1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
#include "purify/types.h"
#include <array>
#include <memory>
#include <random>
#include <boost/filesystem.hpp>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/logging.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/pfitsio.h"
#include "purify/read_measurements.h"
#include "purify/utilities.h"
#include <sopt/imaging_padmm.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/session.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#ifdef PURIFY_GPU
#include "purify/operators_gpu.h"
#endif
#ifndef PURIFY_PADMM_ALGORITHM
#define PURIFY_PADMM_ALGORITHM 2
#endif
using namespace purify;
using namespace purify::notinstalled;
std::tuple<utilities::vis_params, t_real> dirty_visibilities(
Image<t_complex> const &ground_truth_image, t_uint number_of_vis, t_real snr,
const std::tuple<bool, t_real> &w_term) {
auto uv_data =
utilities::random_sample_density(number_of_vis, 0, constant::pi / 3, std::get<0>(w_term));
uv_data.units = utilities::vis_units::radians;
PURIFY_HIGH_LOG("Number of measurements / number of pixels: {}",
uv_data.u.size() / ground_truth_image.size());
// creating operator to generate measurements
auto const sky_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
uv_data, ground_truth_image.rows(), ground_truth_image.cols(), std::get<1>(w_term),
std::get<1>(w_term), 2, kernels::kernel::kb, 8, 8, std::get<0>(w_term)),
100, 1e-4, Vector<t_complex>::Random(ground_truth_image.size())));
// Generates measurements from image
uv_data.vis = (*sky_measurements) *
Image<t_complex>::Map(ground_truth_image.data(), ground_truth_image.size(), 1);
// working out value of signal given SNR of 30
auto const sigma = utilities::SNR_to_standard_deviation(uv_data.vis, snr);
// adding noise to visibilities
uv_data.vis = utilities::add_noise(uv_data.vis, 0., sigma);
return std::make_tuple(uv_data, sigma);
}
std::tuple<utilities::vis_params, t_real> dirty_visibilities(
Image<t_complex> const &ground_truth_image, t_uint number_of_vis, t_real snr,
const std::tuple<bool, t_real> &w_term, sopt::mpi::Communicator const &comm) {
if (comm.size() == 1) return dirty_visibilities(ground_truth_image, number_of_vis, snr, w_term);
if (comm.is_root()) {
auto result = dirty_visibilities(ground_truth_image, number_of_vis, snr, w_term);
comm.broadcast(std::get<1>(result));
auto const order =
distribute::distribute_measurements(std::get<0>(result), comm, distribute::plan::radial);
std::get<0>(result) = utilities::regroup_and_scatter(std::get<0>(result), order, comm);
return result;
}
auto const sigma = comm.broadcast<t_real>();
return std::make_tuple(utilities::scatter_visibilities(comm), sigma);
}
std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm_factory(
std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> const &measurements,
const sopt::wavelets::SARA &sara, const Image<t_complex> &ground_truth_image,
const utilities::vis_params &uv_data, const t_real sigma, const sopt::mpi::Communicator &comm) {
auto const Psi = sopt::linear_transform<t_complex>(sara, ground_truth_image.rows(),
ground_truth_image.cols(), comm);
#if PURIFY_PADMM_ALGORITHM == 2
auto const epsilon = std::sqrt(
comm.all_sum_all(std::pow(utilities::calculate_l2_radius(uv_data.vis.size(), sigma), 2)));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
auto const epsilon = utilities::calculate_l2_radius(uv_data.vis.size(), sigma);
#endif
PURIFY_LOW_LOG("SARA Size = {}, Rank = {}", sara.size(), comm.rank());
const t_real gamma =
utilities::step_size(uv_data.vis, measurements,
std::make_shared<sopt::LinearTransform<Vector<t_complex>> const>(Psi),
sara.size()) *
1e-3;
PURIFY_LOW_LOG("Epsilon {}, Rank = {}", epsilon, comm.rank());
PURIFY_LOW_LOG("Gamma {}, SARA Size = {}, Rank = {}", gamma, sara.size(), comm.rank());
// shared pointer because the convergence function need access to some data that we would rather
// not reproduce. E.g. padmm definition is self-referential.
