File: main.cc

package info (click to toggle)
purify 2.0.0-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 58,688 kB
  • sloc: cpp: 8,410; python: 375; makefile: 7
file content (314 lines) | stat: -rw-r--r-- 15,084 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include <array>
#include <ctime>
#include <random>
#include <sopt/imaging_padmm.h>
#include <sopt/positive_quadrant.h>
#include <sopt/relative_variation.h>
#include <sopt/relative_variation.h>
#include <sopt/reweighted.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#include "AlgorithmUpdate.h"
#include "cmdl.h"
#include "purify/MeasurementOperator.h"
#include "purify/casacore.h"
#include "purify/logging.h"
#include "purify/pfitsio.h"
#include "purify/types.h"

using namespace purify;
namespace {

void bandwidth_scaling(purify::utilities::vis_params const &uv_data, purify::Params &params) {
  t_real const max_u = std::sqrt((uv_data.u.array() * uv_data.u.array()).maxCoeff());
  t_real const max_v = std::sqrt((uv_data.v.array() * uv_data.v.array()).maxCoeff());
  if(params.cellsizex == 0 and params.cellsizey == 0) {
    t_real const max = std::sqrt(
        (uv_data.u.array() * uv_data.u.array() + uv_data.v.array() * uv_data.v.array()).maxCoeff());
    params.cellsizex = (180 * 3600) / max / constant::pi / 2;
    params.cellsizey = (180 * 3600) / max / constant::pi / 2;
  }
  if(params.cellsizex == 0)
    params.cellsizex = (180 * 3600) / max_u / constant::pi / 2;
  if(params.cellsizey == 0)
    params.cellsizey = (180 * 3600) / max_v / constant::pi / 2;
}

pfitsio::header_params
create_new_header(purify::utilities::vis_params const &uv_data, purify::Params const &params) {
  // header information
  pfitsio::header_params header;
  header.mean_frequency = uv_data.average_frequency;
  header.ra = uv_data.ra;
  header.dec = uv_data.dec;
  header.cell_x = params.cellsizex;
  header.cell_y = params.cellsizey;
  header.residual_convergence = params.residual_convergence;
  header.relative_variation = params.relative_variation;
  return header;
}

t_real estimate_noise(purify::Params const &params) {

  // Read in visibilities for noise estimate
  t_real sigma_real = 1 / std::sqrt(2);
  t_real sigma_imag = 1 / std::sqrt(2);

  if(params.noisefile != "") {
    auto const noise_uv_data = purify::casa::read_measurementset(
        params.noisefile, purify::casa::MeasurementSet::ChannelWrapper::polarization::V);
    Vector<t_complex> const noise_vis = noise_uv_data.weights.array() * noise_uv_data.vis.array();
    sigma_real = utilities::median(noise_vis.real().cwiseAbs()) / 0.6745;
    sigma_imag = utilities::median(noise_vis.imag().cwiseAbs()) / 0.6745;
  }

  PURIFY_MEDIUM_LOG("RMS noise of {}Jy + i{}Jy", sigma_real, sigma_real);
  return std::sqrt(sigma_real * sigma_real + sigma_imag * sigma_imag); //calculation is for combined real and imaginary sigma, factor of 1/sqrt(2) in epsilon calculation
}

purify::casa::MeasurementSet::ChannelWrapper::polarization choose_pol(std::string const & stokes){
  /*
   Chooses the polarisation to read from a measurement set.
   */
  auto stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::I;
  //stokes
  if (stokes == "I" or stokes == "i")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::I;
  if (stokes == "Q" or stokes == "q")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::Q;
  if (stokes == "U" or stokes == "u")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::U;
  if (stokes == "V" or stokes == "v")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::V;
  //linear
  if (stokes == "XX" or stokes == "xx")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::XX;
  if (stokes == "YY" or stokes == "yy")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::YY;
  if (stokes == "XY" or stokes == "xy")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::XY;
  if (stokes == "YX" or stokes == "yx")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::YX;
  //circular
  if (stokes == "LL" or stokes == "ll")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::LL;
  if (stokes == "RR" or stokes == "rr")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::RR;
  if (stokes == "LR" or stokes == "lr")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::LR;
  if (stokes == "RL" or stokes == "rl")
    stokes_val = purify::casa::MeasurementSet::ChannelWrapper::polarization::RL;
  
