1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
|
# frozen_string_literal: true
# Factory is a helper class that makes construction of a Pops Model
# much more convenient. It can be viewed as a small internal DSL for model
# constructions.
# For usage see tests using the factory.
#
# @todo All those uppercase methods ... they look bad in one way, but stand out nicely in the grammar...
# decide if they should change into lower case names (some of the are lower case)...
#
module Puppet::Pops
module Model
class Factory
# Shared build_visitor, since there are many instances of Factory being used
KEY_LENGTH = 'length'
KEY_OFFSET = 'offset'
KEY_LOCATOR = 'locator'
KEY_OPERATOR = 'operator'
KEY_VALUE = 'value'
KEY_KEYS = 'keys'
KEY_NAME = 'name'
KEY_BODY = 'body'
KEY_EXPR = 'expr'
KEY_LEFT_EXPR = 'left_expr'
KEY_RIGHT_EXPR = 'right_expr'
KEY_PARAMETERS = 'parameters'
BUILD_VISITOR = Visitor.new(self, 'build')
INFER_VISITOR = Visitor.new(self, 'infer')
INTERPOLATION_VISITOR = Visitor.new(self, 'interpolate')
MAPOFFSET_VISITOR = Visitor.new(self, 'map_offset')
def self.infer(o)
if o.instance_of?(Factory)
o
else
new(o)
end
end
attr_reader :model_class, :unfolded
def [](key)
@init_hash[key]
end
def []=(key, value)
@init_hash[key] = value
end
def all_factories(&block)
block.call(self)
@init_hash.each_value { |value| value.all_factories(&block) if value.instance_of?(Factory) }
end
def model
if @current.nil?
# Assign a default Locator if it's missing. Should only happen when the factory is used by other
# means than from a parser (e.g. unit tests)
unless @init_hash.include?(KEY_LOCATOR)
@init_hash[KEY_LOCATOR] = Parser::Locator.locator('<no source>', 'no file')
unless @model_class <= Program
@init_hash[KEY_OFFSET] = 0
@init_hash[KEY_LENGTH] = 0
end
end
@current = create_model
end
@current
end
# Backward API compatibility
alias current model
def create_model
@init_hash.each_pair { |key, elem| @init_hash[key] = factory_to_model(elem) }
model_class.from_asserted_hash(@init_hash)
end
# Initialize a factory with a single object, or a class with arguments applied to build of
# created instance
#
def initialize(o, *args)
@init_hash = {}
if o.instance_of?(Class)
@model_class = o
BUILD_VISITOR.visit_this_class(self, o, args)
else
INFER_VISITOR.visit_this(self, o, EMPTY_ARRAY)
end
end
def map_offset(model, locator)
MAPOFFSET_VISITOR.visit_this_1(self, model, locator)
end
def map_offset_Object(o, locator)
o
end
def map_offset_Factory(o, locator)
map_offset(o.model, locator)
end
def map_offset_Positioned(o, locator)
# Transpose the local offset, length to global "coordinates"
global_offset, global_length = locator.to_global(o.offset, o.length)
# mutate
o.instance_variable_set(:'@offset', global_offset)
o.instance_variable_set(:'@length', global_length)
# Change locator since the positions were transposed to the global coordinates
o.instance_variable_set(:'@locator', locator.locator) if locator.is_a? Puppet::Pops::Parser::Locator::SubLocator
end
# Polymorphic interpolate
def interpolate()
INTERPOLATION_VISITOR.visit_this_class(self, @model_class, EMPTY_ARRAY)
end
# Building of Model classes
def build_ArithmeticExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_AssignmentExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_AttributeOperation(o, name, op, value)
@init_hash[KEY_OPERATOR] = op
@init_hash['attribute_name'] = name.to_s # BOOLEAN is allowed in the grammar
@init_hash['value_expr'] = value
end
def build_AttributesOperation(o, value)
@init_hash[KEY_EXPR] = value
end
def build_AccessExpression(o, left, keys)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash[KEY_KEYS] = keys
end
def build_BinaryExpression(o, left, right)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash[KEY_RIGHT_EXPR] = right
end
def build_BlockExpression(o, args)
@init_hash['statements'] = args
end
def build_EppExpression(o, parameters_specified, body)
@init_hash['parameters_specified'] = parameters_specified
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
end
# @param rval_required [Boolean] if the call must produce a value
def build_CallExpression(o, functor, rval_required, args)
@init_hash['functor_expr'] = functor
@init_hash['rval_required'] = rval_required
@init_hash['arguments'] = args
end
def build_CallMethodExpression(o, functor, rval_required, lambda, args)
build_CallExpression(o, functor, rval_required, args)
@init_hash['lambda'] = lambda
end
def build_CaseExpression(o, test, args)
@init_hash['test'] = test
@init_hash['options'] = args
end
def build_CaseOption(o, value_list, then_expr)
value_list = [value_list] unless value_list.is_a?(Array)
@init_hash['values'] = value_list
b = f_build_body(then_expr)
@init_hash['then_expr'] = b unless b.nil?
