1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
#include "purify/types.h"
#include <array>
#include <random>
#include "benchmarks/utilities.h"
#include "purify/convergence_factory.h"
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/utilities.h"
#include <sopt/imaging_padmm.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/session.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
using namespace purify;
class PadmmFixtureMPI : public ::benchmark::Fixture {
public:
void SetUp(const ::benchmark::State &state) {
// Reading image from file and update related quantities
bool newImage = b_utilities::updateImage(state.range(0), m_image, m_imsizex, m_imsizey);
// Generating random uv(w) coverage
bool newMeasurements = m_uv_data.size() != state.range(1);
if (newMeasurements) {
t_real const sigma_m = constant::pi / 3;
m_uv_data = utilities::random_sample_density(state.range(1), 0, sigma_m);
}
bool newKernel = m_kernel != state.range(2);
if (newImage || newMeasurements || newKernel) {
m_kernel = state.range(2);
// creating the measurement operator
const t_real FoV = 1; // deg
const t_real cellsize = FoV / m_imsizex * 60. * 60.;
const bool w_term = false;
// algorithm 1
if (state.range(4) == 1)
m_measurements1 = measurementoperator::init_degrid_operator_2d_mpi<Vector<t_complex>>(
m_world, m_uv_data, m_image.rows(), m_image.cols(), cellsize, cellsize, 2,
kernels::kernel::kb, m_kernel, m_kernel, w_term);
// algorithm 3
if (state.range(4) == 3)
m_measurements3 = measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
m_world, m_uv_data, m_image.rows(), m_image.cols(), cellsize, cellsize, 2,
kernels::kernel::kb, m_kernel, m_kernel, w_term);
}
}
void TearDown(const ::benchmark::State &state) {}
sopt::mpi::Communicator m_world;
const sopt::wavelets::SARA m_sara{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};
Image<t_complex> m_image;
t_uint m_imsizex;
t_uint m_imsizey;
utilities::vis_params m_uv_data;
t_real m_epsilon;
t_uint m_kernel;
std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> m_measurements1;
std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> m_measurements3;
};
BENCHMARK_DEFINE_F(PadmmFixtureMPI, ApplyAlgo1)(benchmark::State &state) {
// Create the algorithm - somehow doesn't work if done in the fixture...
sopt::wavelets::SARA saraDistr = sopt::wavelets::distribute_sara(m_sara, m_world);
auto const Psi =
sopt::linear_transform<t_complex>(saraDistr, m_image.rows(), m_image.cols(), m_world);
t_real gamma =
utilities::step_size(m_uv_data.vis, m_measurements1,
std::make_shared<sopt::LinearTransform<Vector<t_complex>> const>(Psi),
saraDistr.size()) *
1e-3;
gamma = m_world.all_reduce(gamma, MPI_MAX);
std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm =
std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(m_uv_data.vis);
padmm->itermax(state.range(3) + 1)
.gamma(gamma)
.relative_variation(1e-3)
.l2ball_proximal_epsilon(m_epsilon)
// communicator ensuring l1 norm in l1 proximal is global
.l1_proximal_adjoint_space_comm(m_world)
.tight_frame(false)
.l1_proximal_tolerance(1e-2)
.l1_proximal_nu(1)
.l1_proximal_itermax(2)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_tolerance(m_epsilon)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(*m_measurements1);
std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
padmm->residual_convergence(
factory::l2_convergence_factory<t_complex>(factory::ConvergenceType::mpi_local, padmm_weak));
padmm->objective_convergence(
factory::l1_convergence_factory<t_complex>(factory::ConvergenceType::mpi_local, padmm_weak));
// Benchmark the application of the algorithm
while (state.KeepRunning()) {
auto start = std::chrono::high_resolution_clock::now();
auto result = (*padmm)();
auto end = std::chrono::high_resolution_clock::now();
// std::cout << "Converged? " << result.good << " , niters = " << result.niters << std::endl;
state.SetIterationTime(b_utilities::duration(start, end, m_world));
}
}
BENCHMARK_DEFINE_F(PadmmFixtureMPI, ApplyAlgo3)(benchmark::State &state) {
// Create the algorithm - somehow doesn't work if done in the fixture...
sopt::wavelets::SARA saraDistr = sopt::wavelets::distribute_sara(m_sara, m_world);
auto const Psi =
sopt::linear_transform<t_complex>(saraDistr, m_image.rows(), m_image.cols(), m_world);
t_real gamma =
utilities::step_size(m_uv_data.vis, m_measurements3,
std::make_shared<sopt::LinearTransform<Vector<t_complex>> const>(Psi),
saraDistr.size()) *
1e-3;
gamma = m_world.all_reduce(gamma, MPI_MAX);
std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm =
std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(m_uv_data.vis);
padmm->itermax(state.range(3) + 1)
.gamma(gamma)
.relative_variation(1e-3)
.l2ball_proximal_epsilon(m_epsilon)
// communicator ensuring l1 norm in l1 proximal is global
.l1_proximal_adjoint_space_comm(m_world)
.tight_frame(false)
.l1_proximal_tolerance(1e-2)
.l1_proximal_nu(1)
.l1_proximal_itermax(2)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_tolerance(m_epsilon)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(*m_measurements3);
std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
padmm->residual_convergence(
factory::l2_convergence_factory<t_complex>(factory::ConvergenceType::mpi_local, padmm_weak));
padmm->objective_convergence(
factory::l1_convergence_factory<t_complex>(factory::ConvergenceType::mpi_local, padmm_weak));
// Benchmark the application of the algorithm
while (state.KeepRunning()) {
auto start = std::chrono::high_resolution_clock::now();
auto result = (*padmm)();
auto end = std::chrono::high_resolution_clock::now();
// std::cout << "Converged? " << result.good << " , niters = " << result.niters << std::endl;
state.SetIterationTime(b_utilities::duration(start, end, m_world));
}
}
BENCHMARK_REGISTER_F(PadmmFixtureMPI, ApplyAlgo1)
//->Apply(b_utilities::Arguments)
->Args({1024, static_cast<t_int>(1e6), 4, 10, 1})
->Args({1024, static_cast<t_int>(5e6), 4, 10, 1})
->Args({1024, static_cast<t_int>(1e7), 4, 10, 1})
->Args({1024, static_cast<t_int>(5e7), 4, 10, 1})
->Args({1024, static_cast<t_int>(1e8), 4, 10, 1})
->Args({1024, static_cast<t_int>(5e8), 4, 10, 1})
//->Args({128, 1000, 4})
->UseManualTime()
->Repetitions(3) //->ReportAggregatesOnly(true)
->Unit(benchmark::kMillisecond);
BENCHMARK_REGISTER_F(PadmmFixtureMPI, ApplyAlgo3)
//->Apply(b_utilities::Arguments)
->Args({1024, static_cast<t_int>(1e6), 4, 10, 3})
->Args({1024, static_cast<t_int>(5e6), 4, 10, 3})
->Args({1024, static_cast<t_int>(1e7), 4, 10, 3})
->Args({1024, static_cast<t_int>(5e7), 4, 10, 3})
->Args({1024, static_cast<t_int>(1e8), 4, 10, 3})
->Args({1024, static_cast<t_int>(5e8), 4, 10, 3})
//->Args({128, 1000, 4})
->UseManualTime()
->Repetitions(3) //->ReportAggregatesOnly(true)
->Unit(benchmark::kMillisecond);
|