1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
|
#include <array>
#include <memory>
#include <random>
#include <sopt/relative_variation.h>
#include <sopt/sdmm.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#include "purify/MeasurementOperator.h"
#include "purify/directories.h"
#include "purify/pfitsio.h"
#include "purify/types.h"
int main(int, char **) {
using namespace purify;
using namespace purify::notinstalled;
sopt::logging::initialize();
std::string const visfile = vla_filename("at166B.3C129.c0.vis");
std::string const outfile = output_filename("vla.tiff");
std::string const outfile_fits = output_filename("vla_solution.fits");
std::string const dirty_image_fits = output_filename("vla_dirty.fits");
std::string const residual_fits = output_filename("vla_residual.fits");
t_int const niters = 1e1;
t_real const beta = 1e-3;
t_real const over_sample = 1.375;
auto uv_data = utilities::read_visibility(visfile);
uv_data.units = "lambda";
t_real cellsize = 0.3;
t_int width = 512;
t_int height = 512;
uv_data = utilities::uv_symmetry(uv_data);
MeasurementOperator measurements(uv_data, 4, 4, "kb_interp", width, height, 20, over_sample,
cellsize, cellsize, "whiten");
// putting measurement operator in a form that sopt can use
auto measurements_transform = linear_transform(measurements, uv_data.vis.size());
sopt::wavelets::SARA const sara{std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u),
std::make_tuple("DB5", 3u), std::make_tuple("DB6", 3u),
std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
auto const Psi = sopt::linear_transform<t_complex>(sara, height, width);
std::printf("Saving dirty map \n");
Vector<t_complex> &input = uv_data.vis;
Vector<> dimage = (measurements_transform.adjoint() * input).real();
t_real max_val = dimage.array().abs().maxCoeff();
dimage = dimage / max_val;
Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
if(utilities::file_exists(outfile_fits))
std::printf("Using previous run.");
// initial_estimate = pfitsio::read2d(outfile_fits);
pfitsio::write2d(Image<t_real>::Map(dimage.data(), height, width), dirty_image_fits);
const Vector<t_complex> &weighted_data = (uv_data.vis.array() * measurements.W).matrix();
t_real noise_variance = utilities::variance(weighted_data) / 2;
t_real const noise_rms = std::sqrt(noise_variance);
std::cout << "Calculated RMS noise of " << noise_rms * 1e3 << " mJy" << '\n';
t_real epsilon = utilities::calculate_l2_radius(
uv_data.vis, 1.); // Calculation of l_2 bound following SARA paper
auto purify_gamma
= (Psi.adjoint() * (measurements_transform.adjoint() * (input.array()).matrix()))
.real()
.maxCoeff()
* beta;
std::cout << "Starting sopt!" << '\n';
std::cout << "Epsilon = " << epsilon << '\n';
auto const sdmm = sopt::algorithm::SDMM<t_complex>()
.itermax(niters)
.gamma(purify_gamma) // l_1 bound
.is_converged(sopt::RelativeVariation<t_complex>(1e-3))
.conjugate_gradient(100, 1e-3)
.append(sopt::proximal::translate(
sopt::proximal::L2Ball<t_complex>(epsilon), -uv_data.vis),
measurements_transform)
.append(sopt::proximal::l1_norm<t_complex>, Psi.adjoint(), Psi)
.append(sopt::proximal::positive_quadrant<t_complex>);
Vector<t_complex> result;
auto const diagonstic = sdmm(result);
Image<t_complex> image
= Image<t_complex>::Map(result.data(), measurements.imsizey(), measurements.imsizex());
t_real const max_val_final = image.array().abs().maxCoeff();
image = image / max_val_final;
sopt::utilities::write_tiff(image.real(), outfile);
pfitsio::write2d(image.real(), outfile_fits);
Image<t_complex> residual = measurements.grid(input - measurements.degrid(image));
pfitsio::write2d(residual.real(), residual_fits);
return 0;
}
|