File: padmm_mpi_real_data.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (264 lines) | stat: -rw-r--r-- 11,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#include "purify/types.h"
#include <array>
#include <memory>
#include <random>
#include <boost/filesystem.hpp>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/distribute.h"
#include "purify/logging.h"
#include "purify/mpi_utilities.h"
#include "purify/operators.h"
#include "purify/pfitsio.h"
#include "purify/read_measurements.h"
#include "purify/utilities.h"
#include "purify/uvfits.h"
#include <sopt/imaging_padmm.h>
#include <sopt/mpi/communicator.h>
#include <sopt/mpi/session.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>

#ifdef PURIFY_GPU
#include "purify/operators_gpu.h"
#endif

#ifndef PURIFY_PADMM_ALGORITHM
#define PURIFY_PADMM_ALGORITHM 2
#endif

using namespace purify;
using namespace purify::notinstalled;

utilities::vis_params dirty_visibilities(const std::vector<std::string> &names) {
  return utilities::read_visibility(names, true);
}

utilities::vis_params dirty_visibilities(const std::vector<std::string> &names,
                                         sopt::mpi::Communicator const &comm) {
  if (comm.size() == 1) return dirty_visibilities(names);
  if (comm.is_root()) {
    auto result = dirty_visibilities(names);
    auto const order = distribute::distribute_measurements(result, comm, distribute::plan::w_term);
    return utilities::regroup_and_scatter(result, order, comm);
  }
  auto result = utilities::scatter_visibilities(comm);
  return result;
}

std::shared_ptr<sopt::algorithm::ImagingProximalADMM<t_complex>> padmm_factory(
    std::shared_ptr<sopt::LinearTransform<Vector<t_complex>> const> const &measurements,
    t_real const sigma, const sopt::wavelets::SARA &sara, const utilities::vis_params &uv_data,
    const sopt::mpi::Communicator &comm, const t_uint &imsizex, const t_uint &imsizey) {
  auto const Psi = sopt::linear_transform<t_complex>(sara, imsizey, imsizex, comm);

#if PURIFY_PADMM_ALGORITHM == 2
  auto const epsilon = 3 * std::sqrt(comm.all_sum_all(std::pow(sigma, 2))) *
                       std::sqrt(2 * comm.all_sum_all(uv_data.size()));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
  auto const epsilon = 3 * std::sqrt(2 * uv_data.size()) * sigma;
#endif
  const t_real gamma =
      utilities::step_size(uv_data.vis, measurements,
                           std::make_shared<sopt::LinearTransform<Vector<t_complex>> const>(Psi),
                           sara.size()) *
      1e-3;
  PURIFY_MEDIUM_LOG("Epsilon {}", epsilon);
  PURIFY_MEDIUM_LOG("Gamma {}", gamma);

  // shared pointer because the convergence function need access to some data that we would rather
  // not reproduce. E.g. padmm definition is self-referential.
  auto padmm = std::make_shared<sopt::algorithm::ImagingProximalADMM<t_complex>>(uv_data.vis);
  padmm->itermax(50)
      .gamma(comm.all_reduce<t_real>(gamma, MPI_MAX))
      .relative_variation(1e-3)
      .l2ball_proximal_epsilon(epsilon)
#if PURIFY_PADMM_ALGORITHM == 2
      // communicator ensuring l2 norm in l2ball proximal is global
      .l2ball_proximal_communicator(comm)
#endif
      // communicator ensuring l1 norm in l1 proximal is global
      .l1_proximal_adjoint_space_comm(comm)
      .tight_frame(false)
      .l1_proximal_tolerance(1e-2)
      .l1_proximal_nu(1)
      .l1_proximal_itermax(50)
      .l1_proximal_positivity_constraint(true)
      .l1_proximal_real_constraint(true)
      .residual_tolerance(epsilon)
      .lagrange_update_scale(0.9)
      .nu(1e0)
      .Psi(Psi)
      .Phi(*measurements);
  sopt::ScalarRelativeVariation<t_complex> conv(padmm->relative_variation(),
                                                padmm->relative_variation(), "Objective function");
  std::weak_ptr<decltype(padmm)::element_type> const padmm_weak(padmm);
  padmm->residual_convergence([padmm_weak, conv, comm](
                                  Vector<t_complex> const &x,
                                  Vector<t_complex> const &residual) mutable -> bool {
    auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
    auto const residual_norm = sopt::mpi::l2_norm(residual, padmm->l2ball_proximal_weights(), comm);
    auto const result = residual_norm < padmm->residual_tolerance();
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
    auto const residual_norm = sopt::l2_norm(residual, padmm->l2ball_proximal_weights());
    auto const result =
        comm.all_reduce<int8_t>(residual_norm < padmm->residual_tolerance(), MPI_LAND);
#endif
    SOPT_LOW_LOG("    - [PADMM] Residuals: {} <? {}", residual_norm, padmm->residual_tolerance());
    return result;
  });

