1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#include "purify/types.h"
#include <array>
#include <memory>
#include <random>
#include <boost/filesystem.hpp>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/logging.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/pfitsio.h"
#include "purify/read_measurements.h"
#include "purify/utilities.h"
#include "purify/uvfits.h"
#include <sopt/imaging_padmm.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/session.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#ifdef PURIFY_GPU
#include "purify/operators_gpu.h"
#endif
#ifndef PURIFY_PADMM_ALGORITHM
#define PURIFY_PADMM_ALGORITHM 2
#endif
using namespace purify;
using namespace purify::notinstalled;
utilities::vis_params dirty_visibilities(const std::vector<std::string> &names) {
return utilities::read_visibility(names, true);
}
utilities::vis_params dirty_visibilities(const std::vector<std::string> &names,
sopt::mpi::Communicator const &comm) {
if (comm.size() == 1) return dirty_visibilities(names);
if (comm.is_root()) {
auto result = dirty_visibilities(names);
auto const order = distribute::distribute_measurements(result, comm, distribute::plan::w_term);
return utilities::regroup_and_scatter(result, order, comm);
}
auto result = utilities::scatter_visibilities(comm);
return result;
}
std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm_factory(
std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> const &measurements,
t_real const sigma, const sopt::wavelets::SARA &sara, const utilities::vis_params &uv_data,
const sopt::mpi::Communicator &comm, const t_uint &imsizex, const t_uint &imsizey) {
auto const Psi = sopt::linear_transform<t_complex>(sara, imsizey, imsizex, comm);
#if PURIFY_PADMM_ALGORITHM == 2
auto const epsilon = 3 * std::sqrt(comm.all_sum_all(std::pow(sigma, 2))) *
std::sqrt(2 * comm.all_sum_all(uv_data.size()));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
auto const epsilon = 3 * std::sqrt(2 * uv_data.size()) * sigma;
#endif
const t_real gamma =
utilities::step_size(uv_data.vis, measurements,
std::make_shared<sopt::LinearTransform<Vector<t_complex>> const>(Psi),
sara.size()) *
1e-3;
PURIFY_MEDIUM_LOG("Epsilon {}", epsilon);
PURIFY_MEDIUM_LOG("Gamma {}", gamma);
// shared pointer because the convergence function need access to some data that we would rather
// not reproduce. E.g. padmm definition is self-referential.
auto padmm = std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(uv_data.vis);
padmm->itermax(50)
.gamma(comm.all_reduce<t_real>(gamma, MPI_MAX))
.relative_variation(1e-3)
.l2ball_proximal_epsilon(epsilon)
#if PURIFY_PADMM_ALGORITHM == 2
// communicator ensuring l2 norm in l2ball proximal is global
.l2ball_proximal_communicator(comm)
#endif
// communicator ensuring l1 norm in l1 proximal is global
.l1_proximal_adjoint_space_comm(comm)
.tight_frame(false)
.l1_proximal_tolerance(1e-2)
.l1_proximal_nu(1)
.l1_proximal_itermax(50)
.l1_proximal_positivity_constraint(true)
.l1_proximal_real_constraint(true)
.residual_tolerance(epsilon)
.lagrange_update_scale(0.9)
.nu(1e0)
.Psi(Psi)
.Phi(*measurements);
sopt::ScalarRelativeVariation<t_complex> conv(padmm->relative_variation(),
padmm->relative_variation(), "Objective function");
std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
padmm->residual_convergence([padmm_weak, conv, comm](
Vector<t_complex> const &x,
Vector<t_complex> const &residual) mutable -> bool {
auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
auto const residual_norm = sopt::mpi::l2_norm(residual, padmm->l2ball_proximal_weights(), comm);
auto const result = residual_norm < padmm->residual_tolerance();
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
auto const residual_norm = sopt::l2_norm(residual, padmm->l2ball_proximal_weights());
auto const result =
comm.all_reduce<int8_t>(residual_norm < padmm->residual_tolerance(), MPI_LAND);
#endif
SOPT_LOW_LOG(" - [PADMM] Residuals: {} <? {}", residual_norm, padmm->residual_tolerance());
return result;
});
padmm->objective_convergence([padmm_weak, conv, comm](Vector<t_complex> const &x,
Vector<t_complex> const &) mutable -> bool {
auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
return conv(sopt::mpi::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights(), comm));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
return comm.all_reduce<uint8_t>(
conv(sopt::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights())), MPI_LAND);
#endif
});
auto convergence_function = [](const Vector<t_complex> &x) { return true; };
const std::shared_ptr<t_uint> iter = std::make_shared<t_uint>(0);
const auto algo_update = [uv_data, imsizex, imsizey, padmm_weak, iter,
comm](const Vector<t_complex> &x) -> bool {
auto padmm = padmm_weak.lock();
if (comm.is_root()) PURIFY_MEDIUM_LOG("Step size γ {}", padmm->gamma());
*iter = *iter + 1;
