File: types.rb

package info (click to toggle)
puppet-agent 8.10.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 27,404 kB
  • sloc: ruby: 286,820; sh: 492; xml: 116; makefile: 88; cs: 68
file content (3651 lines) | stat: -rw-r--r-- 104,070 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
# frozen_string_literal: true

require_relative 'iterable'
require_relative 'recursion_guard'
require_relative 'type_acceptor'
require_relative 'type_asserter'
require_relative 'type_assertion_error'
require_relative 'type_conversion_error'
require_relative 'type_formatter'
require_relative 'type_calculator'
require_relative 'type_factory'
require_relative 'type_parser'
require_relative 'class_loader'
require_relative 'type_mismatch_describer'
require_relative 'puppet_object'

module Puppet::Pops
module Types
# The EMPTY_xxx declarations is for backward compatibility. They should not be explicitly referenced

# @api private
# @deprecated
EMPTY_HASH = Puppet::Pops::EMPTY_HASH

# @api private
# @deprecated
EMPTY_ARRAY = Puppet::Pops::EMPTY_ARRAY

# @api private
# @deprecated
EMPTY_STRING = Puppet::Pops::EMPTY_STRING

# The Types model is a model of Puppet Language types.
#
# The {TypeCalculator} should be used to answer questions about types. The {TypeFactory} or {TypeParser} should be used
# to create an instance of a type whenever one is needed.
#
# The implementation of the Types model contains methods that are required for the type objects to behave as
# expected when comparing them and using them as keys in hashes. (No other logic is, or should be included directly in
# the model's classes).
#
# @api public
#
class TypedModelObject < Object
  include PuppetObject
  include Visitable
  include Adaptable

  def self._pcore_type
    @type
  end

  def self.create_ptype(loader, ir, parent_name, attributes_hash = EMPTY_HASH)
    @type = Pcore.create_object_type(loader, ir, self, "Pcore::#{simple_name}Type", "Pcore::#{parent_name}", attributes_hash)
  end

  def self.register_ptypes(loader, ir)
    types = [
      Annotation.register_ptype(loader, ir),
      RubyMethod.register_ptype(loader, ir)
    ]
    Types.constants.each do |c|
      next if c == :PType || c == :PHostClassType

      cls = Types.const_get(c)
      next unless cls.is_a?(Class) && cls < self

      type = cls.register_ptype(loader, ir)
      types << type unless type.nil?
    end
    types.each { |type| type.resolve(loader) }
  end
end

# Base type for all types
# @api public
#
class PAnyType < TypedModelObject
  def self.register_ptype(loader, ir)
    @type = Pcore.create_object_type(loader, ir, self, 'Pcore::AnyType', 'Any', EMPTY_HASH)
  end

  def self.create(*args)
    # NOTE! Important to use self::DEFAULT and not just DEFAULT since the latter yields PAnyType::DEFAULT
    args.empty? ? self::DEFAULT : new(*args)
  end

  # Accept a visitor that will be sent the message `visit`, once with `self` as the
  # argument. The visitor will then visit all types that this type contains.
  #
  def accept(visitor, guard)
    visitor.visit(self, guard)
  end

  # Checks if _o_ is a type that is assignable to this type.
  # If _o_ is a `Class` then it is first converted to a type.
  # If _o_ is a Variant, then it is considered assignable when all its types are assignable
  #
  # The check for assignable must be guarded against self recursion since `self`, the given type _o_,
  # or both, might be a `TypeAlias`. The initial caller of this method will typically never care
  # about this and hence pass only the first argument, but as soon as a check of a contained type
  # encounters a `TypeAlias`, then a `RecursionGuard` instance is created and passed on in all
  # subsequent calls. The recursion is allowed to continue until self recursion has been detected in
  # both `self` and in the given type. At that point the given type is considered to be assignable
  # to `self` since all checks up to that point were positive.
  #
  # @param o [Class,PAnyType] the class or type to test
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean] `true` when _o_ is assignable to this type
  # @api public
  def assignable?(o, guard = nil)
    case o
    when Class
      # Safe to call _assignable directly since a Class never is a Unit or Variant
      _assignable?(TypeCalculator.singleton.type(o), guard)
    when PUnitType
      true
    when PTypeAliasType
      # An alias may contain self recursive constructs.
      if o.self_recursion?
        guard ||= RecursionGuard.new
        if guard.add_that(o) == RecursionGuard::SELF_RECURSION_IN_BOTH
          # Recursion detected both in self and other. This means that other is assignable
          # to self. This point would not have been reached otherwise
          true
        else
          assignable?(o.resolved_type, guard)
        end
      else
        assignable?(o.resolved_type, guard)
      end
    when PVariantType
      # Assignable if all contained types are assignable, or if this is exactly Any
      return true if instance_of?(PAnyType)
      # An empty variant may be assignable to NotUndef[T] if T is assignable to empty variant
      return _assignable?(o, guard) if is_a?(PNotUndefType) && o.types.empty?

      !o.types.empty? && o.types.all? { |vt| assignable?(vt, guard) }
    when POptionalType
      # Assignable if undef and contained type is assignable
      assignable?(PUndefType::DEFAULT) && (o.type.nil? || assignable?(o.type))
    when PNotUndefType
      if !(o.type.nil? || o.type.assignable?(PUndefType::DEFAULT))
        assignable?(o.type, guard)
      else
        _assignable?(o, guard)
      end
    else
      _assignable?(o, guard)
    end
  end

  # Returns `true` if this instance is a callable that accepts the given _args_type_ type
  #
  # @param args_type [PAnyType] the arguments to test
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean] `true` if this instance is a callable that accepts the given _args_
  def callable?(args_type, guard = nil)
    args_type.is_a?(PAnyType) && kind_of_callable? && args_type.callable_args?(self, guard)
  end

  # Returns `true` if this instance is a callable that accepts the given _args_
  #
  # @param args [Array] the arguments to test
  # @param block [Proc] block, or nil if not called with a block
  # @return [Boolean] `true` if this instance is a callable that accepts the given _args_
  def callable_with?(args, block = nil)
    false
  end

  # Returns `true` if this instance is considered valid as arguments to the given `callable`
  # @param callable [PAnyType] the callable
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean] `true` if this instance is considered valid as arguments to the given `callable`
  # @api private
  def callable_args?(callable, guard)
    false
  end

  # Called from the `PTypeAliasType` when it detects self recursion. The default is to do nothing
  # but some self recursive constructs are illegal such as when a `PObjectType` somehow inherits itself
  # @param originator [PTypeAliasType] the starting point for the check
  # @raise Puppet::Error if an illegal self recursion is detected
  # @api private
  def check_self_recursion(originator)
  end

  # Generalizes value specific types. Types that are not value specific will return `self` otherwise
  # the generalized type is returned.
  #
  # @return [PAnyType] The generalized type
  # @api public
  def generalize
    # Applicable to all types that have no variables
    self
  end

  # Returns the loader that loaded this type.
  # @return [Loaders::Loader] the loader
  def loader
    Loaders.static_loader
  end

  # Normalizes the type. This does not change the characteristics of the type but it will remove duplicates
  # and constructs like NotUndef[T] where T is not assignable from Undef and change Variant[*T] where all
  # T are enums into an Enum.
  #
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [PAnyType] The iterable type that this type is assignable to or `nil`
  # @api public
  def normalize(guard = nil)
    self
  end

  # Called from the TypeParser once it has found a type using the Loader to enable that this type can
  # resolve internal type expressions using a loader. Presently, this method is a no-op for all types
  # except the {{PTypeAliasType}}.
  #
  # @param loader [Loader::Loader] loader to use
  # @return [PTypeAliasType] the receiver of the call, i.e. `self`
  # @api private
  def resolve(loader)
    self
  end

  # Responds `true` for all callables, variants of callables and unless _optional_ is
  # false, all optional callables.
  # @param optional [Boolean]
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean] `true`if this type is considered callable
  # @api private
  def kind_of_callable?(optional = true, guard = nil)
    false
  end

  # Returns `true` if an instance of this type is iterable, `false` otherwise
  # The method #iterable_type must produce a `PIterableType` instance when this
  # method returns `true`
  #
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean] flag to indicate if instances of  this type is iterable.
  def iterable?(guard = nil)
    false
  end

  # Returns the `PIterableType` that this type should be assignable to, or `nil` if no such type exists.
  # A type that returns a `PIterableType` must respond `true` to `#iterable?`.
  #
  # @example
  #     Any Collection[T] is assignable to an Iterable[T]
  #     A String is assignable to an Iterable[String] iterating over the strings characters
  #     An Integer is assignable to an Iterable[Integer] iterating over the 'times' enumerator
  #     A Type[T] is assignable to an Iterable[Type[T]] if T is an Integer or Enum
  #
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [PIterableType,nil] The iterable type that this type is assignable to or `nil`
  # @api private
  def iterable_type(guard = nil)
    nil
  end

  def hash
    self.class.hash
  end

  # Returns true if the given argument _o_ is an instance of this type
  # @param guard [RecursionGuard] guard against recursion. Only used by internal calls
  # @return [Boolean]
  # @api public
  def instance?(o, guard = nil)
    true
  end

  # An object is considered to really be an instance of a type when something other than a
  # TypeAlias or a Variant responds true to a call to {#instance?}.
  #
  # @return [Integer] -1 = is not instance, 0 = recursion detected, 1 = is instance
  # @api private
  def really_instance?(o, guard = nil)
    instance?(o, guard) ? 1 : -1
  end

  def eql?(o)
    self.class == o.class
  end

  def ==(o)
    eql?(o)
  end

  def simple_name
    self.class.simple_name
  end

  # Strips the class name from all module prefixes, the leading 'P' and the ending 'Type'. I.e.
  # an instance of PVariantType will return 'Variant'
  # @return [String] the simple name of this type
  def self.simple_name
    @simple_name ||= (
      n = name
      n[n.rindex(DOUBLE_COLON) + 3..n.size - 5].freeze
    )
  end

  def to_alias_expanded_s
    TypeFormatter.new.alias_expanded_string(self)
  end

  def to_s
    TypeFormatter.string(self)
  end

  # Returns the name of the type, without parameters
  # @return [String] the name of the type
  # @api public
  def name
    simple_name
  end

  def create(*args)
    Loaders.find_loader(nil).load(:function, 'new').call({}, self, *args)
  end

  # Create an instance of this type.
  # The default implementation will just dispatch the call to the class method with the
  # same name and pass `self` as the first argument.
  #
  # @return [Function] the created function
  # @raises ArgumentError
  #
  def new_function
    self.class.new_function(self)
  end

  # This default implementation of of a new_function raises an Argument Error.
  # Types for which creating a new instance is supported, should create and return
  # a Puppet Function class by using Puppet:Loaders.create_loaded_function(:new, loader)
  # and return that result.
  #
  # @param type [PAnyType] the type to create a new function for
  # @return [Function] the created function
  # @raises ArgumentError
  #
  def self.new_function(type)
    raise ArgumentError, "Creation of new instance of type '#{type}' is not supported"
  end

  # Answers the question if instances of this type can represent themselves as a string that
  # can then be passed to the create method
  #
  # @return [Boolean] whether or not the instance has a canonical string representation
  def roundtrip_with_string?
    false
  end

  # The default instance of this type. Each type in the type system has this constant
  # declared.
  #
  DEFAULT = PAnyType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PAnyType)
  end

  # Produces the tuple entry at the given index given a tuple type, its from/to constraints on the last
  # type, and an index.
  # Produces nil if the index is out of bounds
  # from must be less than to, and from may not be less than 0
  #
  # @api private
  #
  def tuple_entry_at(tuple_t, to, index)
    regular = (tuple_t.types.size - 1)
    if index < regular
      tuple_t.types[index]
    elsif index < regular + to
      # in the varargs part
      tuple_t.types[-1]
    else
      nil
    end
  end

