File: padmm_random_coverage.cc

package info (click to toggle)
purify 4.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 182,264 kB
  • sloc: cpp: 16,485; python: 449; xml: 182; makefile: 7; sh: 6
file content (194 lines) | stat: -rw-r--r-- 8,956 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <array>
#include <memory>
#include <random>
#include <boost/math/special_functions/erf.hpp>
#include "purify/directories.h"
#include "purify/logging.h"
#include "purify/operators.h"
#include "purify/wproj_operators.h"
#include <sopt/credible_region.h>
#include <sopt/imaging_padmm.h>
#include <sopt/power_method.h>
#include <sopt/relative_variation.h>
#include <sopt/utilities.h>
#include <sopt/wavelets.h>
#include <sopt/wavelets/sara.h>
#ifdef PURIFY_GPU
#include "purify/operators_gpu.h"
#endif
#include "purify/types.h"
#include "purify/cimg.h"
#include "purify/pfitsio.h"
#include "purify/utilities.h"
using namespace purify;
using namespace purify::notinstalled;

void padmm(const std::string &name, const Image<t_complex> &M31, const std::string &kernel,
           const t_int J, const utilities::vis_params &uv_data, const t_real sigma,
           const std::tuple<bool, t_real> &w_term) {
  std::string const outfile = output_filename(name + "_" + kernel + ".tiff");
  std::string const outfile_fits = output_filename(name + "_" + kernel + "_solution.fits");
  std::string const residual_fits = output_filename(name + "_" + kernel + "_residual.fits");
  std::string const dirty_image = output_filename(name + "_" + kernel + "_dirty.tiff");
  std::string const dirty_image_fits = output_filename(name + "_" + kernel + "_dirty.fits");

  t_real const over_sample = 2;
  t_uint const imsizey = M31.rows();
  t_uint const imsizex = M31.cols();
  utilities::write_visibility(uv_data, output_filename("input_data.vis"));
#ifndef PURIFY_GPU
  auto const measurements_transform =
      std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
          measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
              uv_data, imsizey, imsizex, std::get<1>(w_term), std::get<1>(w_term), over_sample,
              kernels::kernel_from_string.at(kernel), J, 30, true, 1e-6, 1e-6,
              dde_type::wkernel_radial),
          1000, 1e-4, Vector<t_complex>::Random(imsizex * imsizey)));
#else
  af::setDevice(0);
  auto const measurements_transform =
      std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
          gpu::measurementoperator::init_degrid_operator_2d(
              uv_data, imsizey, imsizex, std::get<1>(w_term), std::get<1>(w_term), over_sample,
              kernels::kernel_from_string.at(kernel), J, J, std::get<0>(w_term)),
          1000, 1e-4, Vector<t_complex>::Random(imsizex * imsizey)));
#endif
  sopt::wavelets::SARA const sara{
      std::make_tuple("Dirac", 3u), std::make_tuple("DB1", 3u), std::make_tuple("DB2", 3u),
      std::make_tuple("DB3", 3u),   std::make_tuple("DB4", 3u), std::make_tuple("DB5", 3u),
      std::make_tuple("DB6", 3u),   std::make_tuple("DB7", 3u), std::make_tuple("DB8", 3u)};

  auto const Psi = sopt::linear_transform<t_complex>(sara, imsizey, imsizex);
  Vector<> dimage = (measurements_transform->adjoint() * uv_data.vis).real();
  assert(dimage.size() == M31.size());
  Vector<t_complex> initial_estimate = Vector<t_complex>::Zero(dimage.size());
  sopt::utilities::write_tiff(Image<t_real>::Map(dimage.data(), imsizey, imsizex), dirty_image);
  pfitsio::write2d(Image<t_real>::Map(dimage.data(), imsizey, imsizex), dirty_image_fits);

  auto const epsilon = utilities::calculate_l2_radius(uv_data.vis.size(), sigma);
  PURIFY_HIGH_LOG("Using epsilon of {}", epsilon);
#ifdef PURIFY_CImg
  auto const canvas =
      std::make_shared<CDisplay>(cimg::make_display(Vector<t_real>::Zero(1024 * 512), 1024, 512));
  canvas->resize(true);
  auto const show_image = [&, measurements_transform](const Vector<t_complex> &x) -> bool {
    if (!canvas->is_closed()) {
      const Vector<t_complex> res =
          (measurements_transform->adjoint() * (uv_data.vis - (*measurements_transform * x)));
      const auto img1 = cimg::make_image(x.real().eval(), imsizey, imsizex)
                            .get_normalize(0, 1)
                            .get_resize(512, 512);
      const auto img2 = cimg::make_image(res.real().eval(), imsizey, imsizex)
                            .get_normalize(0, 1)
                            .get_resize(512, 512);
      const auto results = CImageList<t_real>(img1, img2);
      canvas->display(results);
      canvas->resize(true);
    }
    return true;
  };
#endif
  auto const padmm =
      sopt::algorithm::ImagingProximalADMM<t_complex>(uv_data.vis)
          .itermax(500)
          .gamma((Psi.adjoint() * (measurements_transform->adjoint() * uv_data.vis).eval())
                     .cwiseAbs()
                     .maxCoeff() *
                 1e-3)
          .relative_variation(1e-3)
          .l2ball_proximal_epsilon(epsilon)
          .tight_frame(false)
          .l1_proximal_tolerance(1e-2)
          .l1_proximal_nu(1.)
          .l1_proximal_itermax(50)
          .l1_proximal_positivity_constraint(true)
          .l1_proximal_real_constraint(true)
          .residual_convergence(epsilon)
          .lagrange_update_scale(0.9)
#ifdef PURIFY_CImg
          .is_converged(show_image)
#endif
          .nu(1e0)
          .Psi(Psi)
          .Phi(*measurements_transform);