  return stokes_val;
}
t_real save_psf_and_dirty_image(
    sopt::LinearTransform<sopt::Vector<sopt::t_complex>> const &measurements,
    purify::utilities::vis_params const &uv_data, purify::Params const &params) {
  // returns psf normalisation
  purify::pfitsio::header_params header = create_new_header(uv_data, params);
  std::string const dirty_image_fits = params.name + "_dirty_" + params.weighting + ".fits";
  std::string const psf_fits = params.name + "_psf_" + params.weighting + ".fits";
  Vector<t_complex> const psf_image = measurements.adjoint() * (uv_data.weights.array());
  Image<t_real> psf = Image<t_complex>::Map(psf_image.data(), params.height, params.width).real();
  t_real max_val = psf.array().abs().maxCoeff();
  PURIFY_LOW_LOG("PSF normalised by {}", max_val);
  psf = psf;//not normalised, so it is easy to compare scales
  header.fits_name = psf_fits;
  PURIFY_HIGH_LOG("Saving {}", header.fits_name);
  pfitsio::write2d_header(psf, header);
  Vector<t_complex> const dirty_image
      = measurements.adjoint() * (uv_data.weights.array() * uv_data.vis.array());
  Image<t_real> dimage
      = Image<t_complex>::Map(dirty_image.data(), params.height, params.width).real();
  header.fits_name = dirty_image_fits;
  PURIFY_HIGH_LOG("Saving {}", header.fits_name);
  pfitsio::write2d_header(dimage/max_val, header);
  return max_val;
}

void save_final_image(std::string const &outfile_fits, std::string const &residual_fits,
                      Vector<t_complex> const &x, utilities::vis_params const &uv_data,
                      Params const &params, MeasurementOperator measurements) {
  //! Save final output image
  purify::pfitsio::header_params header = create_new_header(uv_data, params);
  Image<t_complex> const image
      = Image<t_complex>::Map(x.data(), measurements.imsizey(), measurements.imsizex());
  // header information
  header.pix_units = "JY/PIXEL";
  header.fits_name = outfile_fits + ".fits";
  header.niters = params.iter;
  header.epsilon = params.epsilon;
  pfitsio::write2d_header(image.real(), header);
  Image<t_complex> residual = measurements
                                  .grid(((uv_data.vis - measurements.degrid(image)).array()
                                         * uv_data.weights.array().real())
                                            .matrix())
                                  .array();
  header.fits_name = residual_fits + ".fits";
  header.pix_units = "JY/BEAM";
  header.fits_name = residual_fits;
  pfitsio::write2d_header(residual.real(), header);

  header.fits_name = residual_fits + "_scaled.fits";
  pfitsio::write2d_header(residual.real() / params.psf_norm, header);
};

std::tuple<Vector<t_complex>, Vector<t_complex>>
read_estimates(sopt::LinearTransform<sopt::Vector<sopt::t_complex>> const &measurements,
               purify::utilities::vis_params const &uv_data, purify::Params const &params) {
  Vector<t_complex> initial_estimate
      = measurements.adjoint() * (uv_data.weights.array() * uv_data.vis.array());
  Vector<t_complex> initial_residuals = Vector<t_complex>::Zero(uv_data.vis.size());
  // loading data from check point.
  if(utilities::file_exists(params.name + "_diagnostic")) {
    PURIFY_HIGH_LOG("Loading checkpoint for {}", params.name.c_str());
    std::string const outfile_fits = params.name + "_solution_" + params.weighting + "_update.fits";
    if(utilities::file_exists(outfile_fits)) {
      auto const image = pfitsio::read2d(outfile_fits);
      if(params.height != image.rows() or params.width != image.cols()) {
        std::runtime_error("Initial model estimate is the wrong size.");
      }
      initial_estimate = Matrix<t_complex>::Map(image.data(), image.size(), 1);
      Vector<t_complex> const model = measurements * image;
      initial_residuals = (uv_data.vis - model).array() * (uv_data.weights.array().real());
    }
  }
  std::tuple<Vector<t_complex>, Vector<t_complex>> const estimates(initial_estimate,
                                                                   initial_residuals);
  return estimates;
}

MeasurementOperator
construct_measurement_operator(utilities::vis_params const &uv_data, purify::Params const &params) {
  auto measurements = MeasurementOperator()
                          .Ju(params.J)
                          .Jv(params.J)
                          .kernel_name(params.kernel)
                          .imsizex(params.width)
                          .imsizey(params.height)
                          .norm_iterations(params.power_method_iterations)
                          .oversample_factor(params.over_sample)
                          .cell_x(params.cellsizex)
                          .cell_y(params.cellsizey)
                          .weighting_type("none") // weighting is done outside of the operator
                          .R(0)
                          .use_w_term(params.use_w_term)
                          .energy_fraction(params.energy_fraction)
                          .primary_beam(params.primary_beam)
                          .fft_grid_correction(params.fft_grid_correction)
                          .fftw_plan_flag(params.fftw_plan);
  measurements.init_operator(uv_data);
  return measurements;
};
}

int main(int argc, char **argv) {
  sopt::logging::initialize();
  purify::logging::initialize();

  Params params = parse_cmdl(argc, argv);
  sopt::logging::set_level(params.sopt_logging_level);
  purify::logging::set_level(params.sopt_logging_level);
  params.stokes_val = choose_pol(params.stokes);
  auto uv_data = purify::casa::read_measurementset(params.visfile, params.stokes_val);
  bandwidth_scaling(uv_data, params);