end
def build_CollectExpression(o, type_expr, query_expr, attribute_operations)
@init_hash['type_expr'] = type_expr
@init_hash['query'] = query_expr
@init_hash['operations'] = attribute_operations
end
def build_ComparisonExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_ConcatenatedString(o, args)
# Strip empty segments
@init_hash['segments'] = args.reject { |arg| arg.model_class == LiteralString && arg['value'].empty? }
end
def build_HeredocExpression(o, name, expr)
@init_hash['syntax'] = name
@init_hash['text_expr'] = expr
end
# @param name [String] a valid classname
# @param parameters [Array<Parameter>] may be empty
# @param parent_class_name [String, nil] a valid classname referencing a parent class, optional.
# @param body [Array<Expression>, Expression, nil] expression that constitute the body
# @return [HostClassDefinition] configured from the parameters
#
def build_HostClassDefinition(o, name, parameters, parent_class_name, body)
build_NamedDefinition(o, name, parameters, body)
@init_hash['parent_class'] = parent_class_name unless parent_class_name.nil?
end
def build_ResourceOverrideExpression(o, resources, attribute_operations)
@init_hash['resources'] = resources
@init_hash['operations'] = attribute_operations
end
def build_ReservedWord(o, name, future)
@init_hash['word'] = name
@init_hash['future'] = future
end
def build_KeyedEntry(o, k, v)
@init_hash['key'] = k
@init_hash[KEY_VALUE] = v
end
def build_LiteralHash(o, keyed_entries, unfolded)
@init_hash['entries'] = keyed_entries
@unfolded = unfolded
end
def build_LiteralList(o, values)
@init_hash['values'] = values
end
def build_LiteralFloat(o, val)
@init_hash[KEY_VALUE] = val
end
def build_LiteralInteger(o, val, radix)
@init_hash[KEY_VALUE] = val
@init_hash['radix'] = radix
end
def build_LiteralString(o, value)
@init_hash[KEY_VALUE] = val
end
def build_IfExpression(o, t, ift, els)
@init_hash['test'] = t
@init_hash['then_expr'] = ift
@init_hash['else_expr'] = els
end
def build_ApplyExpression(o, args, body)
@init_hash['arguments'] = args
@init_hash['body'] = body
end
def build_MatchExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
# Building model equivalences of Ruby objects
# Allows passing regular ruby objects to the factory to produce instructions
# that when evaluated produce the same thing.
def infer_String(o)
@model_class = LiteralString
@init_hash[KEY_VALUE] = o
end
def infer_NilClass(o)
@model_class = Nop
end
def infer_TrueClass(o)
@model_class = LiteralBoolean
@init_hash[KEY_VALUE] = o
end
def infer_FalseClass(o)
@model_class = LiteralBoolean
@init_hash[KEY_VALUE] = o
end
def infer_Integer(o)
@model_class = LiteralInteger
@init_hash[KEY_VALUE] = o
end
def infer_Float(o)
@model_class = LiteralFloat
@init_hash[KEY_VALUE] = o
end
def infer_Regexp(o)