  # Applies a transformation by sending the given _method_ and _method_args_ to each of the types of the given array
  # and collecting the results in a new array. If all transformation calls returned the type instance itself (i.e. no
  # transformation took place), then this method will return `self`. If a transformation did occur, then this method
  # will either return the transformed array or in case a block was given, the result of calling a given block with
  # the transformed array.
  #
  # @param types [Array<PAnyType>] the array of types to transform
  # @param method [Symbol] The method to call on each type
  # @param method_args [Object] The arguments to pass to the method, if any
  # @return [Object] self, the transformed array, or the result of calling a given block with the transformed array
  # @yieldparam altered_types [Array<PAnyType>] the altered type array
  # @api private
  def alter_type_array(types, method, *method_args)
    modified = false
    modified_types = types.map do |t|
      t_mod = t.send(method, *method_args)
      modified ||= !t.equal?(t_mod)
      t_mod
    end
    if modified
      block_given? ? yield(modified_types) : modified_types
    else
      self
    end
  end
end

# @abstract Encapsulates common behavior for a type that contains one type
# @api public
class PTypeWithContainedType < PAnyType
  def self.register_ptype(loader, ir)
    # Abstract type. It doesn't register anything
  end

  attr_reader :type

  def initialize(type)
    @type = type
  end

  def accept(visitor, guard)
    super
    @type.accept(visitor, guard) unless @type.nil?
  end

  def generalize
    if @type.nil?
      self.class::DEFAULT
    else
      ge_type = @type.generalize
      @type.equal?(ge_type) ? self : self.class.new(ge_type)
    end
  end

  def normalize(guard = nil)
    if @type.nil?
      self.class::DEFAULT
    else
      ne_type = @type.normalize(guard)
      @type.equal?(ne_type) ? self : self.class.new(ne_type)
    end
  end

  def hash
    self.class.hash ^ @type.hash
  end

  def eql?(o)
    self.class == o.class && @type == o.type
  end

  def resolve(loader)
    rtype = @type
    rtype = rtype.resolve(loader) unless rtype.nil?
    rtype.equal?(@type) ? self : self.class.new(rtype)
  end
end

# The type of types.
# @api public
#
class PTypeType < PTypeWithContainedType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  # Returns a new function that produces a Type instance
  #
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_type, type.loader) do
      dispatch :from_string do
        param 'String[1]', :type_string
      end

      def from_string(type_string)
        TypeParser.singleton.parse(type_string, loader)
      end
    end
  end

  def instance?(o, guard = nil)
    case o
    when PAnyType
      type.nil? || type.assignable?(o, guard)
    when Module, Puppet::Resource, Puppet::Parser::Resource
      @type.nil? ? true : assignable?(TypeCalculator.infer(o))
    else
      false
    end
  end

  def iterable?(guard = nil)
    case @type
    when PEnumType
      true
    when PIntegerType
      @type.finite_range?
    else
      false
    end
  end

  def iterable_type(guard = nil)
    # The types PIntegerType and PEnumType are Iterable
    case @type
    when PEnumType
      # @type describes the element type perfectly since the iteration is made over the
      # contained choices.
      PIterableType.new(@type)
    when PIntegerType
      # @type describes the element type perfectly since the iteration is made over the
      # specified range.
      @type.finite_range? ? PIterableType.new(@type) : nil
    else
      nil
    end
  end

  def eql?(o)
    self.class == o.class && @type == o.type
  end

  DEFAULT = PTypeType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    return false unless o.is_a?(PTypeType)
    return true if @type.nil? # wide enough to handle all types
    return false if o.type.nil? # wider than t

    @type.assignable?(o.type, guard)
  end
end

# For backward compatibility
PType = PTypeType

class PNotUndefType < PTypeWithContainedType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  def initialize(type = nil)
    super(type.instance_of?(PAnyType) ? nil : type)
  end

  def instance?(o, guard = nil)
    !(o.nil? || o == :undef) && (@type.nil? || @type.instance?(o, guard))
  end

  def normalize(guard = nil)
    n = super
    if n.type.nil?
      n
    elsif n.type.is_a?(POptionalType)
      PNotUndefType.new(n.type.type).normalize
    # No point in having an optional in a NotUndef
    elsif !n.type.assignable?(PUndefType::DEFAULT)
      # THe type is NotUndef anyway, so it can be stripped of
      n.type
    else
      n
    end
  end

  def new_function
    # If only NotUndef, then use Unit's null converter
    if type.nil?
      PUnitType.new_function(self)
    else
      type.new_function
    end
  end

  DEFAULT = PNotUndefType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PAnyType) && !o.assignable?(PUndefType::DEFAULT, guard) && (@type.nil? || @type.assignable?(o, guard))
  end
end

# @api public
#
class PUndefType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType')
  end

  def instance?(o, guard = nil)
    o.nil? || :undef == o
  end

  # @api private
  def callable_args?(callable_t, guard)
    # if callable_t is Optional (or indeed PUndefType), this means that 'missing callable' is accepted
    callable_t.assignable?(DEFAULT, guard)
  end

  DEFAULT = PUndefType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PUndefType)
  end
end

# A type private to the type system that describes "ignored type" - i.e. "I am what you are"
# @api private
#
class PUnitType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType')
  end

  def instance?(o, guard = nil)
    true
  end

  # A "null" implementation - that simply returns the given argument
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_unit, type.loader) do
      dispatch :from_args do
        param 'Any', :from
      end

      def from_args(from)
        from
      end
    end
  end

  DEFAULT = PUnitType.new

  def assignable?(o, guard = nil)
    true
  end

  protected

  # @api private
  def _assignable?(o, guard)
    true
  end
end

# @api public
#
class PDefaultType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType')
  end

  def instance?(o, guard = nil)
    # Ensure that Symbol.== is called here instead of something unknown
    # that is implemented on o
    :default == o
  end

  DEFAULT = PDefaultType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PDefaultType)
  end
end

# Type that is a Scalar
# @api public
#
class PScalarType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType')
  end

  def instance?(o, guard = nil)
    if o.is_a?(String) || o.is_a?(Numeric) || o.is_a?(TrueClass) || o.is_a?(FalseClass) || o.is_a?(Regexp)
      true
    elsif o.instance_of?(Array) || o.instance_of?(Hash) || o.is_a?(PAnyType) || o.is_a?(NilClass)
      false
    else
      assignable?(TypeCalculator.infer(o))
    end
  end

  def roundtrip_with_string?
    true
  end

  DEFAULT = PScalarType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PScalarType) ||
      PStringType::DEFAULT.assignable?(o, guard) ||
      PIntegerType::DEFAULT.assignable?(o, guard) ||
      PFloatType::DEFAULT.assignable?(o, guard) ||
      PBooleanType::DEFAULT.assignable?(o, guard) ||
      PRegexpType::DEFAULT.assignable?(o, guard) ||
      PSemVerType::DEFAULT.assignable?(o, guard) ||
      PSemVerRangeType::DEFAULT.assignable?(o, guard) ||
      PTimespanType::DEFAULT.assignable?(o, guard) ||
      PTimestampType::DEFAULT.assignable?(o, guard)
  end
end

# Like Scalar but limited to Json Data.
# @api public
#
class PScalarDataType < PScalarType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarType')
  end

  def instance?(o, guard = nil)
    o.instance_of?(String) || o.is_a?(Integer) || o.is_a?(Float) || o.is_a?(TrueClass) || o.is_a?(FalseClass)
  end

  DEFAULT = PScalarDataType.new

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PScalarDataType) ||
      PStringType::DEFAULT.assignable?(o, guard) ||
      PIntegerType::DEFAULT.assignable?(o, guard) ||
      PFloatType::DEFAULT.assignable?(o, guard) ||
      PBooleanType::DEFAULT.assignable?(o, guard)
  end
end

# A string type describing the set of strings having one of the given values
# @api public
#
class PEnumType < PScalarDataType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarDataType',
                 'values' => PArrayType.new(PStringType::NON_EMPTY),
                 'case_insensitive' => { 'type' => PBooleanType::DEFAULT, 'value' => false })
  end

  attr_reader :values, :case_insensitive

  def initialize(values, case_insensitive = false)
    @values = values.uniq.sort.freeze
    @case_insensitive = case_insensitive
  end

  def case_insensitive?
    @case_insensitive
  end

  # Returns Enumerator if no block is given, otherwise, calls the given
  # block with each of the strings for this enum
  def each(&block)
    r = Iterable.on(self)
    block_given? ? r.each(&block) : r
  end

  def generalize
    # General form of an Enum is a String
    if @values.empty?
      PStringType::DEFAULT
    else
      range = @values.map(&:size).minmax
      PStringType.new(PIntegerType.new(range.min, range.max))
    end
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    # An instance of an Enum is a String
    PStringType::ITERABLE_TYPE
  end

  def hash
    @values.hash ^ @case_insensitive.hash
  end

  def eql?(o)
    self.class == o.class && @values == o.values && @case_insensitive == o.case_insensitive?
  end

  def instance?(o, guard = nil)
    if o.is_a?(String)
      @case_insensitive ? @values.any? { |p| p.casecmp(o) == 0 } : @values.any? { |p| p == o }
    else
      false
    end
  end

  DEFAULT = PEnumType.new(EMPTY_ARRAY)

  protected

  # @api private
  def _assignable?(o, guard)
    return true if self == o

    svalues = values
    if svalues.empty?
      return true if o.is_a?(PStringType) || o.is_a?(PEnumType) || o.is_a?(PPatternType)
    end
    case o
    when PStringType
      # if the contained string is found in the set of enums
      instance?(o.value, guard)
    when PEnumType
      !o.values.empty? && (case_insensitive? || !o.case_insensitive?) && o.values.all? { |s| instance?(s, guard) }
    else
      false
    end
  end
end

INTEGER_HEX = '(?:0[xX][0-9A-Fa-f]+)'
INTEGER_OCT = '(?:0[0-7]+)'
INTEGER_BIN = '(?:0[bB][01]+)'
INTEGER_DEC = '(?:0|[1-9]\d*)'
INTEGER_DEC_OR_OCT = '(?:\d+)'
SIGN_PREFIX = '[+-]?\s*'

OPTIONAL_FRACTION = '(?:\.\d+)?'
OPTIONAL_EXPONENT = '(?:[eE]-?\d+)?'
FLOAT_DEC = '(?:' + INTEGER_DEC + OPTIONAL_FRACTION + OPTIONAL_EXPONENT + ')'

INTEGER_PATTERN = '\A' + SIGN_PREFIX + '(?:' + INTEGER_DEC + '|' + INTEGER_HEX + '|' + INTEGER_OCT + '|' + INTEGER_BIN + ')\z'
INTEGER_PATTERN_LENIENT = '\A' + SIGN_PREFIX + '(?:' + INTEGER_DEC_OR_OCT + '|' + INTEGER_HEX + '|' + INTEGER_BIN + ')\z'
FLOAT_PATTERN = '\A' + SIGN_PREFIX + '(?:' + FLOAT_DEC + '|' + INTEGER_HEX + '|' + INTEGER_OCT + '|' + INTEGER_BIN + ')\z'

# @api public
#
class PNumericType < PScalarDataType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarDataType',
                 'from' => { KEY_TYPE => POptionalType.new(PNumericType::DEFAULT), KEY_VALUE => nil },
                 'to' => { KEY_TYPE => POptionalType.new(PNumericType::DEFAULT), KEY_VALUE => nil })
  end

  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_numeric, type.loader) do
      local_types do
        type "Convertible = Variant[Integer, Float, Boolean, Pattern[/#{FLOAT_PATTERN}/], Timespan, Timestamp]"
        type 'NamedArgs   = Struct[{from => Convertible, Optional[abs] => Boolean}]'
      end

      dispatch :from_args do
        param          'Convertible',  :from
        optional_param 'Boolean',      :abs
      end

      dispatch :from_hash do
        param          'NamedArgs', :hash_args
      end

      argument_mismatch :on_error do
        param          'Any',     :from
        optional_param 'Boolean', :abs
      end

      def from_args(from, abs = false)
        result = from_convertible(from)
        abs ? result.abs : result
      end

      def from_hash(args_hash)
        from_args(args_hash['from'], args_hash['abs'] || false)
      end

      def from_convertible(from)
        case from
        when Float
          from
        when Integer
          from
        when Time::TimeData
          from.to_f
        when TrueClass
          1
        when FalseClass
          0
        else
          begin
            if from[0] == '0'
              second_char = (from[1] || '').downcase
              if second_char == 'b' || second_char == 'x'
                # use built in conversion
                return Integer(from)
              end
            end

