1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
#include <fstream>
#include <sstream>
#include <benchmarks/utilities.h>
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/pfitsio.h"
#include <sopt/linear_transform.h>
using namespace purify;
using namespace purify::notinstalled;
namespace b_utilities {
void Arguments(benchmark::internal::Benchmark *b) {
int im_size_max = 4096; // 4096
int uv_size_max = 10000000; // 1M, 10M, 100M
int kernel_max = 16; // 16
for (int i = 128; i <= im_size_max; i *= 2)
for (int j = 1000000; j <= uv_size_max; j *= 10)
for (int k = 2; k <= kernel_max; k *= 2)
if (k * k < i) b->Args({i, j, k});
}
double duration(std::chrono::high_resolution_clock::time_point start,
std::chrono::high_resolution_clock::time_point end) {
auto elapsed_seconds = std::chrono::duration_cast<std::chrono::duration<double>>(end - start);
return elapsed_seconds.count();
}
bool updateImage(t_uint newSize, Image<t_complex> &image, t_uint &sizex, t_uint &sizey) {
if (sizex == newSize) {
return false;
}
image = Image<t_complex>::Random(newSize, newSize);
sizex = image.cols();
sizey = image.rows();
t_real const max = image.array().abs().maxCoeff();
image = image * 1. / max;
return true;
}
bool updateEmptyImage(t_uint newSize, Vector<t_complex> &image, t_uint &sizex, t_uint &sizey) {
if (sizex == newSize) {
return false;
}
image.resize(newSize * newSize);
sizex = newSize;
sizey = newSize;
return true;
}
bool updateMeasurements(t_uint newSize, utilities::vis_params &data) {
if (data.vis.size() == newSize) {
return false;
}
data = b_utilities::random_measurements(newSize);
return true;
}
bool updateMeasurements(t_uint newSize, utilities::vis_params &data, t_real &epsilon, bool newImage,
Image<t_complex> &image) {
if (data.vis.size() == newSize && !newImage) {
return false;
}
const t_real FoV = 1; // deg
const t_real cellsize = FoV / image.size() * 60. * 60.;
std::tuple<utilities::vis_params, t_real> temp =
b_utilities::dirty_measurements(image, newSize, 30., cellsize);
data = std::get<0>(temp);
epsilon = utilities::calculate_l2_radius(data.vis.size(), std::get<1>(temp));
return true;
}
std::tuple<utilities::vis_params, t_real> dirty_measurements(
Image<t_complex> const &ground_truth_image, t_uint number_of_vis, t_real snr,
const t_real &cellsize) {
auto uv_data = random_measurements(number_of_vis);
// creating operator to generate measurements
auto measurement_op = measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
uv_data, ground_truth_image.rows(), ground_truth_image.cols(), cellsize, cellsize, 2,
kernels::kernel::kb, 8, 8, false);
// Generates measurements from image
uv_data.vis = (*measurement_op) *
Image<t_complex>::Map(ground_truth_image.data(), ground_truth_image.size(), 1);
// working out value of signal given SNR
auto const sigma = utilities::SNR_to_standard_deviation(uv_data.vis, snr);
// adding noise to visibilities
uv_data.vis = utilities::add_noise(uv_data.vis, 0., sigma);
return std::make_tuple(uv_data, sigma);
}
utilities::vis_params random_measurements(t_int size, const t_real max_w, const t_int id) {
std::stringstream filename;
filename << "random_" << size << "_";
filename << std::to_string(id) << ".vis";
std::string const vis_file = visibility_filename(filename.str());
std::ifstream vis_file_str(vis_file);
utilities::vis_params uv_data;
if (vis_file_str.good()) {
uv_data = utilities::read_visibility(vis_file, true);
uv_data.units = utilities::vis_units::radians;
} else {
t_real const sigma_m = constant::pi / 3;
uv_data = utilities::random_sample_density(size, 0, sigma_m, max_w);
uv_data.units = utilities::vis_units::radians;
utilities::write_visibility(uv_data, vis_file, true);
}
return uv_data;
}
#ifdef PURIFY_MPI
utilities::vis_params random_measurements(t_int size, sopt::mpi::Communicator const &comm) {
if (comm.is_root()) {
// Generate random measurements
auto uv_data = random_measurements(size);
if (comm.size() == 1) return uv_data;
// Distribute them
auto const order = distribute::distribute_measurements(uv_data, comm, distribute::plan::radial);
uv_data = utilities::regroup_and_scatter(uv_data, order, comm);
return uv_data;
}
return utilities::scatter_visibilities(comm);
}
bool updateMeasurements(t_uint newSize, utilities::vis_params &data,
sopt::mpi::Communicator &comm) {
if (data.vis.size() == newSize) {
return false;
}
comm = sopt::mpi::Communicator::World();
data = b_utilities::random_measurements(newSize, comm);
return true;
}
bool updateMeasurements(t_uint newSize, utilities::vis_params &data, t_real &epsilon, bool newImage,
Image<t_complex> &image, sopt::mpi::Communicator &comm) {
if (data.vis.size() == newSize && !newImage) {
return false;
}
comm = sopt::mpi::Communicator::World();
const t_real FoV = 1; // deg
const t_real cellsize = FoV / image.size() * 60. * 60.;
std::tuple<utilities::vis_params, t_real> temp =
b_utilities::dirty_measurements(image, newSize, 30., cellsize, comm);
data = std::get<0>(temp);
epsilon = utilities::calculate_l2_radius(data.vis.size(), std::get<1>(temp));
return true;
}
double duration(std::chrono::high_resolution_clock::time_point start,
std::chrono::high_resolution_clock::time_point end,
sopt::mpi::Communicator const &comm) {
auto elapsed_seconds = duration(start, end);
// Now get the max time across all procs: the slowest processor is the one that is
// holding back the others in the benchmark.
return comm.all_reduce(elapsed_seconds, MPI_MAX);
}
std::tuple<utilities::vis_params, t_real> dirty_measurements(
Image<t_complex> const &ground_truth_image, t_uint number_of_vis, t_real snr,
const t_real &cellsize, sopt::mpi::Communicator const &comm) {
if (comm.size() == 1) return dirty_measurements(ground_truth_image, number_of_vis, snr, cellsize);
if (comm.is_root()) {
auto result = dirty_measurements(ground_truth_image, number_of_vis, snr, cellsize);
comm.broadcast(std::get<1>(result));
auto const order =
distribute::distribute_measurements(std::get<0>(result), comm, distribute::plan::radial);
std::get<0>(result) = utilities::regroup_and_scatter(std::get<0>(result), order, comm);
return result;
}
auto const sigma = comm.broadcast<t_real>();
return std::make_tuple(utilities::scatter_visibilities(comm), sigma);
}
void update_comm(sopt::mpi::Communicator &comm) { comm = sopt::mpi::Communicator::World(); }
#endif
} // namespace b_utilities
|