  auto const diagnostic = padmm();
  assert(diagnostic.x.size() == M31.size());
  Image<t_complex> image = Image<t_complex>::Map(diagnostic.x.data(), imsizey, imsizex);
  pfitsio::write2d(image.real(), outfile_fits);
  Vector<t_complex> residuals = measurements_transform->adjoint() *
                                (uv_data.vis - ((*measurements_transform) * diagnostic.x));
  Image<t_complex> residual_image = Image<t_complex>::Map(residuals.data(), imsizey, imsizex);
  pfitsio::write2d(residual_image.real(), residual_fits);
#ifdef PURIFY_CImg
  const auto results = CImageList<t_real>(
      cimg::make_image(diagnostic.x.real().eval(), imsizey, imsizex).get_resize(512, 512),
      cimg::make_image(residuals.real().eval(), imsizey, imsizex).get_resize(512, 512));
  canvas->display(results);
  cimg::make_image(residuals.real().eval(), imsizey, imsizex)
      .histogram(256)
      .display_graph("Residual Histogram", 2);
  while (!canvas->is_closed()) canvas->wait();
#endif
}

int main(int, char **) {
  // sopt::logging::set_level("debug");
  // purify::logging::set_level("debug");
  const std::string &name = "M31";
  const t_real FoV = 15;     // deg
  const t_real max_w = 15.;  // lambda
  const t_real snr = 30;
  const bool w_term = false;
  const std::string kernel = "kb";
  std::string const fitsfile = image_filename(name + ".fits");
  auto M31 = pfitsio::read2d(fitsfile);
  const t_real cellsize = FoV / M31.cols() * 60. * 60.;
  std::string const inputfile = output_filename(name + "_" + "input.fits");

  t_real const max = M31.array().abs().maxCoeff();
  M31 = M31 * 1. / max;
  pfitsio::write2d(M31.real(), inputfile);

  t_int const number_of_pxiels = M31.size();
  t_int const number_of_vis = std::floor(number_of_pxiels * 2);
  // Generating random uv(w) coverage
  t_real const sigma_m = constant::pi / 3;
  auto uv_data = utilities::random_sample_density(number_of_vis, 0, sigma_m, max_w);
  uv_data.units = utilities::vis_units::radians;
  PURIFY_MEDIUM_LOG("Number of measurements / number of pixels: {}",
                    uv_data.u.size() * 1. / number_of_pxiels);

#ifndef PURIFY_GPU
  auto const sky_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      measurementoperator::init_degrid_operator_2d<Vector<t_complex>>(
          uv_data, M31.rows(), M31.cols(), cellsize, cellsize, 2,
          kernels::kernel_from_string.at("kb"), 8, 30, true, 1e-6, 1e-6, dde_type::wkernel_radial),
      1000, 0.0001, Vector<t_complex>::Random(M31.size())));
#else
  auto const sky_measurements = std::get<2>(sopt::algorithm::normalise_operator<Vector<t_complex>>(
      gpu::measurementoperator::init_degrid_operator_2d(
          uv_data, M31.rows(), M31.cols(), cellsize, cellsize, 2,
          kernels::kernel_from_string.at("kb"), 8, 8, w_term),
      1000, 0.0001, Vector<t_complex>::Random(M31.size())));

#endif
  uv_data.vis = (*sky_measurements) * Image<t_complex>::Map(M31.data(), M31.size(), 1);
  Vector<t_complex> const y0 = uv_data.vis;
  // working out value of signal given SNR of 30
  t_real const sigma = utilities::SNR_to_standard_deviation(y0, snr);

  std::cout << std::setprecision(13) << sigma << std::endl;
  // adding noise to visibilities
  uv_data.vis = utilities::add_noise(y0, 0., sigma);
  padmm(name + "30", M31, kernel, 4, uv_data, sigma, std::make_tuple(w_term, cellsize));
  /*
    const std::string &test_dir = "expected/padmm_serial/";
    const std::string &input_data_path = notinstalled::data_filename(test_dir + "input_data.vis");
    auto uv_data = utilities::read_visibility(input_data_path, false);
    uv_data.units = utilities::vis_units::radians;
    t_real const sigma = 0.02378738741225;
    padmm(name + "10", M31, kernel, 4, uv_data, sigma, std::make_tuple(w_term, cellsize));
    */
  return 0;
}