            Puppet::Pops::Utils.to_n(from)
          rescue TypeError => e
            raise TypeConversionError, e.message
          rescue ArgumentError => e
            raise TypeConversionError, e.message
          end
        end
      end

      def on_error(from, abs = false)
        if from.is_a?(String)
          _("The string '%{str}' cannot be converted to Numeric") % { str: from }
        else
          t = TypeCalculator.singleton.infer(from).generalize
          _("Value of type %{type} cannot be converted to Numeric") % { type: t }
        end
      end
    end
  end

  def initialize(from, to = Float::INFINITY)
    from = -Float::INFINITY if from.nil? || from == :default
    to = Float::INFINITY if to.nil? || to == :default
    raise ArgumentError, "'from' must be less or equal to 'to'. Got (#{from}, #{to}" if from > to

    @from = from
    @to = to
  end

  # Checks if this numeric range intersects with another
  #
  # @param o [PNumericType] the range to compare with
  # @return [Boolean] `true` if this range intersects with the other range
  # @api public
  def intersect?(o)
    instance_of?(o.class) && !(@to < o.numeric_from || o.numeric_to < @from)
  end

  # Returns the lower bound of the numeric range or `nil` if no lower bound is set.
  # @return [Float,Integer]
  def from
    @from == -Float::INFINITY ? nil : @from
  end

  # Returns the upper bound of the numeric range or `nil` if no upper bound is set.
  # @return [Float,Integer]
  def to
    @to == Float::INFINITY ? nil : @to
  end

  # Same as #from but will return `-Float::Infinity` instead of `nil` if no lower bound is set.
  # @return [Float,Integer]
  def numeric_from
    @from
  end

  # Same as #to but will return `Float::Infinity` instead of `nil` if no lower bound is set.
  # @return [Float,Integer]
  def numeric_to
    @to
  end

  def hash
    @from.hash ^ @to.hash
  end

  def eql?(o)
    self.class == o.class && @from == o.numeric_from && @to == o.numeric_to
  end

  def instance?(o, guard = nil)
    (o.is_a?(Float) || o.is_a?(Integer)) && o >= @from && o <= @to
  end

  def unbounded?
    @from == -Float::INFINITY && @to == Float::INFINITY
  end

  protected

  # @api_private
  def _assignable?(o, guard)
    return false unless o.is_a?(self.class)

    # If o min and max are within the range of t
    @from <= o.numeric_from && @to >= o.numeric_to
  end

  DEFAULT = PNumericType.new(-Float::INFINITY)
end

# @api public
#
class PIntegerType < PNumericType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'NumericType')
  end

  # Will respond `true` for any range that is bounded at both ends.
  #
  # @return [Boolean] `true` if the type describes a finite range.
  def finite_range?
    @from != -Float::INFINITY && @to != Float::INFINITY
  end

  def generalize
    DEFAULT
  end

  def instance?(o, guard = nil)
    o.is_a?(Integer) && o >= numeric_from && o <= numeric_to
  end

  # Checks if this range is adjacent to the given range
  #
  # @param o [PIntegerType] the range to compare with
  # @return [Boolean] `true` if this range is adjacent to the other range
  # @api public
  def adjacent?(o)
    o.is_a?(PIntegerType) && (@to + 1 == o.from || o.to + 1 == @from)
  end

  # Concatenates this range with another range provided that the ranges intersect or
  # are adjacent. When that's not the case, this method will return `nil`
  #
  # @param o [PIntegerType] the range to concatenate with this range
  # @return [PIntegerType,nil] the concatenated range or `nil` when the ranges were apart
  # @api public
  def merge(o)
    if intersect?(o) || adjacent?(o)
      min = @from <= o.numeric_from ? @from : o.numeric_from
      max = @to >= o.numeric_to ? @to : o.numeric_to
      PIntegerType.new(min, max)
    else
      nil
    end
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    # It's unknown if the iterable will be a range (min, max) or a "times" (0, max)
    PIterableType.new(PIntegerType::DEFAULT)
  end

  # Returns Float.Infinity if one end of the range is unbound
  def size
    return Float::INFINITY if @from == -Float::INFINITY || @to == Float::INFINITY

    1 + (to - from).abs
  end

  # Returns the range as an array ordered so the smaller number is always first.
  # The number may be Infinity or -Infinity.
  def range
    [@from, @to]
  end

  # Returns Enumerator if no block is given
  # Returns nil if size is infinity (does not yield)
  def each(&block)
    r = Iterable.on(self)
    block_given? ? r.each(&block) : r
  end

  # Returns a range where both to and from are positive numbers. Negative
  # numbers are converted to zero
  # @return [PIntegerType] a positive range
  def to_size
    if @from >= 0
      self
    else
      PIntegerType.new(0, @to < 0 ? 0 : @to)
    end
  end

  def new_function
    @@new_function ||= Puppet::Functions.create_loaded_function(:new, loader) do
      local_types do
        type 'Radix       = Variant[Default, Integer[2,2], Integer[8,8], Integer[10,10], Integer[16,16]]'
        type "Convertible = Variant[Numeric, Boolean, Pattern[/#{INTEGER_PATTERN_LENIENT}/], Timespan, Timestamp]"
        type 'NamedArgs   = Struct[{from => Convertible, Optional[radix] => Radix, Optional[abs] => Boolean}]'
      end

      dispatch :from_args do
        param          'Convertible', :from
        optional_param 'Radix',   :radix
        optional_param 'Boolean', :abs
      end

      dispatch :from_hash do
        param          'NamedArgs', :hash_args
      end

      argument_mismatch :on_error_hash do
        param          'Hash', :hash_args
      end

      argument_mismatch :on_error do
        param          'Any',     :from
        optional_param 'Integer', :radix
        optional_param 'Boolean', :abs
      end

      def from_args(from, radix = :default, abs = false)
        result = from_convertible(from, radix)
        abs ? result.abs : result
      end

      def from_hash(args_hash)
        from_args(args_hash['from'], args_hash['radix'] || :default, args_hash['abs'] || false)
      end

      def from_convertible(from, radix)
        case from
        when Float, Time::TimeData
          from.to_i
        when Integer
          from
        when TrueClass
          1
        when FalseClass
          0
        else
          begin
            radix == :default ? Integer(from) : Integer(from, radix)
          rescue TypeError => e
            raise TypeConversionError, e.message
          rescue ArgumentError => e
            # Test for special case where there is whitespace between sign and number
            match = Patterns::WS_BETWEEN_SIGN_AND_NUMBER.match(from)
            if match
              begin
                # Try again, this time with whitespace removed
                return from_args(match[1] + match[2], radix)
              rescue TypeConversionError
                # Ignored to retain original error
              end
            end
            raise TypeConversionError, e.message
          end
        end
      end

      def on_error_hash(args_hash)
        if args_hash.include?('from')
          from = args_hash['from']
          return on_error(from) unless loader.load(:type, 'convertible').instance?(from)
        end
        radix = args_hash['radix']
        assert_radix(radix) unless radix.nil? || radix == :default
        TypeAsserter.assert_instance_of('Integer.new', loader.load(:type, 'namedargs'), args_hash)
      end

      def on_error(from, radix = :default, abs = nil)
        assert_radix(radix) unless radix == :default
        if from.is_a?(String)
          _("The string '%{str}' cannot be converted to Integer") % { str: from }
        else
          t = TypeCalculator.singleton.infer(from).generalize
          _("Value of type %{type} cannot be converted to Integer") % { type: t }
        end
      end

      def assert_radix(radix)
        case radix
        when 2, 8, 10, 16
          # do nothing
        else
          raise ArgumentError, _("Illegal radix: %{radix}, expected 2, 8, 10, 16, or default") % { radix: radix }
        end
        radix
      end
    end
  end

  DEFAULT = PIntegerType.new(-Float::INFINITY)
end

# @api public
#
class PFloatType < PNumericType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'NumericType')
  end

  def generalize
    DEFAULT
  end

  def instance?(o, guard = nil)
    o.is_a?(Float) && o >= numeric_from && o <= numeric_to
  end

  # Concatenates this range with another range provided that the ranges intersect. When that's not the case, this
  # method will return `nil`
  #
  # @param o [PFloatType] the range to concatenate with this range
  # @return [PFloatType,nil] the concatenated range or `nil` when the ranges were apart
  # @api public
  def merge(o)
    if intersect?(o)
      min = @from <= o.from ? @from : o.from
      max = @to >= o.to ? @to : o.to
      PFloatType.new(min, max)
    else
      nil
    end
  end

  # Returns a new function that produces a Float value
  #
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_float, type.loader) do
      local_types do
        type "Convertible = Variant[Numeric, Boolean, Pattern[/#{FLOAT_PATTERN}/], Timespan, Timestamp]"
        type 'NamedArgs   = Struct[{from => Convertible, Optional[abs] => Boolean}]'
      end

      dispatch :from_args do
        param          'Convertible',  :from
        optional_param 'Boolean',      :abs
      end

      dispatch :from_hash do
        param          'NamedArgs', :hash_args
      end

      argument_mismatch :on_error do
        param          'Any',     :from
        optional_param 'Boolean', :abs
      end

      def from_args(from, abs = false)
        result = from_convertible(from)
        abs ? result.abs : result
      end

      def from_hash(args_hash)
        from_args(args_hash['from'], args_hash['abs'] || false)
      end

      def from_convertible(from)
        case from
        when Float
          from
        when Integer
          Float(from)
        when Time::TimeData
          from.to_f
        when TrueClass
          1.0
        when FalseClass
          0.0
        else
          begin
            # support a binary as float
            if from[0] == '0' && from[1].casecmp('b').zero?
              from = Integer(from)
            end
            Float(from)
          rescue TypeError => e
            raise TypeConversionError, e.message
          rescue ArgumentError => e
            # Test for special case where there is whitespace between sign and number
            match = Patterns::WS_BETWEEN_SIGN_AND_NUMBER.match(from)
            if match
              begin
                # Try again, this time with whitespace removed
                return from_args(match[1] + match[2])
              rescue TypeConversionError
                # Ignored to retain original error
              end
            end
            raise TypeConversionError, e.message
          end
        end
      end

      def on_error(from, _ = false)
        if from.is_a?(String)
          _("The string '%{str}' cannot be converted to Float") % { str: from }
        else
          t = TypeCalculator.singleton.infer(from).generalize
          _("Value of type %{type} cannot be converted to Float") % { type: t }
        end
      end
    end
  end

  DEFAULT = PFloatType.new(-Float::INFINITY)
end

# @api public
#
class PCollectionType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'size_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType.new(PIntegerType::DEFAULT)),
                   KEY_VALUE => nil
                 })
  end

  attr_reader :size_type

  def initialize(size_type)
    @size_type = size_type.nil? ? nil : size_type.to_size
  end

  def accept(visitor, guard)
    super
    @size_type.accept(visitor, guard) unless @size_type.nil?
  end

  def generalize
    DEFAULT
  end

  def normalize(guard = nil)
    DEFAULT
  end

  def instance?(o, guard = nil)
    # The inferred type of a class derived from Array or Hash is either Runtime or Object. It's not assignable to the Collection type.
    if o.instance_of?(Array) || o.instance_of?(Hash)
      @size_type.nil? || @size_type.instance?(o.size)
    else
      false
    end
  end

