1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
|
#include <array>
#include <ctime>
#include <random>
#include <sopt/imaging_padmm.h>
#include <sopt/positive_quadrant.h>
#include <sopt/relative_variation.h>
#include <sopt/relative_variation.h>
#include <sopt/reweighted.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#include "AlgorithmUpdate.h"
#include "cmdl.h"
#include "purify/MeasurementOperator.h"
#include "purify/casacore.h"
#include "purify/logging.h"
#include "purify/pfitsio.h"
#include "purify/types.h"
using namespace purify;
namespace {
void bandwidth_scaling(purify::utilities::vis_params const &uv_data, purify::Params ¶ms) {
t_real const max_u = std::sqrt((uv_data.u.array() * uv_data.u.array()).maxCoeff());
t_real const max_v = std::sqrt((uv_data.v.array() * uv_data.v.array()).maxCoeff());
if(params.cellsizex == 0 and params.cellsizey == 0) {
t_real const max = std::sqrt(
(uv_data.u.array() * uv_data.u.array() + uv_data.v.array() * uv_data.v.array()).maxCoeff());
params.cellsizex = (180 * 3600) / max / constant::pi / 2;
params.cellsizey = (180 * 3600) / max / constant::pi / 2;
}
if(params.cellsizex == 0)
params.cellsizex = (180 * 3600) / max_u / constant::pi / 2;
if(params.cellsizey == 0)
params.cellsizey = (180 * 3600) / max_v / constant::pi / 2;
}
pfitsio::header_params
create_new_header(purify::utilities::vis_params const &uv_data, purify::Params const ¶ms) {
// header information
pfitsio::header_params header;
header.mean_frequency = uv_data.average_frequency;
header.ra = uv_data.ra;
header.dec = uv_data.dec;
header.cell_x = params.cellsizex;
header.cell_y = params.cellsizey;
header.residual_convergence = params.residual_convergence;
header.relative_variation = params.relative_variation;
return header;
}
t_real estimate_noise(purify::Params const ¶ms) {
// Read in visibilities for noise estimate
t_real sigma_real = 1 / std::sqrt(2);
t_real sigma_imag = 1 / std::sqrt(2);
if(params.noisefile != "") {
auto const noise_uv_data = purify::casa::read_measurementset(
params.noisefile, purify::casa::MeasurementSet::ChannelWrapper::polarization::V);
Vector<t_complex> const noise_vis = noise_uv_data.weights.array() * noise_uv_data.vis.array();
sigma_real = utilities::median(noise_vis.real().cwiseAbs()) / 0.6745;
sigma_imag = utilities::median(noise_vis.imag().cwiseAbs()) / 0.6745;
}
PURIFY_MEDIUM_LOG("RMS noise of {}Jy + i{}Jy", sigma_real, sigma_real);
return std::sqrt(sigma_real * sigma_real + sigma_imag * sigma_imag); //calculation is for combined real and imaginary sigma, factor of 1/sqrt(2) in epsilon calculation
}
purify::casa::MeasurementSet::ChannelWrapper::polarization choose_pol(std::string const & stokes){
/*
Chooses the polarisation to read from a measurement set.
*/
auto stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::I;
//stokes
if (stokes == "I" or stokes == "i")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::I;
if (stokes == "Q" or stokes == "q")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::Q;
if (stokes == "U" or stokes == "u")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::U;
if (stokes == "V" or stokes == "v")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::V;
//linear
if (stokes == "XX" or stokes == "xx")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::XX;
if (stokes == "YY" or stokes == "yy")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::YY;
if (stokes == "XY" or stokes == "xy")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::XY;
if (stokes == "YX" or stokes == "yx")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::YX;
//circular
if (stokes == "LL" or stokes == "ll")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::LL;
if (stokes == "RR" or stokes == "rr")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::RR;
if (stokes == "LR" or stokes == "lr")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::LR;
if (stokes == "RL" or stokes == "rl")
stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::RL;
return stokes_val;
}
t_real save_psf_and_dirty_image(
sopt::LinearTransform<sopt::Vector<sopt::t_complex>> const &measurements,
purify::utilities::vis_params const &uv_data, purify::Params const ¶ms) {
// returns psf normalisation
purify::pfitsio::header_params header = create_new_header(uv_data, params);
