1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
Author: Luke Pratley <luke.pratley.15@ucl.ac.uk>
Description: Patched version for Eigen3/unsupported/FFT, still not upstream
This patch concatenates three commit, taken from
https://bitbucket.org/LukePratley/eigen/branch/3.2
* 87372ff: New function to interface FFTW for 2D matrices (2016-07-08)
* 37484f6: Added the ability to pass level of rigor when passing FFTW
planning flags (2016-07-08)
* 2e4f59f: Added the ability to create a 2D FFTW plan without performing
an FFT (2016-07-11)
diff -uNr orig/unsupported/eigen/FFT 3.2/unsupported/eigen/FFT
--- orig/unsupported/Eigen/FFT 2016-07-13 12:14:36.000000000 +0200
+++ 3.2/unsupported/Eigen/FFT 2016-07-13 12:14:36.000000000 +0200
@@ -197,13 +197,13 @@
m_impl.fwd(dst,src,static_cast<int>(nfft));
}
- /*
+
inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1, bool only_plan = false)
{
- m_impl.fwd2(dst,src,n0,n1);
+ m_impl.fwd2(dst,src,n0,n1, only_plan);
}
- */
+
template <typename _Input>
inline
@@ -251,7 +251,47 @@
fwd( &dst[0],&src[0],nfft );
}
}
-
+
+ template<typename InputDerived, typename ComplexDerived>
+ inline
+ void fwd2( Eigen::PlainObjectBase<ComplexDerived> & dst, const Eigen::PlainObjectBase<InputDerived> & src, const int & FFTW_plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT, bool only_plan = false)
+ {
+ typedef typename ComplexDerived::Scalar dst_type;
+ typedef typename InputDerived::Scalar src_type;
+ EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ComplexDerived, InputDerived) // size at compile-time
+ EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
+ THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
+
+ if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ throw std::runtime_error("Not implemented yet");
+ else
+ dst.derived().resizeLike(src);
+
+ const int n0 = InputDerived::IsRowMajor ? src.rows(): src.cols();
+ const int n1 = InputDerived::IsRowMajor ? src.cols(): src.rows();
+ if ( src.innerStride() != 1 or src.outerStride() != n1 ) {
+ Matrix<src_type, Dynamic, Dynamic, Eigen::RowMajor> tmp = src;
+ fwd2( dst, tmp );
+ return;
+ }
+ //choosing new plan, and putting in dummy data for plan.
+ if (m_impl.plan_flag != FFTW_plan_flag)
+ {
+ set_plan_flag(FFTW_plan_flag); //choosing rigor flag for FFTW plans
+ if (FFTW_plan_flag != FFTW_ESTIMATE|FFTW_PRESERVE_INPUT)
+ {//dummy data for fftw planning, otherwise input/output data can be changed
+ Matrix<src_type, Dynamic, Dynamic, Eigen::RowMajor> tmp_src = src;
+ Matrix<dst_type, Dynamic, Dynamic, Eigen::RowMajor> tmp_dst = dst;
+ fwd2( tmp_dst.data(), tmp_src.data(), n0, n1, true );
+ if (only_plan)
+ return;
+ }
+ }
+ fwd2( dst.data(), src.data(), n0, n1 );
+ }
+
template<typename InputDerived>
inline
fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
@@ -344,6 +384,46 @@
}
}
+ template<typename InputDerived, typename ComplexDerived>
+ inline
+ void inv2( PlainObjectBase<ComplexDerived> & dst, const PlainObjectBase<InputDerived> & src, const int & FFTW_plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT, bool only_plan = false)
+ {
+ typedef typename ComplexDerived::Scalar dst_type;
+ typedef typename InputDerived::Scalar src_type;
+ EIGEN_STATIC_ASSERT_SAME_MATRIX_SIZE(ComplexDerived, InputDerived) // size at compile-time
+ EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
+ THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
+
+ if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ throw std::runtime_error("Not implemented yet");
+ else
+ dst.derived().resizeLike(src);
+
+ const int n0 = InputDerived::IsRowMajor ? src.rows(): src.cols();
+ const int n1 = InputDerived::IsRowMajor ? src.cols(): src.rows();
+ if ( src.innerStride() != 1 or src.outerStride() != n1 ) {
+ Matrix<src_type, Dynamic, Dynamic, Eigen::RowMajor> tmp = src;
+ inv2( dst, tmp );
+ return;
+ }
+ //choosing new plan, and putting in dummy data for plan.
