File: sdmm_m31_simulation.cc

package info (click to toggle)
purify 2.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 58,688 kB
  • sloc: cpp: 8,410; python: 375; makefile: 7
file content (119 lines) | stat: -rw-r--r-- 5,149 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#include <array>
#include <ctime>
#include <memory>
#include <random>
#include <boost/math/special_functions/erf.hpp>
#include <sopt/relative_variation.h>
#include <sopt/sdmm.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#include "purify/MeasurementOperator.h"
#include "purify/directories.h"
#include "purify/pfitsio.h"
#include "purify/types.h"
#include "purify/utilities.h"
#include "purify/logging.h"

int main(int nargs, char const **args) {
  if(nargs != 6) {
    std::cout << " Wrong number of arguments! " << '\n';
    return 1;
  }

  using namespace purify;
  using namespace purify::notinstalled;
  sopt::logging::initialize();
  purify::logging::initialize();

  std::string const fitsfile = image_filename("M31.fits");

  std::string const kernel = args[1];
  t_real const over_sample = std::stod(static_cast<std::string>(args[2]));
  t_int const J = static_cast<t_int>(std::stod(static_cast<std::string>(args[3])));
  t_real const m_over_n = std::stod(static_cast<std::string>(args[4]));
  std::string const test_number = static_cast<std::string>(args[5]);

  std::string const dirty_image_fits
      = output_filename("M31_dirty_" + kernel + "_" + test_number + ".fits");
  std::string const results = output_filename("M31_results_" + kernel + "_" + test_number + ".txt");

  auto sky_model = pfitsio::read2d(fitsfile);
  auto sky_model_max = sky_model.array().abs().maxCoeff();
  sky_model = sky_model / sky_model_max;
  t_int const number_of_vis = std::floor(m_over_n * sky_model.size());
  t_real const sigma_m = constant::pi / 3;

  auto uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m);
  uv_data.units = "radians";
  std::cout << "Number of measurements: " << uv_data.u.size() << '\n';
  MeasurementOperator simulate_measurements(uv_data, 4, 4, "kb", sky_model.cols(), sky_model.rows(),
                                            20, 5); // Generating simulated high quality visibilites
  uv_data.vis = simulate_measurements.degrid(sky_model);

  MeasurementOperator measurements(uv_data, J, J, kernel, sky_model.cols(), sky_model.rows(),
                                   over_sample);
  // putting measurement operator in a form that sopt can use
  auto measurements_transform = linear_transform(measurements, uv_data.vis.size());

  sopt::wavelets::SARA const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  auto const Psi
      = sopt::linear_transform<t_complex>(sara, measurements.imsizey(), measurements.imsizex());

  // working out value of sigma given SNR of 30
  t_real sigma = utilities::SNR_to_standard_deviation(uv_data.vis, 30.);
  // adding noise to visibilities
  uv_data.vis = utilities::add_noise(uv_data.vis, 0., sigma);

  Vector<> dimage = (measurements_transform.adjoint() * uv_data.vis).real();
  t_real const max_val = dimage.array().abs().maxCoeff();
  dimage = dimage / max_val;
  Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
  pfitsio::write2d(
      Image<t_real>::Map(dimage.data(), measurements.imsizey(), measurements.imsizex()),
      dirty_image_fits);

  auto const epsilon = utilities::calculate_l2_radius(uv_data.vis, sigma);
  std::printf("Using epsilon of %f \n", epsilon);
  std::cout << "Starting sopt" << '\n';
  auto const sdmm
      = sopt::algorithm::SDMM<t_complex>()
            .itermax(500)
            .gamma((measurements_transform.adjoint() * uv_data.vis).real().maxCoeff() * 1e-3)
            .is_converged(sopt::RelativeVariation<t_complex>(1e-3))
            .conjugate_gradient(100, 1e-3)
            .append(
                sopt::proximal::translate(sopt::proximal::L2Ball<t_complex>(epsilon), -uv_data.vis),
                measurements_transform)
            .append(sopt::proximal::l1_norm<t_complex>, Psi.adjoint(), Psi)
            .append(sopt::proximal::positive_quadrant<t_complex>);
  // Timing reconstruction
  Vector<t_complex> result;
  std::clock_t c_start = std::clock();
  auto const diagnostic = sdmm(result, initial_estimate);
  if(not diagnostic.good)
    PURIFY_HIGH_LOG("SDMM did no converge");
  std::clock_t c_end = std::clock();
  Image<t_complex> image
      = Image<t_complex>::Map(result.data(), measurements.imsizey(), measurements.imsizex());
  t_real const max_val_final = image.array().abs().maxCoeff();
  image = image / max_val_final;

  Vector<t_complex> original = Vector<t_complex>::Map(sky_model.data(), sky_model.size(), 1);
  Image<t_complex> res = sky_model - image;
  Vector<t_complex> residual = Vector<t_complex>::Map(res.data(), image.size(), 1);

  auto snr = 20. * std::log10(original.norm() / residual.norm()); // SNR of reconstruction
  auto total_time = (c_end - c_start) / CLOCKS_PER_SEC; // total time for solver to run in seconds
  // writing snr and time to a file
  std::ofstream out(results);
  out.precision(13);
  out << snr << " " << total_time;
  out.close();

  return 0;
}