std::string const dirty_image_fits = params.name + "_dirty_" + params.weighting + ".fits";
std::string const psf_fits = params.name + "_psf_" + params.weighting + ".fits";
Vector<t_complex> const psf_image = measurements.adjoint() * (uv_data.weights.array());
Image<t_real> psf = Image<t_complex>::Map(psf_image.data(), params.height, params.width).real();
t_real max_val = psf.array().abs().maxCoeff();
PURIFY_LOW_LOG("PSF normalised by {}", max_val);
psf = psf;//not normalised, so it is easy to compare scales
header.fits_name = psf_fits;
PURIFY_HIGH_LOG("Saving {}", header.fits_name);
pfitsio::write2d_header(psf, header);
Vector<t_complex> const dirty_image
= measurements.adjoint() * (uv_data.weights.array() * uv_data.vis.array());
Image<t_real> dimage
= Image<t_complex>::Map(dirty_image.data(), params.height, params.width).real();
header.fits_name = dirty_image_fits;
PURIFY_HIGH_LOG("Saving {}", header.fits_name);
pfitsio::write2d_header(dimage/max_val, header);
return max_val;
}
void save_final_image(std::string const &outfile_fits, std::string const &residual_fits,
Vector<t_complex> const &x, utilities::vis_params const &uv_data,
Params const ¶ms, MeasurementOperator measurements) {
//! Save final output image
purify::pfitsio::header_params header = create_new_header(uv_data, params);
Image<t_complex> const image
= Image<t_complex>::Map(x.data(), measurements.imsizey(), measurements.imsizex());
// header information
header.pix_units = "JY/PIXEL";
header.fits_name = outfile_fits + ".fits";
header.niters = params.iter;
header.epsilon = params.epsilon;
pfitsio::write2d_header(image.real(), header);
Image<t_complex> residual = measurements
.grid(((uv_data.vis - measurements.degrid(image)).array()
* uv_data.weights.array().real())
.matrix())
.array();
header.fits_name = residual_fits + ".fits";
header.pix_units = "JY/BEAM";
header.fits_name = residual_fits;
pfitsio::write2d_header(residual.real(), header);
header.fits_name = residual_fits + "_scaled.fits";
pfitsio::write2d_header(residual.real() / params.psf_norm, header);
};
std::tuple<Vector<t_complex>, Vector<t_complex>>
read_estimates(sopt::LinearTransform<sopt::Vector<sopt::t_complex>> const &measurements,
purify::utilities::vis_params const &uv_data, purify::Params const ¶ms) {
Vector<t_complex> initial_estimate
= measurements.adjoint() * (uv_data.weights.array() * uv_data.vis.array());
Vector<t_complex> initial_residuals = Vector<t_complex>::Zero(uv_data.vis.size());
// loading data from check point.
if(utilities::file_exists(params.name + "_diagnostic")) {
PURIFY_HIGH_LOG("Loading checkpoint for {}", params.name.c_str());
std::string const outfile_fits = params.name + "_solution_" + params.weighting + "_update.fits";
if(utilities::file_exists(outfile_fits)) {
auto const image = pfitsio::read2d(outfile_fits);
if(params.height != image.rows() or params.width != image.cols()) {
std::runtime_error("Initial model estimate is the wrong size.");
}
initial_estimate = Matrix<t_complex>::Map(image.data(), image.size(), 1);
Vector<t_complex> const model = measurements * image;
initial_residuals = (uv_data.vis - model).array() * (uv_data.weights.array().real());
}
}
std::tuple<Vector<t_complex>, Vector<t_complex>> const estimates(initial_estimate,
initial_residuals);
return estimates;
}
MeasurementOperator
construct_measurement_operator(utilities::vis_params const &uv_data, purify::Params const ¶ms) {
auto measurements = MeasurementOperator()
.Ju(params.J)
.Jv(params.J)
.kernel_name(params.kernel)
.imsizex(params.width)
.imsizey(params.height)
.norm_iterations(params.power_method_iterations)
.oversample_factor(params.over_sample)
.cell_x(params.cellsizex)
.cell_y(params.cellsizey)
.weighting_type("none") // weighting is done outside of the operator
.R(0)
.use_w_term(params.use_w_term)
.energy_fraction(params.energy_fraction)
.primary_beam(params.primary_beam)
.fft_grid_correction(params.fft_grid_correction)
.fftw_plan_flag(params.fftw_plan);
measurements.init_operator(uv_data);
return measurements;
};
}
int main(int argc, char **argv) {
sopt::logging::initialize();
purify::logging::initialize();
Params params = parse_cmdl(argc, argv);
sopt::logging::set_level(params.sopt_logging_level);
purify::logging::set_level(params.sopt_logging_level);