@model_class = LiteralRegularExpression
@init_hash['pattern'] = o.inspect
@init_hash[KEY_VALUE] = o
end
# Creates a String literal, unless the symbol is one of the special :undef, or :default
# which instead creates a LiterlUndef, or a LiteralDefault.
# Supports :undef because nil creates a no-op instruction.
def infer_Symbol(o)
case o
when :undef
@model_class = LiteralUndef
when :default
@model_class = LiteralDefault
else
infer_String(o.to_s)
end
end
# Creates a LiteralList instruction from an Array, where the entries are built.
def infer_Array(o)
@model_class = LiteralList
@init_hash['values'] = o.map { |e| Factory.infer(e) }
end
# Create a LiteralHash instruction from a hash, where keys and values are built
# The hash entries are added in sorted order based on key.to_s
#
def infer_Hash(o)
@model_class = LiteralHash
@init_hash['entries'] = o.sort_by { |k,_| k.to_s }.map { |k, v| Factory.new(KeyedEntry, Factory.infer(k), Factory.infer(v)) }
@unfolded = false
end
def f_build_body(body)
case body
when NilClass
nil
when Array
Factory.new(BlockExpression, body)
when Factory
body
else
Factory.infer(body)
end
end
def build_LambdaExpression(o, parameters, body, return_type)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_NamedDefinition(o, name, parameters, body)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
end
def build_FunctionDefinition(o, name, parameters, body, return_type)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_PlanDefinition(o, name, parameters, body, return_type=nil)
@init_hash[KEY_PARAMETERS] = parameters
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash[KEY_NAME] = name
@init_hash['return_type'] = return_type unless return_type.nil?
end
def build_NodeDefinition(o, hosts, parent, body)
@init_hash['host_matches'] = hosts
@init_hash['parent'] = parent unless parent.nil? # no nop here
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
end
def build_Parameter(o, name, expr)
@init_hash[KEY_NAME] = name
@init_hash[KEY_VALUE] = expr
end
def build_QualifiedReference(o, name)
@init_hash['cased_value'] = name.to_s
end
def build_RelationshipExpression(o, op, a, b)
@init_hash[KEY_OPERATOR] = op
build_BinaryExpression(o, a, b)
end
def build_ResourceExpression(o, type_name, bodies)
@init_hash['type_name'] = type_name
@init_hash['bodies'] = bodies
end
def build_RenderStringExpression(o, string)
@init_hash[KEY_VALUE] = string;
end
def build_ResourceBody(o, title_expression, attribute_operations)
@init_hash['title'] = title_expression
@init_hash['operations'] = attribute_operations
end
def build_ResourceDefaultsExpression(o, type_ref, attribute_operations)
@init_hash['type_ref'] = type_ref
@init_hash['operations'] = attribute_operations
end
def build_SelectorExpression(o, left, *selectors)
@init_hash[KEY_LEFT_EXPR] = left
@init_hash['selectors'] = selectors
end
def build_SelectorEntry(o, matching, value)
@init_hash['matching_expr'] = matching
@init_hash['value_expr'] = value
end
def build_QueryExpression(o, expr)
@init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
end
def build_TypeAlias(o, name, type_expr)
if type_expr.model_class <= KeyedEntry
# KeyedEntry is used for the form:
#
# type Foo = Bar { ... }
#
# The entry contains Bar => { ... } and must be transformed into:
#
# Object[{parent => Bar, ... }]
#
parent = type_expr['key']
hash = type_expr['value']
pn = parent['cased_value']
unless pn == 'Object' || pn == 'TypeSet'
hash['entries'] << Factory.KEY_ENTRY(Factory.QNAME('parent'), parent)
parent = Factory.QREF('Object')
end
type_expr = parent.access([hash])
elsif type_expr.model_class <= LiteralHash
# LiteralHash is used for the form:
#
# type Foo = { ... }
#
# The hash must be transformed into:
#
# Object[{ ... }]
#
type_expr = Factory.QREF('Object').access([type_expr])
end
@init_hash['type_expr'] = type_expr
@init_hash[KEY_NAME] = name
end
def build_TypeMapping(o, lhs, rhs)
@init_hash['type_expr'] = lhs
@init_hash['mapping_expr'] = rhs
end
def build_TypeDefinition(o, name, parent, body)
b = f_build_body(body)
@init_hash[KEY_BODY] = b unless b.nil?
