1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
|
#include "catch.hpp"
#include "purify/FFTOperator.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"
using namespace purify;
TEST_CASE("FFT Operator [FORWARD]", "[FORWARD]") {
t_int fft_flag = (FFTW_PATIENT | FFTW_PRESERVE_INPUT);
Fft2d oldFFT;
auto newFFT = purify::FFTOperator().fftw_flag(fft_flag);
CAPTURE(newFFT.fftw_flag());
CAPTURE(fft_flag);
newFFT.set_up_multithread();
Matrix<t_complex> const a = Matrix<t_complex>::Random(20, 19);
Matrix<t_complex> old_output = oldFFT.forward(a);
Matrix<t_complex> new_output = newFFT.forward(a);
CAPTURE(old_output.row(0).head(4));
CAPTURE(new_output.row(0).head(4));
CAPTURE(new_output.transpose().row(0).head(4));
CAPTURE((&new_output(0, 0) + 20 == &new_output(0, 1)));
CAPTURE((&new_output(0, 0) + 1 == &new_output(1, 0)));
CHECK(old_output.isApprox(new_output, 1e-13));
CHECK(std::abs(old_output(0) / new_output(0) - old_output(1) / new_output(1)) < 1e-13);
t_int xsize = 128;
t_int ysize = 100;
Vector<t_real> x = Vector<t_real>::LinSpaced(xsize, -2, 2);
Vector<t_real> y = Vector<t_real>::LinSpaced(ysize, -2, 2);
Matrix<t_complex> guassian(ysize, xsize);
for(int i = 0; i < y.size(); ++i) {
for(int j = 0; j < x.size(); ++j) {
t_real sigma = 0.1;
t_complex I(0, 1);
guassian(i, j) = std::exp(-(y(i) * y(i) + x(j) * x(j)) * 0.5 / (sigma * sigma)
- 2. * I * constant::pi * 64. * (x(j) + y(i)));
}
}
pfitsio::write2d(newFFT.forward(guassian).cwiseAbs(), "forward_guassian.fits");
pfitsio::write2d(oldFFT.forward(guassian).cwiseAbs(), "old_forward_guassian.fits");
}
TEST_CASE("FFT Operator [INVERSE]", "[INVERSE]") {
Fft2d oldFFT;
t_int fft_flag = (FFTW_PATIENT | FFTW_PRESERVE_INPUT);
auto newFFT = purify::FFTOperator().fftw_flag(fft_flag);
Matrix<t_complex> a = Matrix<t_complex>::Random(20, 19);
Matrix<t_complex> old_output = oldFFT.inverse(a);
Matrix<t_complex> new_output = newFFT.inverse(a);
CHECK(old_output.isApprox(new_output, 1e-13));
CHECK(std::abs(old_output(0) / new_output(0) - old_output(1) / new_output(1)) < 1e-13);
t_int xsize = 128;
t_int ysize = 100;
Vector<t_real> x = Vector<t_real>::LinSpaced(xsize, -2, 2);
Vector<t_real> y = Vector<t_real>::LinSpaced(ysize, -2, 2);
Matrix<t_complex> guassian(ysize, xsize);
for(int i = 0; i < y.size(); ++i) {
for(int j = 0; j < x.size(); ++j) {
t_real sigma = 0.1;
t_complex I(0, 1);
guassian(i, j) = std::exp(-(y(i) * y(i) + x(j) * x(j)) * 0.5 / (sigma * sigma)
- 2. * I * constant::pi * 64. * (x(j) + y(i)));
}
}
pfitsio::write2d(newFFT.inverse(guassian).real(), "inverse_guassian.fits");
pfitsio::write2d(oldFFT.inverse(guassian).real(), "old_inverse_guassian.fits");
}
TEST_CASE("FFT Operator [BOTH]", "[BOTH]") {
Fft2d oldFFT;
t_int fft_flag = (FFTW_PATIENT | FFTW_PRESERVE_INPUT);
auto newFFT = purify::FFTOperator().fftw_flag(fft_flag);
Matrix<t_complex> a = Matrix<t_complex>::Random(20, 19);
Matrix<t_complex> new_output = newFFT.forward(newFFT.inverse(a));
CHECK(a.isApprox(new_output, 1e-13));
t_int xsize = 128;
t_int ysize = 100;
Vector<t_real> x = Vector<t_real>::LinSpaced(xsize, -2, 2);
Vector<t_real> y = Vector<t_real>::LinSpaced(ysize, -2, 2);
Matrix<t_complex> guassian(ysize, xsize);
for(int i = 0; i < y.size(); ++i) {
for(int j = 0; j < x.size(); ++j) {
t_real sigma = 0.1;
t_complex I(0, 1);
guassian(i, j) = std::exp(-(y(i) * y(i) + x(j) * x(j)) * 0.5 / (sigma * sigma)
- 2. * I * constant::pi * 64. * (x(j) + y(i)));
}
}
pfitsio::write2d(newFFT.forward(newFFT.inverse(guassian)).real(), "guassian.fits");
pfitsio::write2d(oldFFT.forward(oldFFT.inverse(guassian)).real(), "old_guassian.fits");
}
|