params.stokes_val = choose_pol(params.stokes);
auto uv_data = purify::casa::read_measurementset(params.visfile, params.stokes_val);
bandwidth_scaling(uv_data, params);
// calculate weights outside of measurement operator
uv_data.weights = utilities::init_weights(
uv_data.u, uv_data.v, uv_data.weights, params.over_sample, params.weighting, 0,
params.over_sample * params.width, params.over_sample * params.height);
auto const noise_rms = estimate_noise(params);
auto const measurements = construct_measurement_operator(uv_data, params);
params.norm = measurements.norm;
auto const measurements_transform = linear_transform(measurements, uv_data.vis.size());
sopt::wavelets::SARA const sara{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
auto const Psi = sopt::linear_transform<t_complex>(sara, params.height, params.width);
PURIFY_LOW_LOG("Saving dirty map");
params.psf_norm = save_psf_and_dirty_image(measurements_transform, uv_data, params);
auto const estimates = read_estimates(measurements_transform, uv_data, params);
t_real const epsilon = params.n_mu * std::sqrt(2 * uv_data.vis.size()) * noise_rms / std::sqrt(2); // Calculation of l_2 bound following SARA paper
params.epsilon = epsilon;
params.residual_convergence
= (params.residual_convergence < 0) ? 0. : params.residual_convergence * epsilon;
t_real purify_gamma = 0;
std::tie(params.iter, purify_gamma) = utilities::checkpoint_log(params.name + "_diagnostic");
if(params.iter == 0)
purify_gamma = (Psi.adjoint() * (measurements_transform.adjoint()
* (uv_data.weights.array() * uv_data.vis.array()).matrix()))
.cwiseAbs()
.maxCoeff()
* params.beta;
std::ofstream out_diagnostic;
out_diagnostic.precision(13);
out_diagnostic.open(params.name + "_diagnostic", std::ios_base::app);
PURIFY_HIGH_LOG("Starting sopt!");
PURIFY_MEDIUM_LOG("Epsilon = {}", epsilon);
PURIFY_MEDIUM_LOG("Convergence criteria: Relative variation is less than {}.",
params.relative_variation);
if(params.residual_convergence > 0)
PURIFY_MEDIUM_LOG("Convergence criteria: Residual norm is less than {}.",
params.residual_convergence);
PURIFY_MEDIUM_LOG("Gamma = {}", purify_gamma);
auto padmm = sopt::algorithm::ImagingProximalADMM<t_complex>(uv_data.vis)
.gamma(purify_gamma)
.relative_variation(params.relative_variation)
.l2ball_proximal_epsilon(epsilon)
.l2ball_proximal_weights(uv_data.weights.array().real())
.tight_frame(false)
.l1_proximal_tolerance(1e-3)
.l1_proximal_nu(1)
.l1_proximal_itermax(100)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_convergence(params.residual_convergence)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(measurements_transform);
auto convergence_function = [](const Vector<t_complex> &x) { return true; };
AlgorithmUpdate algo_update(params, uv_data, padmm, out_diagnostic, measurements, Psi);
auto lambda = [&convergence_function, &algo_update](Vector<t_complex> const &x) {
return convergence_function(x) and algo_update(x);
};
Vector<t_complex> final_model = Vector<t_complex>::Zero(params.width * params.height);
std::string outfile_fits = "";
std::string residual_fits = "";
if(params.algo_update)
padmm.is_converged(lambda);
if(params.niters != 0)
padmm.itermax(params.niters);
if(params.no_reweighted) {
auto const diagnostic = padmm(estimates);
outfile_fits = params.name + "_solution_" + params.weighting + "_final";
residual_fits = params.name + "_residual_" + params.weighting + "_final";
final_model = diagnostic.x;
} else {
auto const posq = sopt::algorithm::positive_quadrant(padmm);
auto const min_delta = noise_rms * std::sqrt(uv_data.vis.size())
/ std::sqrt(9 * measurements.imsizey() * measurements.imsizex());
// Sets weight after each padmm iteration.
// In practice, this means replacing the proximal of the l1 objective function.
auto const reweighted
= sopt::algorithm::reweighted(padmm).itermax(10).min_delta(min_delta).is_converged(
sopt::RelativeVariation<std::complex<t_real>>(1e-3));
auto const diagnostic = reweighted();
outfile_fits = params.name + "_solution_" + params.weighting + "_final_reweighted";
residual_fits = params.name + "_residual_" + params.weighting + "_final_reweighted";
final_model = diagnostic.algo.x;
}
save_final_image(outfile_fits, residual_fits, final_model, uv_data, params, measurements);
out_diagnostic.close();
return 0;
}
|