  # Returns an array with from (min) size to (max) size
  def size_range
    (@size_type || DEFAULT_SIZE).range
  end

  def has_empty_range?
    from, to = size_range
    from == 0 && to == 0
  end

  def hash
    @size_type.hash
  end

  def iterable?(guard = nil)
    true
  end

  def eql?(o)
    self.class == o.class && @size_type == o.size_type
  end

  DEFAULT_SIZE = PIntegerType.new(0)
  ZERO_SIZE = PIntegerType.new(0, 0)
  NOT_EMPTY_SIZE = PIntegerType.new(1)
  DEFAULT = PCollectionType.new(nil)

  protected

  # @api private
  #
  def _assignable?(o, guard)
    case o
    when PCollectionType
      (@size_type || DEFAULT_SIZE).assignable?(o.size_type || DEFAULT_SIZE, guard)
    when PTupleType
      # compute the tuple's min/max size, and check if that size matches
      size_s = size_type || DEFAULT_SIZE
      size_o = o.size_type
      if size_o.nil?
        type_count = o.types.size
        size_o = PIntegerType.new(type_count, type_count)
      end
      size_s.assignable?(size_o)
    when PStructType
      from = to = o.elements.size
      (@size_type || DEFAULT_SIZE).assignable?(PIntegerType.new(from, to), guard)
    else
      false
    end
  end
end

class PIterableType < PTypeWithContainedType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  def element_type
    @type
  end

  def instance?(o, guard = nil)
    if @type.nil? || @type.assignable?(PAnyType::DEFAULT, guard)
      # Any element_type will do
      case o
      when Iterable, String, Hash, Array, Range, PEnumType
        true
      when Integer
        o >= 0
      when PIntegerType
        o.finite_range?
      when PTypeAliasType
        instance?(o.resolved_type, guard)
      else
        false
      end
    else
      assignable?(TypeCalculator.infer(o), guard)
    end
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    self
  end

  DEFAULT = PIterableType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    if @type.nil? || @type.assignable?(PAnyType::DEFAULT, guard)
      # Don't request the iterable_type. Since this Iterable accepts Any element, it is enough that o is iterable.
      o.iterable?
    else
      o = o.iterable_type
      o.nil? || o.element_type.nil? ? false : @type.assignable?(o.element_type, guard)
    end
  end
end

# @api public
#
class PIteratorType < PTypeWithContainedType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  def element_type
    @type
  end

  def instance?(o, guard = nil)
    o.is_a?(Iterable) && (@type.nil? || @type.assignable?(o.element_type, guard))
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    @type.nil? ? PIterableType::DEFAULT : PIterableType.new(@type)
  end

  DEFAULT = PIteratorType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PIteratorType) && (@type.nil? || @type.assignable?(o.element_type, guard))
  end
end

# @api public
#
class PStringType < PScalarDataType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarDataType',
                 'size_type_or_value' => {
                   KEY_TYPE => POptionalType.new(PVariantType.new([PStringType::DEFAULT, PTypeType.new(PIntegerType::DEFAULT)])),
                   KEY_VALUE => nil
                 })
  end

  attr_reader :size_type_or_value

  def initialize(size_type_or_value, deprecated_multi_args = EMPTY_ARRAY)
    unless deprecated_multi_args.empty?
      if Puppet[:strict] != :off
        # TRANSLATORS 'PStringType#initialize' is a class and method name and should not be translated
        Puppet.warn_once('deprecations', "PStringType#initialize_multi_args",
                         _("Passing more than one argument to PStringType#initialize is deprecated"))
      end
      size_type_or_value = deprecated_multi_args[0]
    end
    @size_type_or_value = size_type_or_value.is_a?(PIntegerType) ? size_type_or_value.to_size : size_type_or_value
  end

  def accept(visitor, guard)
    super
    @size_type_or_value.accept(visitor, guard) if @size_type_or_value.is_a?(PIntegerType)
  end

  def generalize
    DEFAULT
  end

  def hash
    @size_type_or_value.hash
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    ITERABLE_TYPE
  end

  def eql?(o)
    self.class == o.class && @size_type_or_value == o.size_type_or_value
  end

  def instance?(o, guard = nil)
    # true if size compliant
    if o.is_a?(String)
      if @size_type_or_value.is_a?(PIntegerType)
        @size_type_or_value.instance?(o.size, guard)
      else
        @size_type_or_value.nil? ? true : o == value
      end
    else
      false
    end
  end

  def value
    @size_type_or_value.is_a?(PIntegerType) ? nil : @size_type_or_value
  end

  # @deprecated
  # @api private
  def values
    if Puppet[:strict] != :off
      # TRANSLATORS 'PStringType#values' and '#value' are classes and method names and should not be translated
      Puppet.warn_once('deprecations', "PStringType#values", _("Method PStringType#values is deprecated. Use #value instead"))
    end
    @value.is_a?(String) ? [@value] : EMPTY_ARRAY
  end

  def size_type
    @size_type_or_value.is_a?(PIntegerType) ? @size_type_or_value : nil
  end

  def derived_size_type
    case @size_type_or_value
    when PIntegerType
      @size_type_or_value
    when String
      sz = @size_type_or_value.size
      PIntegerType.new(sz, sz)
    else
      PCollectionType::DEFAULT_SIZE
    end
  end

  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_string, type.loader) do
      local_types do
        type "Format = Pattern[/#{StringConverter::Format::FMT_PATTERN_STR}/]"
        type 'ContainerFormat = Struct[{
          Optional[format]         => Format,
          Optional[separator]      => String,
          Optional[separator2]     => String,
          Optional[string_formats] => Hash[Type, Format]
        }]'
        type 'TypeMap = Hash[Type, Variant[Format, ContainerFormat]]'
        type 'Convertible = Any'
        type 'Formats = Variant[Default, String[1], TypeMap]'
      end

      dispatch :from_args do
        param           'Convertible',  :from
        optional_param  'Formats',      :string_formats
      end

      def from_args(from, formats = :default)
        StringConverter.singleton.convert(from, formats)
      end
    end
  end

  DEFAULT = PStringType.new(nil)
  NON_EMPTY = PStringType.new(PCollectionType::NOT_EMPTY_SIZE)

  # Iterates over each character of the string
  ITERABLE_TYPE = PIterableType.new(PStringType.new(PIntegerType.new(1, 1)))

  protected

  # @api private
  def _assignable?(o, guard)
    if @size_type_or_value.is_a?(PIntegerType)
      # A general string is assignable by any other string or pattern restricted string
      # if the string has a size constraint it does not match since there is no reasonable way
      # to compute the min/max length a pattern will match. For enum, it is possible to test that
      # each enumerator value is within range
      case o
      when PStringType
        @size_type_or_value.assignable?(o.derived_size_type, guard)

      when PEnumType
        if o.values.empty?
          # enum represents all enums, and thus all strings, a sized constrained string can thus not
          # be assigned any enum (unless it is max size).
          @size_type_or_value.assignable?(PCollectionType::DEFAULT_SIZE, guard)
        else
          # true if all enum values are within range
          orange = o.values.map(&:size).minmax
          srange = @size_type_or_value.range
          # If o min and max are within the range of t
          srange[0] <= orange[0] && srange[1] >= orange[1]
        end

      when PPatternType
        # true if size constraint is at least 0 to +Infinity (which is the same as the default)
        @size_type_or_value.assignable?(PCollectionType::DEFAULT_SIZE, guard)
      else
        # no other type matches string
        false
      end
    else
      case o
      when PStringType
        # Must match exactly when value is a string
        @size_type_or_value.nil? || @size_type_or_value == o.size_type_or_value
      when PEnumType
        @size_type_or_value.nil? ? true : o.values.size == 1 && !o.case_insensitive? && o.values[0]
      when PPatternType
        @size_type_or_value.nil?
      else
        # All others are false, since no other type describes the same set of specific strings
        false
      end
    end
  end
end

# @api public
#
class PRegexpType < PScalarType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarType',
                 'pattern' => {
                   KEY_TYPE => PVariantType.new([PUndefType::DEFAULT, PStringType::DEFAULT, PRegexpType::DEFAULT]),
                   KEY_VALUE => nil
                 })
  end

  # Returns a new function that produces a Regexp instance
  #
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_float, type.loader) do
      dispatch :from_string do
        param 'String', :pattern
        optional_param 'Boolean', :escape
      end

      def from_string(pattern, escape = false)
        Regexp.new(escape ? Regexp.escape(pattern) : pattern)
      end
    end
  end

  attr_reader :pattern

  # @param regexp [Regexp] the regular expression
  # @return [String] the Regexp as a slash delimited string with slashes escaped
  def self.regexp_to_s_with_delimiters(regexp)
    regexp.options == 0 ? regexp.inspect : "/#{regexp}/"
  end

  # @param regexp [Regexp] the regular expression
  # @return [String] the Regexp as a string without escaped slash
  def self.regexp_to_s(regexp)
    append_flags_group(regexp.source, regexp.options)
  end

  def self.append_flags_group(rx_string, options)
    if options == 0
      rx_string
    else
      bld = '(?'.dup
      bld << 'i' if (options & Regexp::IGNORECASE) != 0
      bld << 'm' if (options & Regexp::MULTILINE) != 0
      bld << 'x' if (options & Regexp::EXTENDED) != 0
      unless options == (Regexp::IGNORECASE | Regexp::MULTILINE | Regexp::EXTENDED)
        bld << '-'
        bld << 'i' if (options & Regexp::IGNORECASE) == 0
        bld << 'm' if (options & Regexp::MULTILINE) == 0
        bld << 'x' if (options & Regexp::EXTENDED) == 0
      end
      bld << ':' << rx_string << ')'
      bld.freeze
    end
  end

  def initialize(pattern)
    if pattern.is_a?(Regexp)
      @regexp = pattern
      @pattern = PRegexpType.regexp_to_s(pattern)
    else
      @pattern = pattern
    end
  end

  def regexp
    @regexp ||= Regexp.new(@pattern || '')
  end

  def hash
    @pattern.hash
  end

  def eql?(o)
    self.class == o.class && @pattern == o.pattern
  end

  def instance?(o, guard = nil)
    o.is_a?(Regexp) && @pattern.nil? || regexp == o
  end

  DEFAULT = PRegexpType.new(nil)

  protected

  # @api private
  #
  def _assignable?(o, guard)
    o.is_a?(PRegexpType) && (@pattern.nil? || @pattern == o.pattern)
  end
end

# Represents a subtype of String that narrows the string to those matching the patterns
# If specified without a pattern it is basically the same as the String type.
#
# @api public
#
class PPatternType < PScalarDataType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarDataType', 'patterns' => PArrayType.new(PRegexpType::DEFAULT))
  end

  attr_reader :patterns

  def initialize(patterns)
    @patterns = patterns.freeze
  end

  def accept(visitor, guard)
    super
    @patterns.each { |p| p.accept(visitor, guard) }
  end

  def hash
    @patterns.hash
  end

  def eql?(o)
    self.class == o.class && @patterns.size == o.patterns.size && (@patterns - o.patterns).empty?
  end

  def instance?(o, guard = nil)
    o.is_a?(String) && (@patterns.empty? || @patterns.any? { |p| p.regexp.match(o) })
  end

  DEFAULT = PPatternType.new(EMPTY_ARRAY)

  protected

  # @api private
  #
  def _assignable?(o, guard)
    return true if self == o

    case o
    when PStringType
      v = o.value
      if v.nil?
        # Strings cannot all match a pattern, but if there is no pattern it is ok
        # (There should really always be a pattern, but better safe than sorry).
        @patterns.empty?
      else
        # the string in String type must match one of the patterns in Pattern type,
        # or Pattern represents all Patterns == all Strings
        regexps = @patterns.map(&:regexp)
        regexps.empty? || regexps.any? { |re| re.match(v) }
      end
    when PEnumType
      if o.values.empty?
        # Enums (unknown which ones) cannot all match a pattern, but if there is no pattern it is ok
        # (There should really always be a pattern, but better safe than sorry).
        @patterns.empty?
      else
        # all strings in String/Enum type must match one of the patterns in Pattern type,
        # or Pattern represents all Patterns == all Strings
        regexps = @patterns.map(&:regexp)
        regexps.empty? || o.values.all? { |s| regexps.any? { |re| re.match(s) } }
      end
    when PPatternType
      @patterns.empty?
    else
      false
    end
  end
end