  padmm->objective_convergence([padmm_weak, conv, comm](Vector<t_complex> const &x,
                                                        Vector<t_complex> const &) mutable -> bool {
    auto const padmm = padmm_weak.lock();
#if PURIFY_PADMM_ALGORITHM == 2
    return conv(sopt::mpi::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights(), comm));
#elif PURIFY_PADMM_ALGORITHM == 3 || PURIFY_PADMM_ALGORITHM == 1
    return comm.all_reduce<uint8_t>(
        conv(sopt::l1_norm(padmm->Psi().adjoint() * x, padmm->l1_proximal_weights())), MPI_LAND);
#endif
  });

  auto convergence_function = [](const Vector<t_complex> &x) { return true; };
  const std::shared_ptr<t_uint> iter = std::make_shared<t_uint>(0);
  const auto algo_update = [uv_data, imsizex, imsizey, padmm_weak, iter,
                            comm](const Vector<t_complex> &x) -> bool {
    auto padmm = padmm_weak.lock();
    if (comm.is_root()) PURIFY_MEDIUM_LOG("Step size γ {}", padmm->gamma());
    *iter = *iter + 1;
    Vector<t_complex> const alpha = padmm->Psi().adjoint() * x;
    const t_real new_gamma = comm.all_reduce(alpha.real().cwiseAbs().maxCoeff(), MPI_MAX) * 1e-3;
    if (comm.is_root()) PURIFY_MEDIUM_LOG("Step size γ update {}", new_gamma);
    padmm->gamma(((std::abs(padmm->gamma() - new_gamma) > 0.2) and *iter < 200) ? new_gamma
                                                                                : padmm->gamma());
    // updating parameter

    Vector<t_complex> const residual = padmm->Phi().adjoint() * (uv_data.vis - padmm->Phi() * x);

    if (comm.is_root()) {
      pfitsio::write2d(x, imsizey, imsizex, "mpi_solution_update.fits");
      pfitsio::write2d(residual, imsizey, imsizex, "mpi_residual_update.fits");
    }
    return true;
  };
  auto lambda = [convergence_function, algo_update](Vector<t_complex> const &x) {
    return convergence_function(x) and algo_update(x);
  };
  padmm->is_converged(lambda);
  return padmm;
}

int main(int nargs, char const **args) {
  sopt::logging::set_level("debug");
  purify::logging::set_level("debug");
  auto const session = sopt::mpi::init(nargs, args);
  auto const world = sopt::mpi::Communicator::World();

  const std::string name = "realdata";
  const std::string filename_base = vla_filename("../mwa/uvdump_");
  const std::vector<std::string> filenames = {filename_base +
                                              "01.vis"};  //, filename_base + "02.vis"};
  auto const kernel = kernels::kernel::kb;
  std::string kernel_name = "kb";
  const bool w_term = false;

  const t_real cellsize = 20;  // arcsec
  const t_uint imsizex = 1024;
  const t_uint imsizey = 1024;