@init_hash['parent'] = parent
@init_hash[KEY_NAME] = name
end
def build_UnaryExpression(o, expr)
@init_hash[KEY_EXPR] = expr unless Factory.nop?(expr)
end
def build_Program(o, body, definitions, locator)
@init_hash[KEY_BODY] = body
# non containment
@init_hash['definitions'] = definitions
@init_hash[KEY_LOCATOR] = locator
end
def build_QualifiedName(o, name)
@init_hash[KEY_VALUE] = name
end
def build_TokenValue(o)
raise "Factory can not deal with a Lexer Token. Got token: #{o}. Probably caused by wrong index in grammar val[n]."
end
# Factory helpers
def f_build_unary(klazz, expr)
Factory.new(klazz, expr)
end
def f_build_binary_op(klazz, op, left, right)
Factory.new(klazz, op, left, right)
end
def f_build_binary(klazz, left, right)
Factory.new(klazz, left, right)
end
def f_arithmetic(op, r)
f_build_binary_op(ArithmeticExpression, op, self, r)
end
def f_comparison(op, r)
f_build_binary_op(ComparisonExpression, op, self, r)
end
def f_match(op, r)
f_build_binary_op(MatchExpression, op, self, r)
end
# Operator helpers
def in(r) f_build_binary(InExpression, self, r); end
def or(r) f_build_binary(OrExpression, self, r); end
def and(r) f_build_binary(AndExpression, self, r); end
def not(); f_build_unary(NotExpression, self); end
def minus(); f_build_unary(UnaryMinusExpression, self); end
def unfold(); f_build_unary(UnfoldExpression, self); end
def text(); f_build_unary(TextExpression, self); end
def var(); f_build_unary(VariableExpression, self); end
def access(r); f_build_binary(AccessExpression, self, r); end
def dot r; f_build_binary(NamedAccessExpression, self, r); end
def + r; f_arithmetic('+', r); end
def - r; f_arithmetic('-', r); end
def / r; f_arithmetic('/', r); end
def * r; f_arithmetic('*', r); end
def % r; f_arithmetic('%', r); end
def << r; f_arithmetic('<<', r); end
def >> r; f_arithmetic('>>', r); end
def < r; f_comparison('<', r); end
def <= r; f_comparison('<=', r); end
def > r; f_comparison('>', r); end
def >= r; f_comparison('>=', r); end
def eq r; f_comparison('==', r); end
def ne r; f_comparison('!=', r); end
def =~ r; f_match('=~', r); end
def mne r; f_match('!~', r); end
def paren; f_build_unary(ParenthesizedExpression, self); end
def relop(op, r)
f_build_binary_op(RelationshipExpression, op, self, r)
end
def select(*args)
Factory.new(SelectorExpression, self, *args)
end
# Same as access, but with varargs and arguments that must be inferred. For testing purposes
def access_at(*r)
f_build_binary(AccessExpression, self, r.map { |arg| Factory.infer(arg) })
end
# For CaseExpression, setting the default for an already build CaseExpression
def default(r)
@init_hash['options'] << Factory.WHEN(Factory.infer(:default), r)
self
end
def lambda=(lambda)
@init_hash['lambda'] = lambda
self
end
# Assignment =
def set(r)
f_build_binary_op(AssignmentExpression, '=', self, r)
end
# Assignment +=
def plus_set(r)
f_build_binary_op(AssignmentExpression, '+=', self, r)
end
# Assignment -=
def minus_set(r)
f_build_binary_op(AssignmentExpression, '-=', self, r)
end
def attributes(*args)
@init_hash['attributes'] = args
self
end
def offset
@init_hash[KEY_OFFSET]
end
def length
@init_hash[KEY_LENGTH]
