File: wavelet_operator.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (135 lines) | stat: -rw-r--r-- 4,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#include <chrono>
#include <benchmark/benchmark.h>
#include "benchmarks/utilities.h"
#include "purify/wavelet_operator_factory.h"

using namespace purify;

// -------------- Constructor benchmark -------------------------//

void wavelet_operator_constructor(benchmark::State& state) {
  // Image size
  t_uint m_imsizex = state.range(0);
  t_uint m_imsizey = state.range(0);

  // benchmark the creation of measurement operator
  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();

    const sopt::wavelets::SARA m_sara{
        std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
        std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
        std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

    sopt::LinearTransform<Vector<t_complex>> Psi =
        sopt::linear_transform<t_complex>(m_sara, m_imsizey, m_imsizex);

    auto end = std::chrono::high_resolution_clock::now();

    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

BENCHMARK(wavelet_operator_constructor)
    //->Apply(b_utilities::Arguments)
    //->Args({1024})
    ->RangeMultiplier(2)
    ->Range(1024, 1024 << 10)
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

// ----------------- Application benchmarks -----------------------//

class WaveletOperatorFixture : public ::benchmark::Fixture {
 public:
  void SetUp(const ::benchmark::State& state) {}

  void TearDown(const ::benchmark::State& state) {}

  // A bunch of useful variables
  t_uint m_counter;
};

class WaveletOperatorAdjointFixture : public ::benchmark::Fixture {
 public:
  void SetUp(const ::benchmark::State& state) {}

  void TearDown(const ::benchmark::State& state) {}

  // A bunch of useful variables
  t_uint m_counter;
};

BENCHMARK_DEFINE_F(WaveletOperatorFixture, Apply)(benchmark::State& state) {
  t_uint m_imsizex = state.range(0);
  t_uint m_imsizey = state.range(0);
  sopt::wavelets::SARA m_sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  sopt::LinearTransform<Vector<t_complex>> m_Psi =
      sopt::linear_transform<t_complex>(m_sara, m_imsizey, m_imsizex);

  // Get the number of wavelet coefs
  t_uint const n_wave_coeff = m_sara.size() * m_imsizex * m_imsizey;

  // Apply Psi to a temporary vector
  Vector<t_complex> temp;
  Vector<t_complex> const x = Vector<t_complex>::Random(n_wave_coeff);

  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    temp = m_Psi * x;
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

BENCHMARK_DEFINE_F(WaveletOperatorAdjointFixture, Apply)(benchmark::State& state) {
  t_uint m_imsizex = state.range(0);
  t_uint m_imsizey = state.range(0);
  sopt::wavelets::SARA m_sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  sopt::LinearTransform<Vector<t_complex>> m_Psi =
      sopt::linear_transform<t_complex>(m_sara, m_imsizey, m_imsizex);

  // Get the number of wavelet coefs
  t_uint const n_wave_coeff = m_sara.size() * m_imsizex * m_imsizey;

  // Apply Psi to a temporary vector
  Vector<t_complex> temp;
  Vector<t_complex> const x = Vector<t_complex>::Random(m_imsizex * m_imsizey);

  while (state.KeepRunning()) {
    auto start = std::chrono::high_resolution_clock::now();
    temp = m_Psi.adjoint() * x;
    auto end = std::chrono::high_resolution_clock::now();
    state.SetIterationTime(b_utilities::duration(start, end));
  }
}

BENCHMARK_REGISTER_F(WaveletOperatorFixture, Apply)
    //->Apply(b_utilities::Arguments)
    ->RangeMultiplier(2)
    ->Range(1024, 1024 << 10)
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_REGISTER_F(WaveletOperatorAdjointFixture, Apply)
    //->Apply(b_utilities::Arguments)
    ->RangeMultiplier(2)
    ->Range(1024, 1024 << 10)
    ->UseManualTime()
    ->Repetitions(10)
    ->ReportAggregatesOnly(true)
    ->Unit(benchmark::kMillisecond);

BENCHMARK_MAIN();