+ if (m_impl.plan_flag != FFTW_plan_flag)
+ {
+ set_plan_flag(FFTW_plan_flag); //choosing rigor flag for FFTW plans
+ if (FFTW_plan_flag != FFTW_ESTIMATE|FFTW_PRESERVE_INPUT)
+ {//dummy data for fftw planning, otherwise input/output data can be changed
+ Matrix<src_type, Dynamic, Dynamic, Eigen::RowMajor> tmp_src = src;
+ Matrix<dst_type, Dynamic, Dynamic, Eigen::RowMajor> tmp_dst = dst;
+ inv2( tmp_dst.data(), tmp_src.data(), n0, n1, true );
+ if (only_plan)
+ return;
+ }
+ }
+ inv2( dst.data(), src.data(), n0, n1 );
+ }
+
template <typename _Output>
inline
void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
@@ -355,19 +435,31 @@
}
- /*
+
// TODO: multi-dimensional FFTs
inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
+ void inv2(Complex * dst, const Complex * src, int n0,int n1, bool only_plan = false)
{
- m_impl.inv2(dst,src,n0,n1);
+ m_impl.inv2(dst,src,n0,n1, only_plan);
if ( HasFlag( Unscaled ) == false)
scale(dst,1./(n0*n1),n0*n1);
}
- */
+
inline
impl_type & impl() {return m_impl;}
+ inline
+ void set_plan_flag(const int new_plan_flag){
+ if (m_impl.plan_flag != new_plan_flag)
+ {
+ m_impl.clear();
+ m_impl.plan_flag = new_plan_flag;
+ }
+ };
+ inline
+ void clear_plans(){
+ m_impl.clear();
+ }
private:
template <typename T_Data>
diff -uNr orig/unsupported/eigen/src/FFT/ei_fftw_impl.h 3.2/unsupported/eigen/src/FFT/ei_fftw_impl.h
--- orig/unsupported/Eigen/src/FFT/ei_fftw_impl.h 2016-07-13 12:14:36.000000000 +0200
+++ 3.2/unsupported/Eigen/src/FFT/ei_fftw_impl.h 2016-07-13 12:14:36.000000000 +0200
@@ -52,41 +52,47 @@
{
typedef float scalar_type;
typedef fftwf_complex complex_type;
+ int plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT;
fftwf_plan m_plan;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftwf_destroy_plan(m_plan);}
inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
+ void fwd(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft( m_plan, src,dst);
}
inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
+ void inv(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft( m_plan, src,dst);
}
inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_r2c( m_plan,src,dst);
+ void fwd(complex_type * dst,scalar_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst, plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft_r2c( m_plan,src,dst);
}
inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft_c2r( m_plan, src,dst);
+ void inv(scalar_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst, plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD, plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwf_execute_dft( m_plan, src,dst);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD, plan_flag);
+ if (not only_plan)
+ fftwf_execute_dft( m_plan, src,dst);
}
};
@@ -95,40 +101,46 @@
{
typedef double scalar_type;
typedef fftw_complex complex_type;
+ int plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT;
::fftw_plan m_plan;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftw_destroy_plan(m_plan);}
inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
+ void fwd(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, plan_flag);
+ if (not only_plan)
+ fftw_execute_dft( m_plan, src,dst);
}
inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
+ void inv(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , plan_flag);
+ if (not only_plan)
+ fftw_execute_dft( m_plan, src,dst);
}
inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_r2c( m_plan,src,dst);
+ void fwd(complex_type * dst,scalar_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,plan_flag);
+ if (not only_plan)
+ fftw_execute_dft_r2c( m_plan,src,dst);
}
inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft_c2r( m_plan, src,dst);
+ void inv(scalar_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,plan_flag);
+ if (not only_plan)
+ fftw_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,plan_flag);
+ if (not only_plan)
+ fftw_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftw_execute_dft( m_plan, src,dst);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,plan_flag);