end
# Records the position (start -> end) and computes the resulting length.
#
def record_position(locator, start_locatable, end_locatable)
# record information directly in the Positioned object
start_offset = start_locatable.offset
@init_hash[KEY_LOCATOR] = locator
@init_hash[KEY_OFFSET] = start_offset
@init_hash[KEY_LENGTH] = end_locatable.nil? ? start_locatable.length : end_locatable.offset + end_locatable.length - start_offset
self
end
# Sets the form of the resource expression (:regular (the default), :virtual, or :exported).
# Produces true if the expression was a resource expression, false otherwise.
#
def self.set_resource_form(expr, form)
# Note: Validation handles illegal combinations
return false unless expr.instance_of?(self) && expr.model_class <= AbstractResource
expr['form'] = form
return true
end
# Returns symbolic information about an expected shape of a resource expression given the LHS of a resource expr.
#
# * `name { }` => `:resource`, create a resource of the given type
# * `Name { }` => ':defaults`, set defaults for the referenced type
# * `Name[] { }` => `:override`, overrides instances referenced by LHS
# * _any other_ => ':error', all other are considered illegal
#
def self.resource_shape(expr)
if expr == 'class'
:class
elsif expr.instance_of?(self)
mc = expr.model_class
if mc <= QualifiedName
:resource
elsif mc <= QualifiedReference
:defaults
elsif mc <= AccessExpression
# if Resource[e], then it is not resource specific
lhs = expr[KEY_LEFT_EXPR]
if lhs.model_class <= QualifiedReference && lhs[KEY_VALUE] == 'resource' && expr[KEY_KEYS].size == 1
:defaults
else
:override
end
else
:error
end
else
:error
end
end
# Factory starting points
def self.literal(o); infer(o); end
def self.minus(o); infer(o).minus; end
def self.unfold(o); infer(o).unfold; end
def self.var(o); infer(o).var; end
def self.block(*args); new(BlockExpression, args.map { |arg| infer(arg) }); end
def self.string(*args); new(ConcatenatedString, args.map { |arg| infer(arg) }); end
def self.text(o); infer(o).text; end
def self.IF(test_e,then_e,else_e); new(IfExpression, test_e, then_e, else_e); end
def self.UNLESS(test_e,then_e,else_e); new(UnlessExpression, test_e, then_e, else_e); end
def self.CASE(test_e,*options); new(CaseExpression, test_e, options); end
def self.WHEN(values_list, block); new(CaseOption, values_list, block); end
def self.MAP(match, value); new(SelectorEntry, match, value); end
def self.KEY_ENTRY(key, val); new(KeyedEntry, key, val); end
def self.HASH(entries); new(LiteralHash, entries, false); end
def self.HASH_UNFOLDED(entries); new(LiteralHash, entries, true); end
def self.HEREDOC(name, expr); new(HeredocExpression, name, expr); end
def self.STRING(*args); new(ConcatenatedString, args); end
def self.LIST(entries); new(LiteralList, entries); end
def self.PARAM(name, expr=nil); new(Parameter, name, expr); end
def self.NODE(hosts, parent, body); new(NodeDefinition, hosts, parent, body); end
# Parameters
# Mark parameter as capturing the rest of arguments
def captures_rest
@init_hash['captures_rest'] = true
end
# Set Expression that should evaluate to the parameter's type
def type_expr(o)