# @api public
#
class PBooleanType < PScalarDataType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'ScalarDataType')
  end

  attr_reader :value

  def initialize(value = nil)
    @value = value
  end

  def eql?(o)
    o.is_a?(PBooleanType) && @value == o.value
  end

  def generalize
    PBooleanType::DEFAULT
  end

  def hash
    31 ^ @value.hash
  end

  def instance?(o, guard = nil)
    (o == true || o == false) && (@value.nil? || value == o)
  end

  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_boolean, type.loader) do
      dispatch :from_args do
        param "Variant[Integer, Float, Boolean, Enum['false','true','yes','no','y','n',true]]", :from
      end

      argument_mismatch :on_error do
        param  'Any', :from
      end

      def from_args(from)
        from = from.downcase if from.is_a?(String)
        case from
        when Float, Integer
          !from.zero?
        when false, 'false', 'no', 'n'
          false
        else
          true
        end
      end

      def on_error(from)
        if from.is_a?(String)
          _("The string '%{str}' cannot be converted to Boolean") % { str: from }
        else
          t = TypeCalculator.singleton.infer(from).generalize
          _("Value of type %{type} cannot be converted to Boolean") % { type: t }
        end
      end
    end
  end

  DEFAULT = PBooleanType.new
  TRUE = PBooleanType.new(true)
  FALSE = PBooleanType.new(false)

  protected

  # @api private
  #
  def _assignable?(o, guard)
    o.is_a?(PBooleanType) && (@value.nil? || @value == o.value)
  end
end

# @api public
#
# @api public
#
class PStructElement < TypedModelObject
  def self.register_ptype(loader, ir)
    @type = Pcore.create_object_type(loader, ir, self, 'Pcore::StructElement', nil,
                                     'key_type' => PTypeType::DEFAULT,
                                     'value_type' => PTypeType::DEFAULT)
  end

  attr_accessor :key_type, :value_type

  def accept(visitor, guard)
    @key_type.accept(visitor, guard)
    @value_type.accept(visitor, guard)
  end

  def hash
    value_type.hash ^ key_type.hash
  end

  def name
    k = key_type
    k = k.optional_type if k.is_a?(POptionalType)
    k.value
  end

  def initialize(key_type, value_type)
    @key_type = key_type
    @value_type = value_type
  end

  def generalize
    gv_type = @value_type.generalize
    @value_type.equal?(gv_type) ? self : PStructElement.new(@key_type, gv_type)
  end

  def normalize(guard = nil)
    nv_type = @value_type.normalize(guard)
    @value_type.equal?(nv_type) ? self : PStructElement.new(@key_type, nv_type)
  end

  def resolve(loader)
    rkey_type = @key_type.resolve(loader)
    rvalue_type = @value_type.resolve(loader)
    rkey_type.equal?(@key_type) && rvalue_type.equal?(@value_type) ? self : self.class.new(rkey_type, rvalue_type)
  end

  def <=>(o)
    name <=> o.name
  end

  def eql?(o)
    self == o
  end

  def ==(o)
    self.class == o.class && value_type == o.value_type && key_type == o.key_type
  end

  # Special boostrap method to overcome the hen and egg problem with the Object initializer that contains
  # types that are derived from Object (such as Annotation)
  #
  # @api private
  def replace_value_type(new_type)
    @value_type = new_type
  end
end

# @api public
#
class PStructType < PAnyType
  include Enumerable

  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType', 'elements' => PArrayType.new(PTypeReferenceType.new('Pcore::StructElement')))
  end

  def initialize(elements)
    @elements = elements.freeze
  end

  def accept(visitor, guard)
    super
    @elements.each { |elem| elem.accept(visitor, guard) }
  end

  def each
    if block_given?
      elements.each { |elem| yield elem }
    else
      elements.to_enum
    end
  end

  def generalize
    if @elements.empty?
      DEFAULT
    else
      alter_type_array(@elements, :generalize) { |altered| PStructType.new(altered) }
    end
  end

  def normalize(guard = nil)
    if @elements.empty?
      DEFAULT
    else
      alter_type_array(@elements, :normalize, guard) { |altered| PStructType.new(altered) }
    end
  end

  # rubocop:disable Naming/MemoizedInstanceVariableName
  def hashed_elements
    @hashed ||= @elements.each_with_object({}) { |e, memo| memo[e.name] = e; }
  end
  # rubocop:enable Naming/MemoizedInstanceVariableName

  def hash
    @elements.hash
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    if self == DEFAULT
      PIterableType.new(PHashType::DEFAULT_KEY_PAIR_TUPLE)
    else
      PIterableType.new(
        PTupleType.new([
                         PVariantType.maybe_create(@elements.map(&:key_type)),
                         PVariantType.maybe_create(@elements.map(&:value_type))
                       ],
                       PHashType::KEY_PAIR_TUPLE_SIZE)
      )
    end
  end

  def resolve(loader)
    changed = false
    relements = @elements.map do |elem|
      relem = elem.resolve(loader)
      changed ||= !relem.equal?(elem)
      relem
    end
    changed ? self.class.new(relements) : self
  end

  def eql?(o)
    self.class == o.class && @elements == o.elements
  end

  def elements
    @elements
  end

  def instance?(o, guard = nil)
    # The inferred type of a class derived from Hash is either Runtime or Object. It's not assignable to the Struct type.
    return false unless o.instance_of?(Hash)

    matched = 0
    @elements.all? do |e|
      key = e.name
      v = o[key]
      if v.nil? && !o.include?(key)
        # Entry is missing. Only OK when key is optional
        e.key_type.assignable?(PUndefType::DEFAULT, guard)
      else
        matched += 1
        e.value_type.instance?(v, guard)
      end
    end && matched == o.size
  end

  def new_function
    # Simply delegate to Hash type and let the higher level assertion deal with
    # compliance with the Struct type regarding the produced result.
    PHashType.new_function(self)
  end

  DEFAULT = PStructType.new(EMPTY_ARRAY)

  protected

  # @api private
  def _assignable?(o, guard)
    case o
    when Types::PStructType
      h2 = o.hashed_elements
      matched = 0
      elements.all? do |e1|
        e2 = h2[e1.name]
        if e2.nil?
          e1.key_type.assignable?(PUndefType::DEFAULT, guard)
        else
          matched += 1
          e1.key_type.assignable?(e2.key_type, guard) && e1.value_type.assignable?(e2.value_type, guard)
        end
      end && matched == h2.size
    when Types::PHashType
      required = 0
      required_elements_assignable = elements.all? do |e|
        key_type = e.key_type
        if key_type.assignable?(PUndefType::DEFAULT)
          # Element is optional so Hash does not need to provide it
          true
        else
          required += 1
          if e.value_type.assignable?(o.value_type, guard)
            # Hash must have something that is assignable. We don't care about the name or size of the key though
            # because we have no instance of a hash to compare against.
            key_type.generalize.assignable?(o.key_type)
          else
            false
          end
        end
      end
      if required_elements_assignable
        size_o = o.size_type || PCollectionType::DEFAULT_SIZE
        PIntegerType.new(required, elements.size).assignable?(size_o, guard)
      else
        false
      end
    else
      false
    end
  end
end

# @api public
#
class PTupleType < PAnyType
  include Enumerable

  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'types' => PArrayType.new(PTypeType::DEFAULT),
                 'size_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType.new(PIntegerType::DEFAULT)),
                   KEY_VALUE => nil
                 })
  end

  # If set, describes min and max required of the given types - if max > size of
  # types, the last type entry repeats
  #
  attr_reader :size_type

  attr_reader :types

  def accept(visitor, guard)
    super
    @size_type.accept(visitor, guard) unless @size_type.nil?
    @types.each { |elem| elem.accept(visitor, guard) }
  end

  # @api private
  def callable_args?(callable_t, guard)
    unless size_type.nil?
      raise ArgumentError, 'Callable tuple may not have a size constraint when used as args'
    end

    params_tuple = callable_t.param_types
    param_block_t = callable_t.block_type
    arg_types = @types
    arg_block_t = arg_types.last
    if arg_block_t.kind_of_callable?(true, guard)
      # Can't pass a block to a callable that doesn't accept one
      return false if param_block_t.nil?

      # Check that the block is of the right tyṕe
      return false unless param_block_t.assignable?(arg_block_t, guard)

      # Check other arguments
      arg_count = arg_types.size - 1
      params_size_t = params_tuple.size_type || PIntegerType.new(*params_tuple.size_range)
      return false unless params_size_t.assignable?(PIntegerType.new(arg_count, arg_count), guard)

      ctypes = params_tuple.types
      arg_count.times do |index|
        return false unless (ctypes[index] || ctypes[-1]).assignable?(arg_types[index], guard)
      end
      return true
    end

    # Check that tuple is assignable and that the block (if declared) is optional
    params_tuple.assignable?(self, guard) && (param_block_t.nil? || param_block_t.assignable?(PUndefType::DEFAULT, guard))
  end

  def initialize(types, size_type = nil)
    @types = types
    @size_type = size_type.nil? ? nil : size_type.to_size
  end

  # Returns Enumerator for the types if no block is given, otherwise, calls the given
  # block with each of the types in this tuple
  def each
    if block_given?
      types.each { |x| yield x }
    else
      types.to_enum
    end
  end

  def generalize
    if self == DEFAULT
      DEFAULT
    else
      alter_type_array(@types, :generalize) { |altered_types| PTupleType.new(altered_types, @size_type) }
    end
  end

  def normalize(guard = nil)
    if self == DEFAULT
      DEFAULT
    else
      alter_type_array(@types, :normalize, guard) { |altered_types| PTupleType.new(altered_types, @size_type) }
    end
  end

  def resolve(loader)
    changed = false
    rtypes = @types.map do |type|
      rtype = type.resolve(loader)
      changed ||= !rtype.equal?(type)
      rtype
    end
    changed ? self.class.new(rtypes, @size_type) : self
  end

  def instance?(o, guard = nil)
    # The inferred type of a class derived from Array is either Runtime or Object. It's not assignable to the Tuple type.
    return false unless o.instance_of?(Array)

    if @size_type
      return false unless @size_type.instance?(o.size, guard)
    else
      return false unless @types.empty? || @types.size == o.size
    end
    index = -1
    @types.empty? || o.all? do |element|
      @types.fetch(index += 1) { @types.last }.instance?(element, guard)
    end
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    PIterableType.new(PVariantType.maybe_create(types))
  end

  # Returns the number of elements accepted [min, max] in the tuple
  def size_range
    if @size_type.nil?
      types_size = @types.size
      types_size == 0 ? [0, Float::INFINITY] : [types_size, types_size]
    else
      @size_type.range
    end
  end

  # Returns the number of accepted occurrences [min, max] of the last type in the tuple
  # The defaults is [1,1]
  #
  def repeat_last_range
    if @size_type.nil?
      return [1, 1]
    end

    types_size = @types.size
    from, to = @size_type.range
    min = from - (types_size - 1)
    min = min <= 0 ? 0 : min
    max = to - (types_size - 1)
    [min, max]
  end

  def hash
    @size_type.hash ^ @types.hash
  end

  def eql?(o)
    self.class == o.class && @types == o.types && @size_type == o.size_type
  end

  def new_function
    # Simply delegate to Array type and let the higher level assertion deal with
    # compliance with the Tuple type regarding the produced result.
    PArrayType.new_function(self)
  end

  DEFAULT = PTupleType.new(EMPTY_ARRAY)

  protected

  # @api private
  def _assignable?(o, guard)
    return true if self == o
    return false unless o.is_a?(PTupleType) || o.is_a?(PArrayType)

    s_types = types
    size_s = size_type || PIntegerType.new(*size_range)

    if o.is_a?(PTupleType)
      size_o = o.size_type || PIntegerType.new(*o.size_range)
      return false unless size_s.assignable?(size_o, guard)

      unless s_types.empty?
        o_types = o.types
        return size_s.numeric_from == 0 if o_types.empty?

        o_types.size.times do |index|
          return false unless (s_types[index] || s_types[-1]).assignable?(o_types[index], guard)
        end
      end
    else
      size_o = o.size_type || PCollectionType::DEFAULT_SIZE
      return false unless size_s.assignable?(size_o, guard)

      unless s_types.empty?
        o_entry = o.element_type
        # Array of anything can not be assigned (unless tuple is tuple of anything) - this case
        # was handled at the top of this method.
        #
        return false if o_entry.nil?