auto padmm = std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(uv_data.vis);
padmm->itermax(50)
.gamma(comm.all_reduce(gamma, MPI_MAX))
.relative_variation(1e-3)
.l2ball_proximal_epsilon(epsilon)
#if PURIFY_PADMM_ALGORITHM == 2
// communicator ensuring l2 norm in l2ball proximal is global
.l2ball_proximal_communicator(comm)
#endif
// communicator ensuring l1 norm in l1 proximal is global
.l1_proximal_adjoint_space_comm(comm)
.tight_frame(false)
.l1_proximal_tolerance(1e-2)
.l1_proximal_nu(1)
.l1_proximal_itermax(50)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_tolerance(epsilon)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(*measurements);
sopt::ScalarRelativeVariation<t_complex> conv(padmm->relative_variation(),
padmm->relative_variation(), "Objective function");
std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
padmm->residual_convergence([padmm_weak, conv, comm](
Vector<t_complex> const &x,
Vector<t_complex> const &residual) mutable -> bool {
auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
auto const residual_norm = sopt::mpi::l2_norm(residual, padmm->l2ball_proximal_weights(), comm);
auto const result = residual_norm < padmm->residual_tolerance();
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
auto const residual_norm = sopt::l2_norm(residual, padmm->l2ball_proximal_weights());
auto const result =
comm.all_reduce<int8_t>(residual_norm < padmm->residual_tolerance(), MPI_LAND);
#endif
SOPT_LOW_LOG(" - [PADMM] Residuals: {} <? {}", residual_norm, padmm->residual_tolerance());
return result;
});
padmm->objective_convergence([padmm_weak, conv, comm](Vector<t_complex> const &x,
Vector<t_complex> const &) mutable -> bool {
auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
return conv(sopt::mpi::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights(), comm));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
return comm.all_reduce<uint8_t>(
conv(sopt::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights())), MPI_LAND);
#endif
});
return padmm;
}
int main(int nargs, char const **args) {
sopt::logging::set_level("debug");
purify::logging::set_level("debug");
auto const session = sopt::mpi::init(nargs, args);
auto const world = sopt::mpi::Communicator::World();
const t_real FoV = 1; // deg
const t_real max_w = 100; // lambda
const std::string name = "M31";
const t_real snr = 30;
auto const kernel = "kb";
const bool w_term = true;
// string of fits file of image to reconstruct
auto ground_truth_image = pfitsio::read2d(image_filename(name + ".fits"));
ground_truth_image /= ground_truth_image.array().abs().maxCoeff();
const t_real cellsize = FoV / ground_truth_image.cols() * 60. * 60.;
// determine amount of visibilities to simulate
t_int const number_of_pixels = ground_truth_image.size();
t_int const number_of_vis = std::floor(number_of_pixels * 0.1);
// Generating random uv(w) coverage
auto const data = dirty_visibilities(ground_truth_image, number_of_vis, snr,
std::make_tuple(w_term, cellsize), world);
#if PURIFY_PADMM_ALGORITHM == 2 || PURIFY_PADMM_ALGORITHM == 3
#ifndef PURIFY_GPU
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
world, std::get<0>(data), ground_truth_image.rows(), ground_truth_image.cols(), cellsize,
cellsize, 2, kernels::kernel_from_string.at(kernel), 8, 8, w_term),
100, 1e-4,
world.broadcast(
Vector<t_complex>::Random(ground_truth_image.rows() * ground_truth_image.cols())
.eval())));
#else
af::setDevice(0);
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
gpu::measurementoperator::init_degrid_operator_2d(
world, std::get<0>(data), ground_truth_image.rows(), ground_truth_image.cols(), cellsize,
cellsize, 2, kernels::kernel_from_string.at(kernel), 8, 8, w_term),
100, 1e-4,
world.broadcast(
Vector<t_complex>::Random(ground_truth_image.rows() * ground_truth_image.cols())
.eval())));
#endif
#elif PURIFY_PADMM_ALGORITHM == 1
#ifndef PURIFY_GPU
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
measurementoperator::init_degrid_operator_2d_mpi<Vector<t_complex>>(
world, std::get<0>(data), ground_truth_image.rows(), ground_truth_image.cols(), cellsize,
cellsize, 2, kernels::kernel_from_string.at(kernel), 8, 8, w_term),
100, 1e-4,
world.broadcast(
Vector<t_complex>::Random(ground_truth_image.rows() * ground_truth_image.cols())
.eval())));
#else
af::setDevice(0);
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
gpu::measurementoperator::init_degrid_operator_2d_mpi(
world, std::get<0>(data), ground_truth_image.rows(), ground_truth_image.cols(), cellsize,
cellsize, 2, kernels::kernel_from_string.at(kernel), 8, 8, w_term),
100, 1e-4,
world.broadcast(
Vector<t_complex>::Random(ground_truth_image.rows() * ground_truth_image.cols())
.eval())));
#endif
#endif
auto const sara = sopt::wavelets::distribute_sara(
sopt::wavelets::SARA{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)},
world);
// Create the padmm solver
auto const padmm = padmm_factory(measurements, sara, ground_truth_image, std::get<0>(data),
std::get<1>(data), world);
// calls padmm
auto const diagnostic = (*padmm)();
// makes sure we set things up correctly
assert(diagnostic.x.size() == ground_truth_image.size());
assert(world.broadcast(diagnostic.x).isApprox(diagnostic.x));
// then writes stuff to files
auto const residual_image = (measurements->adjoint() * diagnostic.residual).real();
auto const dirty_image = (measurements->adjoint() * std::get<0>(data).vis).real();
if (world.is_root()) {
boost::filesystem::path const path(output_filename(name));
#if PURIFY_PADMM_ALGORITHM == 3
auto const pb_path = path / kernel / "local_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 2
auto const pb_path = path / kernel / "global_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 1
auto const pb_path = path / kernel / "local_epsilon_distributed_grids";
#else
#error Unknown or unimplemented algorithm
#endif
mkdir_recursive(pb_path);
pfitsio::write2d(ground_truth_image.real(), (path / "input.fits").native());
pfitsio::write2d(dirty_image, ground_truth_image.rows(), ground_truth_image.cols(),
(pb_path / "dirty.fits").native());
pfitsio::write2d(diagnostic.x.real(), ground_truth_image.rows(), ground_truth_image.cols(),
(pb_path / "solution.fits").native());
pfitsio::write2d(residual_image, ground_truth_image.rows(), ground_truth_image.cols(),
(pb_path / "residual.fits").native());
}
return 0;
}
|