  // Generating random uv(w) coverage
  utilities::vis_params data = dirty_visibilities(filenames, world);

  t_real const sigma =
      data.weights.norm() / std::sqrt(world.all_sum_all(data.weights.size())) * 0.5;
  data.vis = (data.vis.array() * data.weights.array()) /
             world.all_reduce(data.weights.array().cwiseAbs().maxCoeff(), MPI_MAX);
#if PURIFY_PADMM_ALGORITHM == 2 || PURIFY_PADMM_ALGORITHM == 3
#ifndef PURIFY_GPU
  auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
          world, data, imsizey, imsizex, cellsize, cellsize, 2, kernel, 4, 4, w_term),
      100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));
#else
  af::setDevice(0);
  auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      gpu::measurementoperator::init_degrid_operator_2d(world, data, imsizey, imsizex, cellsize,
                                                        cellsize, 2, kernel, 4, 4, w_term),
      100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));

#endif
#elif PURIFY_PADMM_ALGORITHM == 1
#ifndef PURIFY_GPU
  auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      measurementoperator::init_degrid_operator_2d_mpi<Vector<t_complex>>(
          world, data, imsizey, imsizex, cellsize, cellsize, 2, kernel, 4, 4, w_term),
      100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));

#else
  af::setDevice(0);
  auto const measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      gpu::measurementoperator::init_degrid_operator_2d_mpi(world, data, imsizey, imsizex, cellsize,
                                                            cellsize, 2, kernel, 4, 4, w_term),
      100, 1e-4, world.broadcast(Vector<t_complex>::Random(imsizex * imsizey).eval())));

#endif
#endif
  auto const sara = sopt::wavelets::distribute_sara(
      sopt::wavelets::SARA{
          std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
          std::make_tuple("DB3", 3u), std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
          std::make_tuple("DB6", 3u), std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)},
      world);

  Vector<t_real> const dirty_image = (measurements->adjoint() * (data.vis)).real();

  if (world.is_root()) {
    // then writes stuff to files
    boost::filesystem::path const path(output_filename(name));
#if PURIFY_PADMM_ALGORITHM == 3
    auto const pb_path = path / kernel_name / "local_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 2
    auto const pb_path = path / kernel_name / "global_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 1
    auto const pb_path = path / kernel_name / "local_epsilon_distributed_grids";
#else
#error Unknown or unimplemented algorithm
#endif
    mkdir_recursive(pb_path);

    pfitsio::write2d(dirty_image, imsizey, imsizex, (pb_path / "dirty.fits").native());
  }

  // Create the padmm solver
  auto const padmm = padmm_factory(measurements, sigma, sara, data, world, imsizey, imsizex);
  // calls padmm
  auto const diagnostic = (*padmm)();

  // makes sure we set things up correctly
  assert(world.broadcast(diagnostic.x).isApprox(diagnostic.x));

  Vector<t_real> const residual_image = (measurements->adjoint() * diagnostic.residual).real();
  if (world.is_root()) {
    // then writes stuff to files
    boost::filesystem::path const path(output_filename(name));
#if PURIFY_PADMM_ALGORITHM == 3
    auto const pb_path = path / kernel_name / "local_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 2
    auto const pb_path = path / kernel_name / "global_epsilon_replicated_grids";
#elif PURIFY_PADMM_ALGORITHM == 1
    auto const pb_path = path / kernel_name / "local_epsilon_distributed_grids";
#else
#error Unknown or unimplemented algorithm
#endif
    mkdir_recursive(pb_path);

    pfitsio::write2d(dirty_image, imsizey, imsizex, (pb_path / "dirty.fits").native());
    pfitsio::write2d(diagnostic.x.real(), imsizey, imsizex, (pb_path / "solution.fits").native());
    pfitsio::write2d(residual_image, imsizey, imsizex, (pb_path / "residual.fits").native());
  }
  return 0;
}