@init_hash['type_expr'] = o
end
# Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
# case it is returned.
#
def self.fqn(o)
o.instance_of?(Factory) && o.model_class <= QualifiedName ? self : new(QualifiedName, o)
end
# Creates a QualifiedName representation of o, unless o already represents a QualifiedName in which
# case it is returned.
#
def self.fqr(o)
o.instance_of?(Factory) && o.model_class <= QualifiedReference ? self : new(QualifiedReference, o)
end
def self.SUBLOCATE(token, expr_factory)
# expr is a Factory wrapped LiteralString, or ConcatenatedString
# The token is SUBLOCATED token which has a SubLocator as the token's locator
# Use the SubLocator to recalculate the offsets and lengths.
model = expr_factory.model
locator = token.locator
expr_factory.map_offset(model, locator)
model._pcore_all_contents([]) { |element| expr_factory.map_offset(element, locator) }
# Returned the factory wrapping the now offset/length transformed expression(s)
expr_factory
end
def self.TEXT(expr)
new(TextExpression, infer(expr).interpolate)
end
# TODO_EPP
def self.RENDER_STRING(o)
new(RenderStringExpression, o)
end
def self.RENDER_EXPR(expr)
new(RenderExpression, expr)
end
def self.EPP(parameters, body)
if parameters.nil?
params = []
parameters_specified = false
else
params = parameters
parameters_specified = true
end
LAMBDA(params, new(EppExpression, parameters_specified, body), nil)
end
def self.RESERVED(name, future=false)
new(ReservedWord, name, future)
end
# TODO: This is the same a fqn factory method, don't know if callers to fqn and QNAME can live with the
# same result or not yet - refactor into one method when decided.
#
def self.QNAME(name)
new(QualifiedName, name)
end
def self.NUMBER(name_or_numeric)
n_radix = Utils.to_n_with_radix(name_or_numeric)
if n_radix
val, radix = n_radix
if val.is_a?(Float)
new(LiteralFloat, val)
else
new(LiteralInteger, val, radix)
end
else
# Bad number should already have been caught by lexer - this should never happen
#TRANSLATORS 'NUMBER' refers to a method name and the 'name_or_numeric' was the passed in value and should not be translated
raise ArgumentError, _("Internal Error, NUMBER token does not contain a valid number, %{name_or_numeric}") %
{ name_or_numeric: name_or_numeric }
end
end
# Convert input string to either a qualified name, a LiteralInteger with radix, or a LiteralFloat
#
def self.QNAME_OR_NUMBER(name)
n_radix = Utils.to_n_with_radix(name)
if n_radix
val, radix = n_radix
if val.is_a?(Float)
new(LiteralFloat, val)
else
new(LiteralInteger, val, radix)
end
else
new(QualifiedName, name)
end
end
def self.QREF(name)
new(QualifiedReference, name)
end
def self.VIRTUAL_QUERY(query_expr)
new(VirtualQuery, query_expr)
end
def self.EXPORTED_QUERY(query_expr)
new(ExportedQuery, query_expr)
end
def self.ARGUMENTS(args, arg)
if !args.empty? && arg.model_class <= LiteralHash && arg.unfolded
last = args[args.size() - 1]
if last.model_class <= LiteralHash && last.unfolded
last['entries'].concat(arg['entries'])
return args
end
end
args.push(arg)
end
def self.ATTRIBUTE_OP(name, op, expr)
new(AttributeOperation, name, op, expr)
end
def self.ATTRIBUTES_OP(expr)
new(AttributesOperation, expr)
end
# Same as CALL_NAMED but with inference and varargs (for testing purposes)
def self.call_named(name, rval_required, *argument_list)
new(CallNamedFunctionExpression, fqn(name), rval_required, argument_list.map { |arg| infer(arg) })
end
def self.CALL_NAMED(name, rval_required, argument_list)
new(CallNamedFunctionExpression, name, rval_required, argument_list)
end
def self.CALL_METHOD(functor, argument_list)
new(CallMethodExpression, functor, true, nil, argument_list)
end
def self.COLLECT(type_expr, query_expr, attribute_operations)
new(CollectExpression, type_expr, query_expr, attribute_operations)
end
def self.NAMED_ACCESS(type_name, bodies)
new(NamedAccessExpression, type_name, bodies)
end
def self.RESOURCE(type_name, bodies)
new(ResourceExpression, type_name, bodies)
end
def self.RESOURCE_DEFAULTS(type_name, attribute_operations)
new(ResourceDefaultsExpression, type_name, attribute_operations)
end
def self.RESOURCE_OVERRIDE(resource_ref, attribute_operations)
new(ResourceOverrideExpression, resource_ref, attribute_operations)
end
def self.RESOURCE_BODY(resource_title, attribute_operations)
new(ResourceBody, resource_title, attribute_operations)
end
def self.PROGRAM(body, definitions, locator)
new(Program, body, definitions, locator)
end
# Builds a BlockExpression if args size > 1, else the single expression/value in args
def self.block_or_expression(args, left_brace = nil, right_brace = nil)
if args.size > 1
block_expr = new(BlockExpression, args)
# If given a left and right brace position, use those
# otherwise use the first and last element of the block
if !left_brace.nil? && !right_brace.nil?