Vector<t_complex> const alpha = padmm->Psi().adjoint() * x;
const t_real new_gamma = comm.all_reduce(alpha.real().cwiseAbs().maxCoeff(), MPI_MAX) * 1e-3;
if (comm.is_root()) PURIFY_MEDIUM_LOG("Step size γ update {}", new_gamma);
padmm->gamma(((std::abs(padmm->gamma() - new_gamma) > 0.2) and *iter < 200) ? new_gamma
: padmm->gamma());
// updating parameter
Vector<t_complex> const residual = padmm->Phi().adjoint() * (uv_data.vis - padmm->Phi() * x);
if (comm.is_root()) {
pfitsio::write2d(x, imsizey, imsizex, "mpi_solution_update.fits");
pfitsio::write2d(residual, imsizey, imsizex, "mpi_residual_update.fits");
}
return true;
};
auto lambda = [convergence_function, algo_update](Vector<t_complex> const &x) {
return convergence_function(x) and algo_update(x);
};
padmm->is_converged(lambda);
return padmm;
}
int main(int nargs, char const **args) {
sopt::logging::set_level("debug");
purify::logging::set_level("debug");
auto const session = sopt::mpi::init(nargs, args);
auto const world = sopt::mpi::Communicator::World();
const std::string name = "realdata";
const std::string filename_base = vla_filename("../mwa/uvdump_");
const std::vector<std::string> filenames = {filename_base +
"01.vis"}; //, filename_base + "02.vis"};
auto const kernel = kernels::kernel::kb;
std::string kernel_name = "kb";
const bool w_term = false;
const t_real cellsize = 20; // arcsec
const t_uint imsizex = 1024;
const t_uint imsizey = 1024;
// Generating random uv(w) coverage
utilities::vis_params data = dirty_visibilities(filenames, world);
t_real const sigma =
data.weights.norm() / std::sqrt(world.all_sum_all(data.weights.size())) * 0.5;
data.vis = (data.vis.array() * data.weights.array()) /
world.all_reduce(data.weights.array().cwiseAbs().maxCoeff(), MPI_MAX);
#if PURIFY_PADMM_ALGORITHM == 2 || PURIFY_PADMM_ALGORITHM == 3
#ifndef PURIFY_GPU
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
world, data, imsizey, imsizex, cellsize, cellsize, 2, kernel, 4, 4, w_term),
100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));
#else
af::setDevice(0);
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
gpu::measurementoperator::init_degrid_operator_2d(world, data, imsizey, imsizex, cellsize,
cellsize, 2, kernel, 4, 4, w_term),
100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));
#endif
#elif PURIFY_PADMM_ALGORITHM == 1
#ifndef PURIFY_GPU
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
measurementoperator::init_degrid_operator_2d_mpi<Vector<t_complex>>(
world, data, imsizey, imsizex, cellsize, cellsize, 2, kernel, 4, 4, w_term),
100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));
#else
af::setDevice(0);
auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
gpu::measurementoperator::init_degrid_operator_2d_mpi(world, data, imsizey, imsizex, cellsize,
cellsize, 2, kernel, 4, 4, w_term),
100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));
#endif
#endif
auto const sara = sopt::wavelets::distribute_sara(
sopt::wavelets::SARA{
std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)},
world);
Vector<t_real> const dirty_image = (measurements->adjoint() * (data.vis)).real();
if (world.is_root()) {
// then writes stuff to files
boost::filesystem::path const path(output_filename(name));
#if PURIFY_PADMM_ALGORITHM == 3
auto const pb_path = path / kernel_name / "local_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 2
auto const pb_path = path / kernel_name / "global_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 1
auto const pb_path = path / kernel_name / "local_epsilon_distributed_grids";
#else
#error Unknown or unimplemented algorithm
#endif
mkdir_recursive(pb_path);
pfitsio::write2d(dirty_image, imsizey, imsizex, (pb_path / "dirty.fits").native());
}
// Create the padmm solver
auto const padmm = padmm_factory(measurements, sigma, sara, data, world, imsizey, imsizex);
// calls padmm
auto const diagnostic = (*padmm)();
// makes sure we set things up correctly
assert(world.broadcast(diagnostic.x).isApprox(diagnostic.x));
Vector<t_real> const residual_image = (measurements->adjoint() * diagnostic.residual).real();
if (world.is_root()) {
// then writes stuff to files
boost::filesystem::path const path(output_filename(name));
#if PURIFY_PADMM_ALGORITHM == 3
auto const pb_path = path / kernel_name / "local_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 2
auto const pb_path = path / kernel_name / "global_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 1
auto const pb_path = path / kernel_name / "local_epsilon_distributed_grids";
#else
#error Unknown or unimplemented algorithm
#endif
mkdir_recursive(pb_path);
pfitsio::write2d(dirty_image, imsizey, imsizex, (pb_path / "dirty.fits").native());
pfitsio::write2d(diagnostic.x.real(), imsizey, imsizex, (pb_path / "solution.fits").native());
pfitsio::write2d(residual_image, imsizey, imsizex, (pb_path / "residual.fits").native());
}
return 0;
}
|