        [s_types.size, size_o.range[1]].min.times { |index| return false unless (s_types[index] || s_types[-1]).assignable?(o_entry, guard) }
      end
    end
    true
  end
end

# @api public
#
class PCallableType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'param_types' => {
                   KEY_TYPE => POptionalType.new(PTypeType.new(PTupleType::DEFAULT)),
                   KEY_VALUE => nil
                 },
                 'block_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType.new(PCallableType::DEFAULT)),
                   KEY_VALUE => nil
                 },
                 'return_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => PAnyType::DEFAULT
                 })
  end

  # @return [PAnyType] The type for the values returned by this callable. Returns `nil` if return value is unconstrained
  attr_reader :return_type

  # Types of parameters as a Tuple with required/optional count, or an Integer with min (required), max count
  # @return [PTupleType] the tuple representing the parameter types
  attr_reader :param_types

  # Although being an abstract type reference, only Callable, or all Callables wrapped in
  # Optional or Variant are supported
  # If not set, the meaning is that block is not supported.
  # @return [PAnyType|nil] the block type
  attr_reader :block_type

  # @param param_types [PTupleType]
  # @param block_type [PAnyType]
  # @param return_type [PAnyType]
  def initialize(param_types, block_type = nil, return_type = nil)
    @param_types = param_types
    @block_type = block_type
    @return_type = return_type == PAnyType::DEFAULT ? nil : return_type
  end

  def accept(visitor, guard)
    super
    @param_types.accept(visitor, guard) unless @param_types.nil?
    @block_type.accept(visitor, guard) unless @block_type.nil?
    @return_type.accept(visitor, guard) unless @return_type.nil?
  end

  def generalize
    if self == DEFAULT
      DEFAULT
    else
      params_t = @param_types.nil? ? nil : @param_types.generalize
      block_t = @block_type.nil? ? nil : @block_type.generalize
      return_t = @return_type.nil? ? nil : @return_type.generalize
      @param_types.equal?(params_t) && @block_type.equal?(block_t) && @return_type.equal?(return_t) ? self : PCallableType.new(params_t, block_t, return_t)
    end
  end

  def normalize(guard = nil)
    if self == DEFAULT
      DEFAULT
    else
      params_t = @param_types.nil? ? nil : @param_types.normalize(guard)
      block_t = @block_type.nil? ? nil : @block_type.normalize(guard)
      return_t = @return_type.nil? ? nil : @return_type.normalize(guard)
      @param_types.equal?(params_t) && @block_type.equal?(block_t) && @return_type.equal?(return_t) ? self : PCallableType.new(params_t, block_t, return_t)
    end
  end

  def instance?(o, guard = nil)
    (o.is_a?(Proc) || o.is_a?(Evaluator::Closure) || o.is_a?(Functions::Function)) && assignable?(TypeCalculator.infer(o), guard)
  end

  # Returns `true` if this instance is a callable that accepts the given _args_
  #
  # @param args [Array] the arguments to test
  # @return [Boolean] `true` if this instance is a callable that accepts the given _args_
  def callable_with?(args, block = nil)
    # nil param_types and compatible return type means other Callable is assignable
    return true if @param_types.nil?
    return false unless @param_types.instance?(args)

    if @block_type.nil?
      block.nil?
    else
      @block_type.instance?(block)
    end
  end

  # @api private
  def callable_args?(required_callable_t, guard)
    # If the required callable is equal or more specific than self, self is acceptable arguments
    required_callable_t.assignable?(self, guard)
  end

  def kind_of_callable?(optional = true, guard = nil)
    true
  end

  # Returns the number of accepted arguments [min, max]
  def size_range
    @param_types.nil? ? nil : @param_types.size_range
  end

  # Returns the number of accepted arguments for the last parameter type [min, max]
  #
  def last_range
    @param_types.nil? ? nil : @param_types.repeat_last_range
  end

  # Range [0,0], [0,1], or [1,1] for the block
  #
  def block_range
    case block_type
    when POptionalType
      [0, 1]
    when PVariantType, PCallableType
      [1, 1]
    else
      [0, 0]
    end
  end

  def hash
    [@param_types, @block_type, @return_type].hash
  end

  def eql?(o)
    self.class == o.class && @param_types == o.param_types && @block_type == o.block_type && @return_type == o.return_type
  end

  def resolve(loader)
    params_t = @param_types.nil? ? nil : @param_types.resolve(loader)
    block_t = @block_type.nil? ? nil : @block_type.resolve(loader)
    return_t = @return_type.nil? ? nil : @return_type.resolve(loader)
    @param_types.equal?(params_t) && @block_type.equal?(block_t) && @return_type.equal?(return_t) ? self : self.class.new(params_t, block_t, return_t)
  end

  DEFAULT = PCallableType.new(nil, nil, nil)

  protected

  # @api private
  def _assignable?(o, guard)
    return false unless o.is_a?(PCallableType)
    return false unless @return_type.nil? || @return_type.assignable?(o.return_type || PAnyType::DEFAULT, guard)

    # nil param_types and compatible return type means other Callable is assignable
    return true if @param_types.nil?

    # NOTE: these tests are made in reverse as it is calling the callable that is constrained
    # (it's lower bound), not its upper bound
    other_param_types = o.param_types

    return false if other_param_types.nil? || !other_param_types.assignable?(@param_types, guard)

    # names are ignored, they are just information
    # Blocks must be compatible
    this_block_t = @block_type || PUndefType::DEFAULT
    that_block_t = o.block_type || PUndefType::DEFAULT
    that_block_t.assignable?(this_block_t, guard)
  end
end

# @api public
#
class PArrayType < PCollectionType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'CollectionType',
                 'element_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => PAnyType::DEFAULT
                 })
  end

  attr_reader :element_type

  def initialize(element_type, size_type = nil)
    super(size_type)
    if !size_type.nil? && size_type.from == 0 && size_type.to == 0
      @element_type = PUnitType::DEFAULT
    else
      @element_type = element_type.nil? ? PAnyType::DEFAULT : element_type
    end
  end

  def accept(visitor, guard)
    super
    @element_type.accept(visitor, guard)
  end

  # @api private
  def callable_args?(callable, guard = nil)
    param_t = callable.param_types
    block_t = callable.block_type
    # does not support calling with a block, but have to check that callable is ok with missing block
    (param_t.nil? || param_t.assignable?(self, guard)) && (block_t.nil? || block_t.assignable?(PUndefType::DEFAULT, guard))
  end

  def generalize
    if PAnyType::DEFAULT.eql?(@element_type)
      DEFAULT
    else
      ge_type = @element_type.generalize
      @size_type.nil? && @element_type.equal?(ge_type) ? self : self.class.new(ge_type, nil)
    end
  end

  def eql?(o)
    super && @element_type == o.element_type
  end

  def hash
    super ^ @element_type.hash
  end

  def normalize(guard = nil)
    if PAnyType::DEFAULT.eql?(@element_type)
      DEFAULT
    else
      ne_type = @element_type.normalize(guard)
      @element_type.equal?(ne_type) ? self : self.class.new(ne_type, @size_type)
    end
  end

  def resolve(loader)
    relement_type = @element_type.resolve(loader)
    relement_type.equal?(@element_type) ? self : self.class.new(relement_type, @size_type)
  end

  def instance?(o, guard = nil)
    # The inferred type of a class derived from Array is either Runtime or Object. It's not assignable to the Array type.
    return false unless o.instance_of?(Array)
    return false unless o.all? { |element| @element_type.instance?(element, guard) }

    size_t = size_type
    size_t.nil? || size_t.instance?(o.size, guard)
  end

  def iterable_type(guard = nil)
    PAnyType::DEFAULT.eql?(@element_type) ? PIterableType::DEFAULT : PIterableType.new(@element_type)
  end

  # Returns a new function that produces an Array
  #
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_array, type.loader) do
      dispatch :to_array do
        param           'Variant[Array,Hash,Binary,Iterable]', :from
        optional_param  'Boolean[false]', :wrap
      end

      dispatch :wrapped do
        param  'Any',           :from
        param  'Boolean[true]', :wrap
      end

      argument_mismatch :on_error do
        param  'Any',             :from
        optional_param 'Boolean', :wrap
      end

      def wrapped(from, _)
        from.is_a?(Array) ? from : [from]
      end

      def to_array(from, _ = false)
        case from
        when Array
          from
        when Hash
          from.to_a
        when PBinaryType::Binary
          # For older rubies, the #bytes method returns an Enumerator that must be rolled out
          from.binary_buffer.bytes.to_a
        else
          Iterable.on(from).to_a
        end
      end

      def on_error(from, _ = false)
        t = TypeCalculator.singleton.infer(from).generalize
        _("Value of type %{type} cannot be converted to Array") % { type: t }
      end
    end
  end

  DEFAULT = PArrayType.new(nil)
  EMPTY = PArrayType.new(PUnitType::DEFAULT, ZERO_SIZE)

  protected

  # Array is assignable if o is an Array and o's element type is assignable, or if o is a Tuple
  # @api private
  def _assignable?(o, guard)
    case o
    when PTupleType
      o_types = o.types
      size_s = size_type || DEFAULT_SIZE
      size_o = o.size_type
      if size_o.nil?
        type_count = o_types.size
        size_o = PIntegerType.new(type_count, type_count)
      end
      size_s.assignable?(size_o) && o_types.all? { |ot| @element_type.assignable?(ot, guard) }
    when PArrayType
      super && @element_type.assignable?(o.element_type, guard)
    else
      false
    end
  end
end

# @api public
#
class PHashType < PCollectionType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'CollectionType',
                 'key_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => PAnyType::DEFAULT
                 },
                 'value_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => PAnyType::DEFAULT
                 })
  end

  attr_accessor :key_type, :value_type

  def initialize(key_type, value_type, size_type = nil)
    super(size_type)
    if !size_type.nil? && size_type.from == 0 && size_type.to == 0
      @key_type = PUnitType::DEFAULT
      @value_type = PUnitType::DEFAULT
    else
      @key_type = key_type.nil? ? PAnyType::DEFAULT : key_type
      @value_type = value_type.nil? ? PAnyType::DEFAULT : value_type
    end
  end

  def accept(visitor, guard)
    super
    @key_type.accept(visitor, guard)
    @value_type.accept(visitor, guard)
  end

  def element_type
    if Puppet[:strict] != :off
      # TRANSLATOR 'Puppet::Pops::Types::PHashType#element_type' and '#value_type' are class and method names and should not be translated
      Puppet.warn_once('deprecations', 'Puppet::Pops::Types::PHashType#element_type',
                       _('Puppet::Pops::Types::PHashType#element_type is deprecated, use #value_type instead'))
    end
    @value_type
  end

  def generalize
    if self == DEFAULT || self == EMPTY
      self
    else
      key_t = @key_type
      key_t = key_t.generalize
      value_t = @value_type
      value_t = value_t.generalize
      @size_type.nil? && @key_type.equal?(key_t) && @value_type.equal?(value_t) ? self : PHashType.new(key_t, value_t, nil)
    end
  end

  def normalize(guard = nil)
    if self == DEFAULT || self == EMPTY
      self
    else
      key_t = @key_type.normalize(guard)
      value_t = @value_type.normalize(guard)
      @size_type.nil? && @key_type.equal?(key_t) && @value_type.equal?(value_t) ? self : PHashType.new(key_t, value_t, @size_type)
    end
  end

  def hash
    super ^ @key_type.hash ^ @value_type.hash
  end

  def instance?(o, guard = nil)
    # The inferred type of a class derived from Hash is either Runtime or Object. It's not assignable to the Hash type.
    return false unless o.instance_of?(Hash)

    if o.keys.all? { |key| @key_type.instance?(key, guard) } && o.values.all? { |value| @value_type.instance?(value, guard) }
      size_t = size_type
      size_t.nil? || size_t.instance?(o.size, guard)
    else
      false
    end
  end

  def iterable?(guard = nil)
    true
  end

  def iterable_type(guard = nil)
    if self == DEFAULT || self == EMPTY
      PIterableType.new(DEFAULT_KEY_PAIR_TUPLE)
    else
      PIterableType.new(PTupleType.new([@key_type, @value_type], KEY_PAIR_TUPLE_SIZE))
    end
  end

  def eql?(o)
    super && @key_type == o.key_type && @value_type == o.value_type
  end

  def is_the_empty_hash?
    self == EMPTY
  end

  def resolve(loader)
    rkey_type = @key_type.resolve(loader)
    rvalue_type = @value_type.resolve(loader)
    rkey_type.equal?(@key_type) && rvalue_type.equal?(@value_type) ? self : self.class.new(rkey_type, rvalue_type, @size_type)
  end

  def self.array_as_hash(value)
    return value unless value.is_a?(Array)

    result = {}
    value.each_with_index { |v, idx| result[idx] = array_as_hash(v) }
    result
  end