block_expr.record_position(args.first[KEY_LOCATOR], left_brace, right_brace)
else
block_expr.record_position(args.first[KEY_LOCATOR], args.first, args.last)
end
block_expr
else
args[0]
end
end
def self.HOSTCLASS(name, parameters, parent, body)
new(HostClassDefinition, name, parameters, parent, body)
end
def self.DEFINITION(name, parameters, body)
new(ResourceTypeDefinition, name, parameters, body)
end
def self.PLAN(name, parameters, body)
new(PlanDefinition, name, parameters, body, nil)
end
def self.APPLY(arguments, body)
new(ApplyExpression, arguments, body)
end
def self.APPLY_BLOCK(statements)
new(ApplyBlockExpression, statements)
end
def self.FUNCTION(name, parameters, body, return_type)
new(FunctionDefinition, name, parameters, body, return_type)
end
def self.LAMBDA(parameters, body, return_type)
new(LambdaExpression, parameters, body, return_type)
end
def self.TYPE_ASSIGNMENT(lhs, rhs)
if lhs.model_class <= AccessExpression
new(TypeMapping, lhs, rhs)
else
new(TypeAlias, lhs['cased_value'], rhs)
end
end
def self.TYPE_DEFINITION(name, parent, body)
new(TypeDefinition, name, parent, body)
end
def self.nop? o
o.nil? || o.instance_of?(Factory) && o.model_class <= Nop
end
STATEMENT_CALLS = {
'require' => true,
'realize' => true,
'include' => true,
'contain' => true,
'tag' => true,
'debug' => true,
'info' => true,
'notice' => true,
'warning' => true,
'err' => true,
'fail' => true,
'import' => true, # discontinued, but transform it to make it call error reporting function
'break' => true,
'next' => true,
'return' => true
}.freeze
# Returns true if the given name is a "statement keyword" (require, include, contain,
# error, notice, info, debug
#
def self.name_is_statement?(name)
STATEMENT_CALLS.include?(name)
end
class ArgsToNonCallError < RuntimeError
attr_reader :args, :name_expr
def initialize(args, name_expr)
@args = args
@name_expr = name_expr
end
end
# Transforms an array of expressions containing literal name expressions to calls if followed by an
# expression, or expression list.
#
def self.transform_calls(expressions)
expressions.reduce([]) do |memo, expr|
name = memo[-1]
if name.instance_of?(Factory) && name.model_class <= QualifiedName && name_is_statement?(name[KEY_VALUE])
if expr.is_a?(Array)
expr = expr.reject { |e| e.is_a?(Parser::LexerSupport::TokenValue) }
else
expr = [expr]
end
the_call = self.CALL_NAMED(name, false, expr)
# last positioned is last arg if there are several
the_call.record_position(name[KEY_LOCATOR], name, expr[-1])
memo[-1] = the_call
if expr.is_a?(CallNamedFunctionExpression)
# Patch statement function call to expression style
# This is needed because it is first parsed as a "statement" and the requirement changes as it becomes
# an argument to the name to call transform above.
expr.rval_required = true
end
elsif expr.is_a?(Array)
raise ArgsToNonCallError.new(expr, name)
