File: measurement_operator_af.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (175 lines) | stat: -rw-r--r-- 5,923 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <chrono>
#include <benchmark/benchmark.h>
#include "benchmarks/utilities.h"
#include "purify/operators_gpu.h"

using namespace purify;

// -------------- Constructor benchmark -------------------------//

void degrid_operator_ctor(benchmark::State &state) {
  // Generating random uv(w) coverage
  t_int const rows = state.range(0);
  t_int const cols = state.range(0);
  t_int const number_of_vis = state.range(1);
  auto uv_data = b_utilities::random_measurements(number_of_vis);

  const t_real FoV = 1;  // deg
  const t_real cellsize = FoV / cols * 60. * 60.;
  const bool w_term = false;
  // benchmark the creation of measurement operator
  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
#ifdef PURIFY_CPU
    auto sky_measurements = measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
        uv_data, rows, cols, cellsize, cellsize, 2, kernels::kernel::kb, state.range(2),
        state.range(2), w_term);
#else
    auto sky_measurements = gpu::measurementoperator::init_degrid_operator_2d(
        uv_data, rows, cols, cellsize, cellsize, 2, kernels::kernel::kb, state.range(2),
        state.range(2), w_term);

#endif
    auto end = std::chrono::high_resolution_clock::now();

    state.SetIterationTime(b_utilities::duration(start, end));
  }

  state.SetBytesProcessed(int64_t(state.iterations()) * (number_of_vis + rows * cols) *
                          sizeof(t_complex));
}
/*
BENCHMARK(degrid_operator_ctor)
    //->Apply(b_utilities::Arguments)
    ->Args({128, 1000, 4})
 //   ->Args({128, 1000, 4})
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);
*/
// ----------------- Application benchmarks -----------------------//

class DegridOperatorFixture : public ::benchmark::Fixture {
 public:
  void SetUp(const ::benchmark::State &state) {
    af::setDevice(0);
    af::setBackend(AF_BACKEND_CUDA);
    // Keep count of the benchmark repetitions
    m_counter++;

    // Reading image from file and create temporary image
    bool newImage = updateImage(state.range(0));

    // Generating random uv(w) coverage
    bool newMeasurements = b_utilities::updateMeasurements(state.range(1), m_uv_data);

    // Create measurement operator
    bool newKernel = m_kernel != state.range(2);
    if (newImage || newMeasurements || newKernel) {
      const t_real FoV = 1;  // deg
      const t_real cellsize = FoV / m_imsizex * 60. * 60.;
      const bool w_term = false;
      m_kernel = state.range(2);
#ifdef PURIFY_CPU
      m_degridOperator = measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
          m_uv_data, m_imsizey, m_imsizex, cellsize, cellsize, 2, kernels::kernel::kb, m_kernel,
          m_kernel, w_term);
#else
      m_degridOperator = gpu::measurementoperator::init_degrid_operator_2d(
          m_uv_data, m_imsizey, m_imsizex, cellsize, cellsize, 2, kernels::kernel::kb, m_kernel,
          m_kernel, w_term);
#endif
    }
  }

  void TearDown(const ::benchmark::State &state) {}

  virtual bool updateImage(t_uint newSize) = 0;

  t_uint m_counter;

  t_uint m_imsizex;
  t_uint m_imsizey;

  utilities::vis_params m_uv_data;

  t_uint m_kernel;
  std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> m_degridOperator;
};

class DegridOperatorDirectFixture : public DegridOperatorFixture {
 public:
  virtual bool updateImage(t_uint newSize) {
    return b_utilities::updateImage(newSize, m_image, m_imsizex, m_imsizey);
  }

  Image<t_complex> m_image;
};

class DegridOperatorAdjointFixture : public DegridOperatorFixture {
 public:
  virtual bool updateImage(t_uint newSize) {
    return b_utilities::updateEmptyImage(newSize, m_image, m_imsizex, m_imsizey);
  }

  Vector<t_complex> m_image;
};

BENCHMARK_DEFINE_F(DegridOperatorDirectFixture, Apply)(benchmark::State &state) {
  // Benchmark the application of the operator
  if ((m_counter % 10) == 1) {
    m_uv_data.vis = (*m_degridOperator) * Image<t_complex>::Map(m_image.data(), m_image.size(), 1);
  }
  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    m_uv_data.vis = (*m_degridOperator) * Image<t_complex>::Map(m_image.data(), m_image.size(), 1);
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }

  state.SetBytesProcessed(int64_t(state.iterations()) * (state.range(1) + m_imsizey * m_imsizex) *
                          sizeof(t_complex));
}

BENCHMARK_DEFINE_F(DegridOperatorAdjointFixture, Apply)(benchmark::State &state) {
  // Benchmark the application of the adjoint operator
  if ((m_counter % 10) == 1) {
    m_image = m_degridOperator->adjoint() * m_uv_data.vis;
  }
  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    m_image = m_degridOperator->adjoint() * m_uv_data.vis;
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }

  state.SetBytesProcessed(int64_t(state.iterations()) * (state.range(1) + m_imsizey * m_imsizex) *
                          sizeof(t_complex));
}

BENCHMARK_REGISTER_F(DegridOperatorDirectFixture, Apply)
    //->Apply(b_utilities::Arguments)
    ->Args({256, 500000, 4})
    ->Args({512, 500000, 4})
    ->Args({1024, 500000, 4})
    ->Args({2048, 500000, 4})
    //  ->Args({4096, 100000, 4})
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_REGISTER_F(DegridOperatorAdjointFixture, Apply)
    //->Apply(b_utilities::Arguments)
    ->Args({256, 500000, 4})
    ->Args({512, 500000, 4})
    ->Args({1024, 500000, 4})
    ->Args({2048, 500000, 4})
    //  ->Args({4096, 100000, 4})
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_MAIN();