+ if (not only_plan)
+ fftw_execute_dft( m_plan, src,dst);
}
};
template <>
@@ -137,39 +149,45 @@
typedef long double scalar_type;
typedef fftwl_complex complex_type;
fftwl_plan m_plan;
+ int plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT;
fftw_plan() :m_plan(NULL) {}
~fftw_plan() {if (m_plan) fftwl_destroy_plan(m_plan);}
inline
- void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
+ void fwd(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft( m_plan, src,dst);
}
inline
- void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
+ void inv(complex_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft( m_plan, src,dst);
}
inline
- void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_r2c( m_plan,src,dst);
+ void fwd(complex_type * dst,scalar_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft_r2c( m_plan,src,dst);
}
inline
- void inv(scalar_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL)
- m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft_c2r( m_plan, src,dst);
+ void inv(scalar_type * dst,complex_type * src,int nfft, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
- fftwl_execute_dft( m_plan, src,dst);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1, bool only_plan) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,plan_flag);
+ if (not only_plan)
+ fftwl_execute_dft( m_plan, src,dst);
}
};
@@ -178,7 +196,7 @@
{
typedef _Scalar Scalar;
typedef std::complex<Scalar> Complex;
-
+ int plan_flag = FFTW_ESTIMATE|FFTW_PRESERVE_INPUT;
inline
void clear()
{
@@ -187,44 +205,44 @@
// complex-to-complex forward FFT
inline
- void fwd( Complex * dst,const Complex *src,int nfft)
+ void fwd( Complex * dst,const Complex *src,int nfft, bool only_plan = false)
{
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft );
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src),nfft, only_plan);
}
// real-to-complex forward FFT
inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
+ void fwd( Complex * dst,const Scalar * src,int nfft, bool only_plan = false)
{
- get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft);
+ get_plan(nfft,false,dst,src).fwd(fftw_cast(dst), fftw_cast(src) ,nfft, only_plan);
}
// 2-d complex-to-complex
inline
- void fwd2(Complex * dst, const Complex * src, int n0,int n1)
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1, bool only_plan = false)
{
- get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ get_plan(n0,n1,false,dst,src).fwd2(fftw_cast(dst), fftw_cast(src) ,n0,n1, only_plan);
}
// inverse complex-to-complex
inline
- void inv(Complex * dst,const Complex *src,int nfft)
+ void inv(Complex * dst,const Complex *src,int nfft, bool only_plan = false)
{
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft, only_plan);
}
// half-complex to scalar
inline
- void inv( Scalar * dst,const Complex * src,int nfft)
+ void inv( Scalar * dst,const Complex * src,int nfft, bool only_plan = false)
{
- get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft );
+ get_plan(nfft,true,dst,src).inv(fftw_cast(dst), fftw_cast(src),nfft, only_plan);
}
// 2-d complex-to-complex
inline
- void inv2(Complex * dst, const Complex * src, int n0,int n1)
+ void inv2(Complex * dst, const Complex * src, int n0,int n1, bool only_plan = false)
{
- get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1);
+ get_plan(n0,n1,true,dst,src).inv2(fftw_cast(dst), fftw_cast(src) ,n0,n1, only_plan);
}
@@ -234,13 +252,13 @@
typedef std::map<int64_t,PlanData> PlanMap;
PlanMap m_plans;
-
inline
PlanData & get_plan(int nfft,bool inverse,void * dst,const void * src)
{
bool inplace = (dst==src);
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
int64_t key = ( (nfft<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1;
+ m_plans[key].plan_flag = plan_flag;
return m_plans[key];
}
@@ -250,6 +268,7 @@
bool inplace = (dst==src);
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
+ m_plans[key].plan_flag = plan_flag;
return m_plans[key];
}
};
|