  // calculate weights outside of measurement operator
  uv_data.weights = utilities::init_weights(
      uv_data.u, uv_data.v, uv_data.weights, params.over_sample, params.weighting, 0,
      params.over_sample * params.width, params.over_sample * params.height);
  auto const noise_rms = estimate_noise(params);
  auto const measurements = construct_measurement_operator(uv_data, params);
  params.norm = measurements.norm;
  auto const measurements_transform = linear_transform(measurements, uv_data.vis.size());

  sopt::wavelets::SARA const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  auto const Psi = sopt::linear_transform<t_complex>(sara, params.height, params.width);

  PURIFY_LOW_LOG("Saving dirty map");
  params.psf_norm = save_psf_and_dirty_image(measurements_transform, uv_data, params);

  auto const estimates = read_estimates(measurements_transform, uv_data, params);
  t_real const epsilon = params.n_mu * std::sqrt(2 * uv_data.vis.size()) * noise_rms / std::sqrt(2); // Calculation of l_2 bound following SARA paper
  params.epsilon = epsilon;
  params.residual_convergence
      = (params.residual_convergence < 0) ? 0. : params.residual_convergence * epsilon;
  t_real purify_gamma = 0;
  std::tie(params.iter, purify_gamma) = utilities::checkpoint_log(params.name + "_diagnostic");
  if(params.iter == 0)
    purify_gamma = (Psi.adjoint() * (measurements_transform.adjoint()
                                     * (uv_data.weights.array() * uv_data.vis.array()).matrix()))
                       .cwiseAbs()
                       .maxCoeff()
                   * params.beta;

  std::ofstream out_diagnostic;
  out_diagnostic.precision(13);
  out_diagnostic.open(params.name + "_diagnostic", std::ios_base::app);

  PURIFY_HIGH_LOG("Starting sopt!");
  PURIFY_MEDIUM_LOG("Epsilon = {}", epsilon);
  PURIFY_MEDIUM_LOG("Convergence criteria: Relative variation is less than {}.",
                    params.relative_variation);
  if(params.residual_convergence > 0)
    PURIFY_MEDIUM_LOG("Convergence criteria: Residual norm is less than {}.",
                      params.residual_convergence);
  PURIFY_MEDIUM_LOG("Gamma = {}", purify_gamma);
  auto padmm = sopt::algorithm::ImagingProximalADMM<t_complex>(uv_data.vis)
                   .gamma(purify_gamma)
                   .relative_variation(params.relative_variation)
                   .l2ball_proximal_epsilon(epsilon)
                   .l2ball_proximal_weights(uv_data.weights.array().real())
                   .tight_frame(false)
                   .l1_proximal_tolerance(1e-3)
                   .l1_proximal_nu(1)
                   .l1_proximal_itermax(100)
                   .l1_proximal_positivity_constraint(true)
                   .l1_proximal_real_constraint(true)
                   .residual_convergence(params.residual_convergence)
                   .lagrange_update_scale(0.9)
                   .nu(1e0)
                   .Psi(Psi)
                   .Phi(measurements_transform);

  auto convergence_function = [](const Vector<t_complex> &x) { return true; };
  AlgorithmUpdate algo_update(params, uv_data, padmm, out_diagnostic, measurements, Psi);
  auto lambda = [&convergence_function, &algo_update](Vector<t_complex> const &x) {
    return convergence_function(x) and algo_update(x);
  };
  Vector<t_complex> final_model = Vector<t_complex>::Zero(params.width * params.height);
  std::string outfile_fits = "";
  std::string residual_fits = "";
  if(params.algo_update)
    padmm.is_converged(lambda);
  if(params.niters != 0)
    padmm.itermax(params.niters);
  if(params.no_reweighted) {
    auto const diagnostic = padmm(estimates);
    outfile_fits = params.name + "_solution_" + params.weighting + "_final";
    residual_fits = params.name + "_residual_" + params.weighting + "_final";
    final_model = diagnostic.x;
  } else {
    auto const posq = sopt::algorithm::positive_quadrant(padmm);
    auto const min_delta = noise_rms * std::sqrt(uv_data.vis.size())
                           / std::sqrt(9 * measurements.imsizey() * measurements.imsizex());
    // Sets weight after each padmm iteration.
    // In practice, this means replacing the proximal of the l1 objective function.
    auto const reweighted
        = sopt::algorithm::reweighted(padmm).itermax(10).min_delta(min_delta).is_converged(
            sopt::RelativeVariation<std::complex<t_real>>(1e-3));
    auto const diagnostic = reweighted();
    outfile_fits = params.name + "_solution_" + params.weighting + "_final_reweighted";
    residual_fits = params.name + "_residual_" + params.weighting + "_final_reweighted";
    final_model = diagnostic.algo.x;
  }
  save_final_image(outfile_fits, residual_fits, final_model, uv_data, params, measurements);
  out_diagnostic.close();

  return 0;
}