  # Returns a new function that produces a  Hash
  #
  def self.new_function(type)
    @new_function ||= Puppet::Functions.create_loaded_function(:new_hash, type.loader) do
      local_types do
        type 'KeyValueArray = Array[Tuple[Any,Any],1]'
        type 'TreeArray = Array[Tuple[Array,Any],1]'
        type 'NewHashOption = Enum[tree, hash_tree]'
      end

      dispatch :from_tree do
        param           'TreeArray',       :from
        optional_param  'NewHashOption',   :build_option
      end

      dispatch :from_tuples do
        param           'KeyValueArray', :from
      end

      dispatch :from_array do
        param           'Any', :from
      end

      def from_tuples(tuple_array)
        tuple_array.to_h
      end

      def from_tree(tuple_array, build_option = nil)
        if build_option.nil?
          return from_tuples(tuple_array)
        end

        # only remaining possible options is 'tree' or 'hash_tree'

        all_hashes = build_option == 'hash_tree'
        result = {}
        tuple_array.each do |entry|
          path = entry[0]
          value = entry[1]
          if path.empty?
            # root node (index [] was included - values merge into the result)
            # An array must be changed to a hash first as this is the root
            # (Cannot return an array from a Hash.new)
            if value.is_a?(Array)
              value.each_with_index { |v, idx| result[idx] = v }
            else
              result.merge!(value)
            end
          else
            r = path[0..-2].reduce(result) { |memo, idx| (memo.is_a?(Array) || memo.has_key?(idx)) ? memo[idx] : memo[idx] = {} }
            r[path[-1]] = (all_hashes ? PHashType.array_as_hash(value) : value)
          end
        end
        result
      end

      def from_array(from)
        case from
        when Array
          if from.size == 0
            {}
          else
            unless from.size.even?
              raise TypeConversionError, _('odd number of arguments for Hash')
            end

            Hash[*from]
          end
        when Hash
          from
        else
          if PIterableType::DEFAULT.instance?(from)
            Hash[*Iterable.on(from).to_a]
          else
            t = TypeCalculator.singleton.infer(from).generalize
            raise TypeConversionError, _("Value of type %{type} cannot be converted to Hash") % { type: t }
          end
        end
      end
    end
  end

  DEFAULT = PHashType.new(nil, nil)
  KEY_PAIR_TUPLE_SIZE = PIntegerType.new(2, 2)
  DEFAULT_KEY_PAIR_TUPLE = PTupleType.new([PUnitType::DEFAULT, PUnitType::DEFAULT], KEY_PAIR_TUPLE_SIZE)
  EMPTY = PHashType.new(PUnitType::DEFAULT, PUnitType::DEFAULT, PIntegerType.new(0, 0))

  protected

  # Hash is assignable if o is a Hash and o's key and element types are assignable
  # @api private
  def _assignable?(o, guard)
    case o
    when PHashType
      size_s = size_type
      return true if (size_s.nil? || size_s.from == 0) && o.is_the_empty_hash?
      return false unless @key_type.assignable?(o.key_type, guard) && @value_type.assignable?(o.value_type, guard)

      super
    when PStructType
      # hash must accept String as key type
      # hash must accept all value types
      # hash must accept the size of the struct
      o_elements = o.elements
      (size_type || DEFAULT_SIZE).instance?(o_elements.size, guard) &&
        o_elements.all? { |e| @key_type.instance?(e.name, guard) && @value_type.assignable?(e.value_type, guard) }
    else
      false
    end
  end
end

# A flexible type describing an any? of other types
# @api public
#
class PVariantType < PAnyType
  include Enumerable

  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType', 'types' => PArrayType.new(PTypeType::DEFAULT))
  end

  attr_reader :types

  # Checks if the number of unique types in the given array is greater than one, and if so
  # creates a Variant with those types and returns it. If only one unique type is found,
  # that type is instead returned.
  #
  # @param types [Array<PAnyType>] the variants
  # @return [PAnyType] the resulting type
  # @api public
  def self.maybe_create(types)
    types = flatten_variants(types).uniq
    types.size == 1 ? types[0] : new(types)
  end

  # @param types [Array[PAnyType]] the variants
  def initialize(types)
    @types = types.freeze
  end

  def accept(visitor, guard)
    super
    @types.each { |t| t.accept(visitor, guard) }
  end

  def each
    if block_given?
      types.each { |t| yield t }
    else
      types.to_enum
    end
  end

  def generalize
    if self == DEFAULT
      self
    else
      alter_type_array(@types, :generalize) { |altered| PVariantType.maybe_create(altered) }
    end
  end

  def normalize(guard = nil)
    if self == DEFAULT || @types.empty?
      self
    else
      # Normalize all contained types
      modified = false
      types = alter_type_array(@types, :normalize, guard)
      if types == self
        types = @types
      else
        modified = true
      end

      if types.size == 1
        types[0]
      elsif types.any? { |t| t.is_a?(PUndefType) || t.is_a?(POptionalType) }
        # Undef entry present. Use an OptionalType with a normalized Variant without Undefs and Optional wrappers
        POptionalType.new(PVariantType.maybe_create(types.reject { |t| t.is_a?(PUndefType) }.map { |t| t.is_a?(POptionalType) ? t.type : t })).normalize
      else
        # Merge all variants into this one
        types = PVariantType.flatten_variants(types)
        size_before_merge = types.size

        types = swap_not_undefs(types)
        types = merge_enums(types)
        types = merge_patterns(types)
        types = merge_version_ranges(types)
        types = merge_numbers(PIntegerType, types)
        types = merge_numbers(PFloatType, types)
        types = merge_numbers(PTimespanType, types)
        types = merge_numbers(PTimestampType, types)

        if types.size == 1
          types[0]
        else
          modified || types.size != size_before_merge ? PVariantType.maybe_create(types) : self
        end
      end
    end
  end

  def self.flatten_variants(types)
    modified = false
    types = types.map do |t|
      if t.is_a?(PVariantType)
        modified = true
        t.types
      else
        t
      end
    end
    types.flatten! if modified
    types
  end

  def hash
    @types.hash
  end

  def instance?(o, guard = nil)
    # instance of variant if o is instance? of any of variant's types
    @types.any? { |type| type.instance?(o, guard) }
  end

  def really_instance?(o, guard = nil)
    @types.reduce(-1) do |memo, type|
      ri = type.really_instance?(o, guard)
      break ri if ri > 0

      ri > memo ? ri : memo
    end
  end

  def kind_of_callable?(optional = true, guard = nil)
    @types.all? { |type| type.kind_of_callable?(optional, guard) }
  end

  def eql?(o)
    self.class == o.class && @types.size == o.types.size && (@types - o.types).empty?
  end

  DEFAULT = PVariantType.new(EMPTY_ARRAY)

  def assignable?(o, guard = nil)
    # an empty Variant does not match Undef (it is void - not even undef)
    if o.is_a?(PUndefType) && types.empty?
      return false
    end

    return super unless o.is_a?(PVariantType)
    # If empty, all Variant types match irrespective of the types they hold (including being empty)
    return true if types.empty?

    # Since this variant is not empty, an empty Variant cannot match, because it matches nothing
    # otherwise all types in o must be assignable to this
    !o.types.empty? && o.types.all? { |vt| super(vt, guard) }
  end

  protected

  # @api private
  def _assignable?(o, guard)
    # A variant is assignable if o is assignable to any of its types
    types.any? { |option_t| option_t.assignable?(o, guard) }
  end

  # @api private
  def swap_not_undefs(array)
    if array.size > 1
      parts = array.partition { |t| t.is_a?(PNotUndefType) }
      not_undefs = parts[0]
      if not_undefs.size > 1
        others = parts[1]
        others << PNotUndefType.new(PVariantType.maybe_create(not_undefs.map(&:type)).normalize)
        array = others
      end
    end
    array
  end

  # @api private
  def merge_enums(array)
    # Merge case sensitive enums and strings
    if array.size > 1
      parts = array.partition { |t| t.is_a?(PEnumType) && !t.values.empty? && !t.case_insensitive? || t.is_a?(PStringType) && !t.value.nil? }
      enums = parts[0]
      if enums.size > 1
        others = parts[1]
        others << PEnumType.new(enums.map { |enum| enum.is_a?(PStringType) ? enum.value : enum.values }.flatten.uniq)
        array = others
      end
    end

    # Merge case insensitive enums
    if array.size > 1
      parts = array.partition { |t| t.is_a?(PEnumType) && !t.values.empty? && t.case_insensitive? }
      enums = parts[0]
      if enums.size > 1
        others = parts[1]
        values = []
        enums.each { |enum| enum.values.each { |value| values << value.downcase } }
        values.uniq!
        others << PEnumType.new(values, true)
        array = others
      end
    end
    array
  end

  # @api private
  def merge_patterns(array)
    if array.size > 1
      parts = array.partition { |t| t.is_a?(PPatternType) }
      patterns = parts[0]
      if patterns.size > 1
        others = parts[1]
        others << PPatternType.new(patterns.map(&:patterns).flatten.uniq)
        array = others
      end
    end
    array
  end

  # @api private
  def merge_numbers(clazz, array)
    if array.size > 1
      parts = array.partition { |t| t.is_a?(clazz) }
      ranges = parts[0]
      array = merge_ranges(ranges) + parts[1] if ranges.size > 1
    end
    array
  end

  def merge_version_ranges(array)
    if array.size > 1
      parts = array.partition { |t| t.is_a?(PSemVerType) }
      ranges = parts[0]
      array = [PSemVerType.new(ranges.map(&:ranges).flatten)] + parts[1] if ranges.size > 1
    end
    array
  end

  # @api private
  def merge_ranges(ranges)
    result = []
    until ranges.empty?
      unmerged = []
      x = ranges.pop
      result << ranges.inject(x) do |memo, y|
        merged = memo.merge(y)
        if merged.nil?
          unmerged << y
        else
          memo = merged
        end
        memo
      end
      ranges = unmerged
    end
    result
  end
end

# Abstract representation of a type that can be placed in a Catalog.
# @api public
#
class PCatalogEntryType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType')
  end

  DEFAULT = PCatalogEntryType.new

  def instance?(o, guard = nil)
    assignable?(TypeCalculator.infer(o), guard)
  end

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PCatalogEntryType)
  end
end

# Represents a (host-) class in the Puppet Language.
# @api public
#
class PClassType < PCatalogEntryType
  attr_reader :class_name

  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'CatalogEntryType',
                 'class_name' => {
                   KEY_TYPE => POptionalType.new(PStringType::NON_EMPTY),
                   KEY_VALUE => nil
                 })
  end

  def initialize(class_name)
    @class_name = class_name
  end

  def hash
    11 ^ @class_name.hash
  end

  def eql?(o)
    self.class == o.class && @class_name == o.class_name
  end

  DEFAULT = PClassType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    return false unless o.is_a?(PClassType)
    # Class = Class[name}, Class[name] != Class
    return true if @class_name.nil?