else
memo << expr
if expr.model_class <= CallNamedFunctionExpression
# Patch rvalue expression function call to statement style.
# This is not really required but done to be AST model compliant
expr['rval_required'] = false
end
end
memo
end
end
# Transforms a left expression followed by an untitled resource (in the form of attribute_operations)
# @param left [Factory, Expression] the lhs followed what may be a hash
def self.transform_resource_wo_title(left, attribute_ops, lbrace_token, rbrace_token)
# Returning nil means accepting the given as a potential resource expression
return nil unless attribute_ops.is_a? Array
return nil unless left.model_class <= QualifiedName
keyed_entries = attribute_ops.map do |ao|
return nil if ao[KEY_OPERATOR] == '+>'
KEY_ENTRY(infer(ao['attribute_name']), ao['value_expr'])
end
a_hash = HASH(keyed_entries)
a_hash.record_position(left[KEY_LOCATOR], lbrace_token, rbrace_token)
result = block_or_expression(transform_calls([left, a_hash]))
result
end
def interpolate_Factory(c)
self
end
def interpolate_LiteralInteger(c)
# convert number to a variable
self.var
end
def interpolate_Object(c)
self
end
def interpolate_QualifiedName(c)
self.var
end
# rewrite left expression to variable if it is name, number, and recurse if it is an access expression
# this is for interpolation support in new lexer (${NAME}, ${NAME[}}, ${NUMBER}, ${NUMBER[]} - all
# other expressions requires variables to be preceded with $
#
def interpolate_AccessExpression(c)
lhs = @init_hash[KEY_LEFT_EXPR]
if is_interop_rewriteable?(lhs)
@init_hash[KEY_LEFT_EXPR] = lhs.interpolate
end
self
end
def interpolate_NamedAccessExpression(c)
lhs = @init_hash[KEY_LEFT_EXPR]
if is_interop_rewriteable?(lhs)
@init_hash[KEY_LEFT_EXPR] = lhs.interpolate
end
self
end
# Rewrite method calls on the form ${x.each ...} to ${$x.each}
def interpolate_CallMethodExpression(c)
functor_expr = @init_hash['functor_expr']
if is_interop_rewriteable?(functor_expr)
@init_hash['functor_expr'] = functor_expr.interpolate
end
self
end
def is_interop_rewriteable?(o)
mc = o.model_class
if mc <= AccessExpression || mc <= QualifiedName || mc <= NamedAccessExpression || mc <= CallMethodExpression
true
elsif mc <= LiteralInteger
# Only decimal integers can represent variables, else it is a number
o['radix'] == 10
else
false
end
end
def self.concat(*args)
result = ''.dup
args.each do |e|
if e.instance_of?(Factory) && e.model_class <= LiteralString
result << e[KEY_VALUE]
elsif e.is_a?(String)
result << e
else
raise ArgumentError, _("can only concatenate strings, got %{class_name}") % { class_name: e.class }
end
end
infer(result)
end
def to_s
"Factory for #{@model_class}"
end
def factory_to_model(value)
if value.instance_of?(Factory)
value.contained_current(self)
elsif value.instance_of?(Array)
value.each_with_index { |el, idx| value[idx] = el.contained_current(self) if el.instance_of?(Factory) }
else
value
end
end
def contained_current(container)
if @current.nil?
unless @init_hash.include?(KEY_LOCATOR)
@init_hash[KEY_LOCATOR] = container[KEY_LOCATOR]
@init_hash[KEY_OFFSET] = container[KEY_OFFSET] || 0
@init_hash[KEY_LENGTH] = 0
end
@current = create_model
end
@current
end
end
end
end
|