,
    'info'    => true,
    'notice'  => true,
    'warning' => true,
    'err'     => true,

    'fail'    => true,
    'import'  => true,  # discontinued, but transform it to make it call error reporting function
    'break'   => true,
    'next'    => true,
    'return'  => true
  }.freeze

  # Returns true if the given name is a "statement keyword" (require, include, contain,
  # error, notice, info, debug
  #
  def self.name_is_statement?(name)
    STATEMENT_CALLS.include?(name)
  end

  class ArgsToNonCallError < RuntimeError
    attr_reader :args, :name_expr
    def initialize(args, name_expr)
      @args = args
      @name_expr = name_expr
    end
  end

  # Transforms an array of expressions containing literal name expressions to calls if followed by an
  # expression, or expression list.
  #
  def self.transform_calls(expressions)
    expressions.reduce([]) do |memo, expr|
      name = memo[-1]
      if name.instance_of?(Factory) && name.model_class <= QualifiedName && name_is_statement?(name[KEY_VALUE])
        if expr.is_a?(Array)
          expr = expr.reject { |e| e.is_a?(Parser::LexerSupport::TokenValue) }
        else
          expr = [expr]
        end
        the_call = self.CALL_NAMED(name, false, expr)
        # last positioned is last arg if there are several
        the_call.record_position(name[KEY_LOCATOR], name, expr[-1])
        memo[-1] = the_call
        if expr.is_a?(CallNamedFunctionExpression)
          # Patch statement function call to expression style
          # This is needed because it is first parsed as a "statement" and the requirement changes as it becomes
          # an argument to the name to call transform above.
          expr.rval_required = true
        end
      elsif expr.is_a?(Array)
        raise ArgsToNonCallError.new(expr, name)
      else
        memo << expr
        if expr.model_class <= CallNamedFunctionExpression
          # Patch rvalue expression function call to statement style.
          # This is not really required but done to be AST model compliant
          expr['rval_required'] = false
        end
      end
      memo
    end
  end

  # Transforms a left expression followed by an untitled resource (in the form of attribute_operations)
  # @param left [Factory, Expression] the lhs followed what may be a hash
  def self.transform_resource_wo_title(left, attribute_ops, lbrace_token, rbrace_token)
    # Returning nil means accepting the given as a potential resource expression
    return nil unless attribute_ops.is_a? Array
    return nil unless left.model_class <= QualifiedName
    keyed_entries = attribute_ops.map do |ao|
      return nil if ao[KEY_OPERATOR] == '+>'
      KEY_ENTRY(infer(ao['attribute_name']), ao['value_expr'])
    end
    a_hash = HASH(keyed_entries)
    a_hash.record_position(left[KEY_LOCATOR], lbrace_token, rbrace_token)
    result = block_or_expression(transform_calls([left, a_hash]))
    result
  end

  def interpolate_Factory(c)
    self
  end

  def interpolate_LiteralInteger(c)
    # convert number to a variable
    self.var
  end

  def interpolate_Object(c)
    self
  end

  def interpolate_QualifiedName(c)
    self.var
  end

  # rewrite left expression to variable if it is name, number, and recurse if it is an access expression
  # this is for interpolation support in new lexer (${NAME}, ${NAME[}}, ${NUMBER}, ${NUMBER[]} - all
  # other expressions requires variables to be preceded with $
  #
  def interpolate_AccessExpression(c)
    lhs = @init_hash[KEY_LEFT_EXPR]
    if is_interop_rewriteable?(lhs)
      @init_hash[KEY_LEFT_EXPR] = lhs.interpolate
    end
    self
  end

  def interpolate_NamedAccessExpression(c)
    lhs = @init_hash[KEY_LEFT_EXPR]
    if is_interop_rewriteable?(lhs)
      @init_hash[KEY_LEFT_EXPR] = lhs.interpolate
    end
    self
  end

  # Rewrite method calls on the form ${x.each ...} to ${$x.each}
  def interpolate_CallMethodExpression(c)
    functor_expr = @init_hash['functor_expr']
    if is_interop_rewriteable?(functor_expr)
      @init_hash['functor_expr'] = functor_expr.interpolate
    end
    self
  end

  def is_interop_rewriteable?(o)
    mc = o.model_class
    if mc <= AccessExpression || mc <= QualifiedName || mc <= NamedAccessExpression || mc <= CallMethodExpression
      true
    elsif mc <= LiteralInteger
      # Only decimal integers can represent variables, else it is a number
      o['radix'] == 10
    else
      false
    end
  end

  def self.concat(*args)
    result = ''.dup
    args.each do |e|
      if e.instance_of?(Factory) && e.model_class <= LiteralString
        result << e[KEY_VALUE]
      elsif e.is_a?(String)
        result << e
      else
        raise ArgumentError, _("can only concatenate strings, got %{class_name}") % { class_name: e.class }
      end
    end
    infer(result)
  end

  def to_s
    "Factory for #{@model_class}"
  end

  def factory_to_model(value)
    if value.instance_of?(Factory)
      value.contained_current(self)
    elsif value.instance_of?(Array)
      value.each_with_index { |el, idx| value[idx] = el.contained_current(self) if el.instance_of?(Factory) }
    else
      value
    end
  end

  def contained_current(container)
    if @current.nil?
      unless @init_hash.include?(KEY_LOCATOR)
        @init_hash[KEY_LOCATOR] = container[KEY_LOCATOR]
        @init_hash[KEY_OFFSET] = container[KEY_OFFSET] || 0
        @init_hash[KEY_LENGTH] = 0
      end
      @current = create_model
    end
    @current
  end
end
end
end