    # Class[name] = Class[name]
    @class_name == o.class_name
  end
end

# For backward compatibility
PHostClassType = PClassType

# Represents a Resource Type in the Puppet Language
# @api public
#
class PResourceType < PCatalogEntryType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'CatalogEntryType',
                 'type_name' => {
                   KEY_TYPE => POptionalType.new(PStringType::NON_EMPTY),
                   KEY_VALUE => nil
                 },
                 'title' => {
                   KEY_TYPE => POptionalType.new(PStringType::NON_EMPTY),
                   KEY_VALUE => nil
                 })
  end

  attr_reader :type_name, :title, :downcased_name

  def initialize(type_name, title = nil)
    @type_name = type_name.freeze
    @title = title.freeze
    @downcased_name = type_name.nil? ? nil : @type_name.downcase.freeze
  end

  def eql?(o)
    self.class == o.class && @downcased_name == o.downcased_name && @title == o.title
  end

  def hash
    @downcased_name.hash ^ @title.hash
  end

  DEFAULT = PResourceType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    o.is_a?(PResourceType) && (@downcased_name.nil? || @downcased_name == o.downcased_name && (@title.nil? || @title == o.title))
  end
end

# Represents a type that accept PUndefType instead of the type parameter
# required_type - is a short hand for Variant[T, Undef]
# @api public
#
class POptionalType < PTypeWithContainedType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  def optional_type
    @type
  end

  def kind_of_callable?(optional = true, guard = nil)
    optional && !@type.nil? && @type.kind_of_callable?(optional, guard)
  end

  def instance?(o, guard = nil)
    PUndefType::DEFAULT.instance?(o, guard) || (!@type.nil? && @type.instance?(o, guard))
  end

  def normalize(guard = nil)
    n = super
    if n.type.nil?
      n
    elsif n.type.is_a?(PNotUndefType)
      POptionalType.new(n.type.type).normalize
    # No point in having an NotUndef in an Optional
    elsif n.type.assignable?(PUndefType::DEFAULT)
      # THe type is Optional anyway, so it can be stripped of
      n.type
    else
      n
    end
  end

  def new_function
    optional_type.new_function
  end

  DEFAULT = POptionalType.new(nil)

  protected

  # @api private
  def _assignable?(o, guard)
    return true if o.is_a?(PUndefType)
    return true if @type.nil?

    if o.is_a?(POptionalType)
      @type.assignable?(o.optional_type, guard)
    else
      @type.assignable?(o, guard)
    end
  end
end

class PTypeReferenceType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType', 'type_string' => PStringType::NON_EMPTY)
  end

  attr_reader :type_string

  def initialize(type_string)
    @type_string = type_string
  end

  def callable?(args)
    false
  end

  def instance?(o, guard = nil)
    false
  end

  def hash
    @type_string.hash
  end

  def eql?(o)
    super && o.type_string == @type_string
  end

  def resolve(loader)
    TypeParser.singleton.parse(@type_string, loader)
  end

  protected

  def _assignable?(o, guard)
    # A type must be assignable to itself or a lot of unit tests will break
    o == self
  end

  DEFAULT = PTypeReferenceType.new('UnresolvedReference')
end

# Describes a named alias for another Type.
# The alias is created with a name and an unresolved type expression. The type expression may
# in turn contain other aliases (including the alias that contains it) which means that an alias
# might contain self recursion. Whether or not that is the case is computed and remembered when the alias
# is resolved since guarding against self recursive constructs is relatively expensive.
#
# @api public
class PTypeAliasType < PAnyType
  def self.register_ptype(loader, ir)
    create_ptype(loader, ir, 'AnyType',
                 'name' => PStringType::NON_EMPTY,
                 'type_expr' => PAnyType::DEFAULT,
                 'resolved_type' => {
                   KEY_TYPE => POptionalType.new(PTypeType::DEFAULT),
                   KEY_VALUE => nil
                 })
  end

  attr_reader :loader, :name

  # @param name [String] The name of the type
  # @param type_expr [Model::PopsObject] The expression that describes the aliased type
  # @param resolved_type [PAnyType] the resolve type (only used for the DEFAULT initialization)
  def initialize(name, type_expr, resolved_type = nil)
    @name = name
    @type_expr = type_expr
    @resolved_type = resolved_type
    @self_recursion = false
  end

  def assignable?(o, guard = nil)
    if @self_recursion
      guard ||= RecursionGuard.new
      guard.with_this(self) { |state| state == RecursionGuard::SELF_RECURSION_IN_BOTH ? true : super(o, guard) }
    else
      super(o, guard)
    end
  end

  # Returns the resolved type. The type must have been resolved by a call prior to calls to this
  # method or an error will be raised.
  #
  # @return [PAnyType] The resolved type of this alias.
  # @raise [Puppet::Error] unless the type has been resolved prior to calling this method
  def resolved_type
    raise Puppet::Error, "Reference to unresolved type #{@name}" unless @resolved_type

    @resolved_type
  end

  def callable_args?(callable, guard)
    guarded_recursion(guard, false) { |g| resolved_type.callable_args?(callable, g) }
  end

  def check_self_recursion(originator)
    resolved_type.check_self_recursion(originator) unless originator.equal?(self)
  end

  def kind_of_callable?(optional = true, guard = nil)
    guarded_recursion(guard, false) { |g| resolved_type.kind_of_callable?(optional, g) }
  end

  def instance?(o, guard = nil)
    really_instance?(o, guard) == 1
  end

  def iterable?(guard = nil)
    guarded_recursion(guard, false) { |g| resolved_type.iterable?(g) }
  end

  def iterable_type(guard = nil)
    guarded_recursion(guard, nil) { |g| resolved_type.iterable_type(g) }
  end

  def hash
    @name.hash
  end

  # Acceptor used when checking for self recursion and that a type contains
  # something other than aliases or type references
  #
  # @api private
  class AssertOtherTypeAcceptor
    def initialize
      @other_type_detected = false
    end

    def visit(type, _)
      unless type.is_a?(PTypeAliasType) || type.is_a?(PVariantType)
        @other_type_detected = true
      end
    end

    def other_type_detected?
      @other_type_detected
    end
  end

  # Acceptor used when re-checking for self recursion after a self recursion has been detected
  #
  # @api private
  class AssertSelfRecursionStatusAcceptor
    def visit(type, _)
      type.set_self_recursion_status if type.is_a?(PTypeAliasType)
    end
  end

  def set_self_recursion_status
    return if @self_recursion || @resolved_type.is_a?(PTypeReferenceType)

    @self_recursion = true
    guard = RecursionGuard.new
    accept(NoopTypeAcceptor::INSTANCE, guard)
    @self_recursion = guard.recursive_this?(self)
    when_self_recursion_detected if @self_recursion # no difference
  end

  # Called from the TypeParser once it has found a type using the Loader. The TypeParser will
  # interpret the contained expression and the resolved type is remembered. This method also
  # checks and remembers if the resolve type contains self recursion.
  #
  # @param type_parser [TypeParser] type parser that will interpret the type expression
  # @param loader [Loader::Loader] loader to use when loading type aliases
  # @return [PTypeAliasType] the receiver of the call, i.e. `self`
  # @api private
  def resolve(loader)
    @loader = loader
    if @resolved_type.nil?
      # resolved to PTypeReferenceType::DEFAULT during resolve to avoid endless recursion
      @resolved_type = PTypeReferenceType::DEFAULT
      @self_recursion = true # assumed while it being found out below
      begin
        if @type_expr.is_a?(PTypeReferenceType)
          @resolved_type = @type_expr.resolve(loader)
        else
          @resolved_type = TypeParser.singleton.interpret(@type_expr, loader).normalize
        end

        # Find out if this type is recursive. A recursive type has performance implications
        # on several methods and this knowledge is used to avoid that for non-recursive
        # types.
        guard = RecursionGuard.new
        real_type_asserter = AssertOtherTypeAcceptor.new
        accept(real_type_asserter, guard)
        unless real_type_asserter.other_type_detected?
          raise ArgumentError, "Type alias '#{name}' cannot be resolved to a real type"
        end

        @self_recursion = guard.recursive_this?(self)
        # All aliases involved must re-check status since this alias is now resolved
        if @self_recursion
          accept(AssertSelfRecursionStatusAcceptor.new, RecursionGuard.new)
          when_self_recursion_detected
        end
      rescue
        @resolved_type = nil
        raise
      end
    else
      # An alias may appoint an Object type that isn't resolved yet. The default type
      # reference is used to prevent endless recursion and should not be resolved here.
      @resolved_type.resolve(loader) unless @resolved_type.equal?(PTypeReferenceType::DEFAULT)
    end
    self
  end

  def eql?(o)
    super && o.name == @name
  end

  def accept(visitor, guard)
    guarded_recursion(guard, nil) do |g|
      super(visitor, g)
      @resolved_type.accept(visitor, g) unless @resolved_type.nil?
    end
  end

  def self_recursion?
    @self_recursion
  end

  # Returns the expanded string the form of the alias, e.g. <alias name> = <resolved type>
  #
  # @return [String] the expanded form of this alias
  # @api public
  def to_s
    TypeFormatter.singleton.alias_expanded_string(self)
  end

  # Delegates to resolved type
  def respond_to_missing?(name, include_private)
    resolved_type.respond_to?(name, include_private)
  end

  # Delegates to resolved type
  def method_missing(name, *arguments, &block)
    super if @resolved_type.equal?(PTypeReferenceType::DEFAULT)
    resolved_type.send(name, *arguments, &block)
  end

  # @api private
  def really_instance?(o, guard = nil)
    if @self_recursion
      guard ||= RecursionGuard.new
      guard.with_that(o) do
        guard.with_this(self) { |state| state == RecursionGuard::SELF_RECURSION_IN_BOTH ? 0 : resolved_type.really_instance?(o, guard) }
      end
    else
      resolved_type.really_instance?(o, guard)
    end
  end

  # @return `nil` to prevent serialization of the type_expr used when first initializing this instance
  # @api private
  def type_expr
    nil
  end

  protected

  def _assignable?(o, guard)
    resolved_type.assignable?(o, guard)
  end

  def new_function
    resolved_type.new_function
  end

  private

  def guarded_recursion(guard, dflt)
    if @self_recursion
      guard ||= RecursionGuard.new
      guard.with_this(self) { |state| (state & RecursionGuard::SELF_RECURSION_IN_THIS) == 0 ? yield(guard) : dflt }
    else
      yield(guard)
    end
  end

  def when_self_recursion_detected
    if @resolved_type.is_a?(PVariantType)
      # Drop variants that are not real types
      resolved_types = @resolved_type.types
      real_types = resolved_types.select do |type|
        next false if type == self

        real_type_asserter = AssertOtherTypeAcceptor.new
        type.accept(real_type_asserter, RecursionGuard.new)
        real_type_asserter.other_type_detected?
      end
      if real_types.size != resolved_types.size
        if real_types.size == 1
          @resolved_type = real_types[0]
        else
          @resolved_type = PVariantType.maybe_create(real_types)
        end
        # Drop self recursion status in case it's not self recursive anymore
        guard = RecursionGuard.new
        accept(NoopTypeAcceptor::INSTANCE, guard)
        @self_recursion = guard.recursive_this?(self)
      end
    end
    @resolved_type.check_self_recursion(self) if @self_recursion
  end

  DEFAULT = PTypeAliasType.new('UnresolvedAlias', nil, PTypeReferenceType::DEFAULT)
end
end
end

require_relative '../../../puppet/pops/pcore'

require_relative 'annotatable'
require_relative 'p_meta_type'
require_relative 'p_object_type'
require_relative 'annotation'
require_relative 'ruby_method'
require_relative 'p_runtime_type'
require_relative 'p_sem_ver_type'
require_relative 'p_sem_ver_range_type'
require_relative 'p_sensitive_type'
require_relative 'p_type_set_type'
require_relative 'p_timespan_type'
require_relative 'p_timestamp_type'
require_relative 'p_binary_type'
require_relative 'p_init_type'
require_relative 'p_object_type_extension'
require_relative 'p_uri_type'
require_relative 'type_set_reference'
require_relative 'implementation_registry'
require_relative 'tree_iterators'